
POLARISATION IN INVARIANT THEORY

JAN DRAISMA

Invariant Theory

Set-up:
• V a finite-dimensional vector space over a field K
• G a group acting by linear maps on V
• K[V ] the ring of polynomials on V
• G acts on K[V ] by gf := f ◦ g−1

• K[V ]G the algebra of (polynomial) G-invariants on V

Example 0.1. V := Kn, G := {g ∈ GLn | gT g = I}; then K[V ]G = K[x1, . . . , xn]G =
K[q], where q = x2

1 + . . . + x2
n.

Invariants help to distinguish G-orbits in V :
• If x, y ∈ V and f ∈ K[V ]G satisfies f(x) 6= f(y), then Gx and Gy are

distinct orbits.
• For finite groups, distinct orbits are seperated by invariant polynomials,

but this is not true for general groups.

Two problems in invariant theory

Generators. Given G and its action on V , determine generators of K[V ]G.

Remark 0.2. • K[V ]G may not be a finitely generated algebra; this is the
negative answer to Hilbert’s 14th problem (Nagata 1959).

• If the image of G in GL(V ) is “reductive”, then K[V ]G is finitely generated
(Hilbert, 1890), and one can give good upper bounds on the degrees of
generators (Derksen, 2001).

Separating invariants. Given G and its action on V , determine a finite subset
of K[V ]G with the same “separating power” as the full algebra K[V ]G. Such a set
is called a finite separating system of invariants.

Lemma 0.3. A finite separating system of invariants always exists.

Proof. Consider the equivalence relation on V given by

{(v, w) | f(v) = f(w) for all f ∈ K[V ]G}.

This is the zero set of the ideal I generated by the polynomials f(v)− f(w), where
f runs over all elements of K[V ]G. By the fact that K[V × V ] is Noetherian (i.e.,
every ascending chain of ideals stabilises), I is already generated by a finite number
of the f(v)− f(w). The corresponding f form a finite separating system. �
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Note that a finite set of invariants has the same separating power as the algebra
it generates. So we may also interpret the lemma as: there always exists a finitely
generated algebra of invariants that has the same separating power as the full
algebra K[V ]G.

Polarisation

Now suppose that V = Mp, where

• M is a finite-dimensional vector space on which G acts linearly, and
• G acts diagonally on Mp.

In general one cannot construct all invariants on Mp from invariants on M .

Example 0.4. Suppose that G = SLn acts on M = Kn by multiplication. Then
K[Mp]G = K for p < dim M , while K[Mdim M ] = K[det].

However, one can always construct some invariants on Mp from knowledge of
invariants on Mq, as follows. Suppose that f ∈ K[Mq]G and let π be any linear
map Kp → Kq. Then π induces a linear map π : Mp → Mq by

π(m1, . . . ,mp) = (
p∑

j=1

π1,jmj , . . . ,

p∑
j=1

πq,jmj).

Clearly, this map is G-equivariant: π(gv) = gπ(v) for v ∈ Mp. Hence f ◦ π is an
invariant on Mp, which we will call a polarisation of f to Mp.

Definition 0.5. Let A be a subalgebra of K[Mq]. The subalgebra of K[Mp]
generated by all polarisations of elements of A to Mp (i.e., by all functions of the
form f ◦ π where f ∈ A and π : Kp → Kq) is called the polarisation of A to Mp.

Example 0.6. Recall Example 0.1. Then the polynomial β on (Kn)2 given by

β(x, y) := q(x + y)− q(x)− q(y)

is a polarisation of q to 2 copies of Kn: the bilinear form associated to q.

Applications of polarisation

Generating invariants. The following theorem is due to Weyl.

Theorem 0.7 (Weyl, 1939). Suppose that char K = 0. Then K[Mp]G is the
polarisation of K[Mdim M ]G to Mp for all p ≥ dim M .

In other words, one needs “only” know the invariants of G on dim M copies of
M to construct the invariants of G on more copies. Compare this to example 0.4.

