## POLYNOMIAL FUNCTORS AND THEIR CLOSED SUBSETS: EXERCISES

## JAN DRAISMA

All polynomial functors are of finite degree and over an infinite field *K*. The following are exercises to get acquainted with the basic concepts.

(1) Let  $P: \text{Vec} \to \text{Vec}$  be a polynomial functor. For each nonnegative integer e and each  $V \in \text{Vec}$  define

$$P_e(V) := \{ q \in P(V) \mid \forall t \in K : P(t1_V)q = t^e q \}.$$

- (a) Show that  $P_e$  is a polynomial subfunctor of P.
- (b) Show that  $P \cong \bigoplus_{e} P_{e}$ .
- (2) Let P be the polynomial functor over  $K = \mathbb{C}$  that sends V to the space of symmetric tensors in  $V \otimes V$ . So  $P(\mathbb{C}^n)$  is the space of complex symmetric  $n \times n$ -matrices with  $GL_n$ -action given by  $(g, A) \mapsto gAg^T$ .
  - (a) Show that for a fixed n,  $GL_n$  has only finitely many orbits on  $P(\mathbb{C}^n)$ , parameterised by rank.
  - (b) Show that the Vec-closed subsets of P form a single chain  $X_0 \subseteq X_1 \subseteq X_2 \subseteq \cdots \subseteq X_\infty = P$ .
- (3) Let *P* be the same polynomial functor as in the previous exercise. For a pair  $(A, B) \in P(V) \oplus P(V)$  define the *tuple rank* rk(A, B) as the minimal rank of sA + tB over all pairs  $(s, t) \in \mathbb{C}^2 \setminus \{(0, 0)\}$ . Show that for each k,  $X_k$  defined by  $X_k(V) = \{(A, B) \in P(V) \oplus P(V) \mid \text{rk}(A, B) \leq k\}$  is a Vec-closed subset of  $P \oplus P$ .
- (4) Recall that  $P_{\infty} = \lim_{\leftarrow n} P(K^n)$ , and for X a Vec-closed subset of P we have  $X_{\infty} = \lim_{\leftarrow n} X(K^n)$ . Show that  $X \mapsto X_{\infty}$  is a bijection between Vec-closed subsets of P and  $GL_{\infty}$ -stable closed subsets of  $P_{\infty}$ .
- (5) For a fixed  $U \in \text{Vec let Sh}_U : \text{Vec} \to \text{Vec be the functor that sends } V \text{ to } U \oplus V$  and  $\varphi : V \to W$  to  $1_U \oplus \varphi$ . For any polynomial functor P of degree  $\leq d$  show that  $Q = P \circ \text{Sh}_U$  is a polynomial functor of degree  $\leq d$  and that the top-degree parts are isomorphic:  $P_d \cong Q_d$ .
- (6) Formulate a Vec<sup>k</sup>-version of the main theorem and prove it using the main theorem.
- (7) Prove or give a counterexample: if P is a polynomial functor over K with  $P_0 = 0$ , then P has precisely two Vec-*open* subsets X (i.e., X(V) open in P(V) and for all  $\varphi \in \operatorname{Hom}(V,W), P(\varphi)X(V) \subseteq X(W)$ ). In particular, the complement  $Y^c(V): P(V) \setminus Y(V)$  of a Vec-closed subset Y is typically not Vec-open. Show, however, that the complement  $Y^c$  is preserved under *injective* linear maps.

The following are some open problems, in increasing difficulty (I think).

(1) (Erman-Sam-Snowden) Formulate and prove a **Z**-version of the main theorem.

Date: August 13, 2018.

2

- (2) Is the ideal of the variety of tensors of the form  $v_1 \otimes A_{23} + v_2 \otimes A_{13}$  in  $V^{\otimes 3}$  (with  $v_i$  in the *i*-th copy of V and  $A_{ij}$  in the tensor product of the *i*-th and *j*-th copies) generated by polynomials of degrees 3 and 6? (I can tell you some of these equations.)
- (3) Does every increasing chain of  $GL_{\infty}$ -stable ideals in  $\mathbb{C}[x_{ij}|i,j\in\mathbb{N}]$ , with action  $(g,A)\mapsto gAg^T$  stabilise? This is a special case of the ring-theoretic Noetherianity we'd like to have.