POLARISATION IN INVARIANT THEORY

JAN DRAISMA

INVARIANT THEORY

Set-up:

V' a finite-dimensional vector space over a field K

G a group acting by linear maps on V'

K|[V] the ring of polynomials on V

G actson K[V] by gf := fog™!

K[V]¢ the algebra of (polynomial) G-invariants on V

Example 0.1. V := K", G := {g € GL,, | gTg = I}; then K[V]|¢ = K[z1,...,2,]¢
Klq], where ¢ = 22 + ... + 22.

Invariants help to distinguish G-orbits in V:

e If 2,y € V and f € K[V]® satisfies f(x) # f(y), then Gz and Gy are
distinct orbits.

e For finite groups, distinct orbits are seperated by invariant polynomials,
but this is not true for general groups.

TWO PROBLEMS IN INVARIANT THEORY
Generators. Given G and its action on V, determine generators of K[V]%.

Remark 0.2. e K[V]% may not be a finitely generated algebra; this is the
negative answer to Hilbert’s 14th problem (Nagata 1959).
e If the image of G in GL(V) is “reductive”, then K[V]¢ is finitely generated
(Hilbert, 1890), and one can give good upper bounds on the degrees of
generators (Derksen, 2001).

Separating invariants. Given G and its action on V', determine a finite subset
of K[V]% with the same “separating power” as the full algebra K[V]“. Such a set
is called a finite separating system of invariants.

Lemma 0.3. A finite separating system of invariants always exists.

Proof. Consider the equivalence relation on V' given by

{(v,w) | f(v) = f(w) for all f € K[V]°}.
This is the zero set of the ideal I generated by the polynomials f(v) — f(w), where
f runs over all elements of K[V]%. By the fact that K[V x V] is Noetherian (i.e.,
every ascending chain of ideals stabilises), I is already generated by a finite number
of the f(v) — f(w). The corresponding f form a finite separating system. a
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Note that a finite set of invariants has the same separating power as the algebra
it generates. So we may also interpret the lemma as: there always exists a finitely
generated algebra of invariants that has the same separating power as the full
algebra K[V]¢.

POLARISATION

Now suppose that V = MP, where

e M is a finite-dimensional vector space on which G acts linearly, and
e (G acts diagonally on MP.

In general one cannot construct all invariants on MP from invariants on M.

Example 0.4. Suppose that G = SL,, acts on M = K" by multiplication. Then
K[MP)¢ = K for p < dim M, while K[M3™M] = K[det].

However, one can always construct some invariants on M? from knowledge of
invariants on M9, as follows. Suppose that f € K[M9]% and let m be any linear
map KP — K9. Then 7 induces a linear map 7 : MP — M? by

p p
7'('(7’)7,17 . ,mp) = (Zﬂ'l’jmj, ey Zﬂ'q’jmj).
7j=1 7j=1

Clearly, this map is G-equivariant: w(gv) = gm(v) for v € MP. Hence f o is an
invariant on MP, which we will call a polarisation of f to MP.

Definition 0.5. Let A be a subalgebra of K[M?]. The subalgebra of K[M?]
generated by all polarisations of elements of A to M? (i.e., by all functions of the
form f o where f € A and 7 : K? — K1) is called the polarisation of A to MP.

Example 0.6. Recall Example 0.1. Then the polynomial 3 on (K™)? given by

Blx,y) == q(x +y) —q(x) —q(y)

is a polarisation of g to 2 copies of K™: the bilinear form associated to g.

APPLICATIONS OF POLARISATION

Generating invariants. The following theorem is due to Weyl.

Theorem 0.7 (Weyl, 1939). Suppose that char K = 0. Then K[MP]¢ is the
polarisation of K[MY™M|G to MP for all p > dim M.

In other words, one needs “only” know the invariants of G on dim M copies of
M to construct the invariants of G on more copies. Compare this to example 0.4.

The theorem is not true in positive characteristic, not even if G is finite and its
order is not a multiple of char K.

Example 0.8. (Kemper, Wehlau). Suppose that K has characteristic 3 and con-
tains a primitive 4-th root w of unity. Let G be the subgroup of GL; generated by
w, acting on M = K by multiplication. Then K[M]¢ = K[2]% = K[z%]. Now x2y?
is an invariant on M2, but in (ax + by)* the monomial 2%y? does not occur; this
easily implies that 2%y? does not lie in the polarisation of K|[z%] to 2 copies.
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Remark 0.9. Friedrich Knop has proved a generalisation of Weyl’s theorem to
positive characteristic, which ensures that the invariants on M? up to a certain
degree can be obtained from invariants on M™ M by polarisation. Combining this
with a bound on degrees of invariants of finite groups, one finds a generalisation of
Weyl’s theorem to finite G and char K not dividing |G|.

Separating invariants. In contrast, we have

Theorem 0.10 (Kemper, Wehlau, Draisma, 2005). If A is a separating subalgebra
of K[MI™ MG “then the polarisation of A to MP with p > dim M is separating.

This theorem is a consequence of the following lemma (by taking “having the
same value under all invariants” as equivalence relations).

Lemma 0.11. Suppose p,q > dim M and let ~ and = be equivalence relations on
MP and M9, respectively, such that
ve~w =T =aw, v,w e MP r: KP— K9
and
v=w=1mv~1rw, v,weMr: K — KP.
Now suppose that v,w € MP are such that mv = ww for all 7 : KP — K9?. Then
v~ w.
Proof. View MP and M9 as KP ® M and K9 ® M. Choose linearly independent
subspaces A, B, C' of K? with
(1) ve (A+ B) @ M (write v = v + vp accordingly),
(2) we (B+C)® M (write w = wp + we accordingly) and
(3) A+ B and B + C have dimension at most q.
Now let 7 : KP — K% and ¢ : K7 — KP be such that o is the identity on A + B
and zero on C. Then we find
V=0TV~ OTW = Wg.

Similarly, using a second pair (o, 7), we find w ~ vg. But now let 7 : K? — K49
and o : K9 — KP be a third pair such that o7 is the identity on B and zero on
A+ C. Then we find

VB =0TV ~ OTTW = Wpg,

and we are done. O

The null-cone. The null-cone N(MP) in MP is the set of elements of V' that
cannot be separated from 0 by invariants.

Example 0.12. Suppose that SL,, x SL,, acts by left-and-right multiplication on
M =M,.
e The null-cone N (M) consists of the singular matrices: these are the ones
that cannot be distinguished from 0 by the det.
e The null-cone N(MP) for p > 1 has precisely n irreducible components,
namely:

Cy :={(A1,..., Ap) € MP | Fk-dimensional U : dim Y~ AU < k}.

Theorem 0.13 (Biirgin, Draisma, 2005). The function p — “the number of irre-
ducible components of N(MP)” is ascending and stabilises at some p < dim M.
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Remark 0.14. For reductive groups in characteristic zero, this was first observed
by Kraft and Wallach (2004).

Proof. The stabilising part is the hardest. Set ¢ := dim M. Consider the map
U : Hom(K? K?) x M7 — MP?, (7,v) := wv.
Verify:
(1) ¥ maps Hom (K9, KP) x N(M?) into N(MP),
(2) ¥ maps Hom(K?, KP) x N(M?) onto N(MP) (here we need ¢ = dim M),
and
(3) the number of irreducible components of Hom(K9, K?) x N(M?) equals the
number of irreducible components of N(M?).
(]