The theorem is not true in positive characteristic, not even if G is finite and its
order is not a multiple of char K.

Example 0.8. (Kemper, Wehlau). Suppose that K has characteristic 3 and con-
tains a primitive 4-th root ω of unity. Let G be the subgroup of GL1 generated by
ω, acting on M = K by multiplication. Then K[M ]G = K[x]G = K[x4]. Now x2y2

is an invariant on M2, but in (ax + by)4 the monomial x2y2 does not occur; this
easily implies that x2y2 does not lie in the polarisation of K[x4] to 2 copies.
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Remark 0.9. Friedrich Knop has proved a generalisation of Weyl’s theorem to
positive characteristic, which ensures that the invariants on Mp up to a certain
degree can be obtained from invariants on Mdim M by polarisation. Combining this
with a bound on degrees of invariants of finite groups, one finds a generalisation of
Weyl’s theorem to finite G and charK not dividing |G|.

Separating invariants. In contrast, we have

Theorem 0.10 (Kemper, Wehlau, Draisma, 2005). If A is a separating subalgebra
of K[Mdim M ]G, then the polarisation of A to Mp with p ≥ dim M is separating.

This theorem is a consequence of the following lemma (by taking “having the
same value under all invariants” as equivalence relations).

Lemma 0.11. Suppose p, q ≥ dim M and let ∼ and ≡ be equivalence relations on
Mp and Mq, respectively, such that

v ∼ w ⇒ πv ≡ πw, v, w ∈ Mp, π : Kp → Kq

and
v ≡ w ⇒ πv ∼ πw, v, w ∈ Mq, π : Kq → Kp.

Now suppose that v, w ∈ Mp are such that πv ≡ πw for all π : Kp → Kq. Then
v ∼ w.

Proof. View Mp and Mq as Kp ⊗M and Kq ⊗M . Choose linearly independent
subspaces A,B, C of Kp with

(1) v ∈ (A + B)⊗M (write v = vA + vB accordingly),
(2) w ∈ (B + C)⊗M (write w = wB + wC accordingly) and
(3) A + B and B + C have dimension at most q.

Now let π : Kp → Kq and σ : Kq → Kp be such that σπ is the identity on A + B
and zero on C. Then we find

v = σπv ∼ σπw = wB .

Similarly, using a second pair (σ, π), we find w ∼ vB . But now let π : Kp → Kq

and σ : Kq → Kp be a third pair such that σπ is the identity on B and zero on
A + C. Then we find

vB = σπv ∼ σπw = wB ,

and we are done. �

The null-cone. The null-cone N(Mp) in Mp is the set of elements of V that
cannot be separated from 0 by invariants.

Example 0.12. Suppose that SLn × SLn acts by left-and-right multiplication on
M = Mn.

• The null-cone N(M) consists of the singular matrices: these are the ones
that cannot be distinguished from 0 by the det.

• The null-cone N(Mp) for p > 1 has precisely n irreducible components,
namely:

Ck := {(A1, . . . , Ap) ∈ Mp | ∃k-dimensional U : dim
∑

i

AiU < k}.

Theorem 0.13 (Bürgin, Draisma, 2005). The function p 7→ “the number of irre-
ducible components of N(Mp)” is ascending and stabilises at some p ≤ dim M .
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Remark 0.14. For reductive groups in characteristic zero, this was first observed
by Kraft and Wallach (2004).

Proof. The stabilising part is the hardest. Set q := dim M . Consider the map

Ψ : Hom(Kq,Kp)×Mq → Mp, (π, v) := πv.

Verify:
(1) Ψ maps Hom(Kq,Kp)×N(Mq) into N(Mp),
(2) Ψ maps Hom(Kq,Kp) × N(Mq) onto N(Mp) (here we need q = dim M),

and
(3) the number of irreducible components of Hom(Kq,Kp)×N(Mq) equals the

number of irreducible components of N(Mq).
�


