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EM(T) = {Prob | π,M, . . . ,S} ⊆ (CB)⊗4

Goal: decide membership of EM(T)
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Bates-Oeding, . . . trivalent trees)

(Sturmfels-Sullivant,
arbitrary trees)

(Michalek,
arbitrary trees)

(Sturmfels-Sullivant,
trivalent trees)

Strand-symmetric
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(Casanellas-Sullivant)
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Our results

Theorem
For fixed B and abelian G, EM(T) is defined by polynomials
of uniformly bounded degree, independent of T.

Theorem
For fixed B and abelian G there exists a polynomial-time
algorithm that on input T and a tensor in (CB)⊗leaf(T) decides
membership of EM(T).

Disclaimer
• What’s the bound? What’s the algorithm?
• Polynomial in |V||leaf(T)| can still be very slow.
• No ideal-theoretic result.
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Our results, scope

General Markov
G = {1}, EM(T) = GM(T)

Jukes-Cantor binary
G = B = {−1,+1}

Kimura 3-parameter
G = B = Z/2 × Z/2

Kimura 2-parameter
G dihedral

Strand-symmetric
G = 〈(A,G), (C,T)〉

abelian

A

C G

T
not abelian
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[s : (CB)⊗4
→ CB ⊗ CB ⊗ C(B × B)

maps EM(T) into EM([sT).
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Flattening (I), reduction

Theorem (Allman-Rhodes, D-K)

EM(T) =
⋂

s EM([sT)

 degree bound and algorithm
reduce to star trees:

· · ·
B1 B2 Bp

B

Proposition (A-R, Landsberg-Manivel, D-K)

Further reduction to B-leaved trees.

· · ·
B B B

B
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Summary so far

V := CB space of distributions on B
V⊗p space of distributions on Bp

EM(Sp) ⊆ V⊗p equivariant model of Sp

· · ·
B B B

B

Degree bound + membership test for EM(Sp)
⇒ same for EM(T).

Sp

G = {1} EM(Sp) = {tensors of border rank ≤ |B|}
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Contraction

P distribution on Bp

Q distribution on Bq, q ≤ p
U ∼ Q, W = (Wp−q,Wq) ∼ P independent

distribution of Wp−q conditioned on Wq = U:
Prob(Wp−q = wp−q|Wq = U) = 1

Z

(∑
wq∈Bq P(wp−q,wq) ·Q(wq)

)
Lemma

if P ∈ EM(Sp)
and Q is G-invariant
 new distribution ∈ EM(Sp−q).

· · ·
B B B

B
Sp

p − q q
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Example: Jukes-Cantor binary

G = B = {−1,+1}
V = CB = 〈(−1), (1)〉 = 〈e0 := (−1) + (1), e1 := (−1) − (1)〉

Theorem (Sturmfels-Sullivant)

P lies in EM(Sp) ⊆ V⊗p iff

• Pw = 0 if w ∈ {0, 1}p has odd weight

• Pw00Pu11 − Pw11Pw00 = 0, Pw01Pu10 − Pw10Pu01 = 0

P′ := 〈P, e0〉 ⇒ P′w = Pw0

P′ := 〈P, e1 ⊗ e1〉 ⇒ P′w = Pw11
...

map EM(Sp) into (Sp′ )
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Contraction characterises models

P ∈ V⊗[p]

Q ∈ V⊗I, I ⊆ [p]
 contraction 〈P,Q〉 ∈ V⊗[p]−I:
〈P,Q〉(w[p]−I) :=

∑
wI∈BI P(w[p]−I,wI)Q(wI)

Theorem

For fixed B and abelian G, there exists a p0 such that for all
p > p0 and P ∈ V⊗p t.f.a.e.:

• P ∈ EM(Sp)

• for all I ⊆ [p] with |I| ≥ p − p0 and all G-invariant Q ∈ V⊗I

we have 〈P,Q〉 ∈ EM(S[p]−I).

implies main theorems!
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[I,J : EM(Sp)→ EM([I,JSp)
kχ := multiplicity of character χ in V = CB

[I,J [I,JSp

Lemma

EM([I,JSp) = { G-equivariant linear maps V⊗I
→ V⊗J

of rank ≤ kχ in component χ }

 determinantal equations for EM(Sp)
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[I,J [I,JSp

Flattening variety Yp :=
⋂

I,J EM([I,JSp)

upper approximation: V⊗p
⊇ Yp ⊇ EM(Sp)

Yp = EM(Sp) for some models:
• JC binary (Sturmfels-Sullivant)
• GM binary (Landsberg-Manivel, Raicu)



Infinite tree models

Q ∈ V⊗q G-invariant

V⊗0 V⊗q V⊗2q
〈 · ,Q〉

· · · V⊗(∞q)



Infinite tree models

Q ∈ V⊗q G-invariant

V⊗0 V⊗q V⊗2q
〈 · ,Q〉

· · · V⊗(∞q)

Y0 Yq Y2q Y∞q· · ·



Infinite tree models

Q ∈ V⊗q G-invariant

V⊗0 V⊗q V⊗2q
〈 · ,Q〉

· · · V⊗(∞q)

Y0 Yq Y2q Y∞q· · ·

· · ·EM(S0) EM(Sq) EM(S2q) EM(S∞q)



Infinite tree models

Q ∈ V⊗q G-invariant

V⊗0 V⊗q V⊗2q
〈 · ,Q〉

· · · V⊗(∞q)

Y0 Yq Y2q Y∞q· · ·

· · ·EM(S0) EM(Sq) EM(S2q) EM(S∞q)

degree-(kχ + 1)



Infinite tree models

Q ∈ V⊗q G-invariant
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· · · V⊗(∞q)

Y0 Yq Y2q Y∞q· · ·

· · ·EM(S0) EM(Sq) EM(S2q) EM(S∞q)

bounded
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Infinite tree models, symmetries

Hp := Sym(p) n GLG(V)p

acts on V⊗p
⊇ Yp ⊇ EM(Sp)

V⊗0 V⊗q V⊗2q
〈 · ,Q〉

· · · V⊗(∞q)

H(∞q) :=
⋃

n Hnq

acts on V⊗(∞q)
⊇ Y∞q ⊇ EM(S∞q)

Theorem
For suitable q and Q, every H(∞q)-stable closed subvariety of
Y(∞q) is defined by finitely many H(∞q)-orbits of equations.

In particular for EM(S(∞q))!
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H(∞q)-noetherian
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poly-time membershipuniform degree bound poly-time membership

first for Sp, then for general T

for Jukes-Cantor binary
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V = CB = 〈(−1), (1)〉 = 〈e0 := (−1) + (1), e1 := (−1) − (1)〉

Theorem (Sturmfels-Sullivant)

P lies in EM(Sp) ⊆ V⊗p iff

• Pw = 0 if w ∈ {0, 1}p has odd weight

• Pw00Pu11 − Pw11Pw00 = 0, Pw01Pu10 − Pw10Pu01 = 0

Equivalently: P : V⊗I
→ V⊗[p]−I is G-equivariant

and has rank ≤ 1 in each character.

 EM(Sp) = Yp.
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Contraction for J-C binary, continued

V = 〈e0, e1〉

P ∈ V⊗p with p ≥ 6

Claim: P < EM(Sp)⇒ some 〈P,Q〉 < EM(Sp−q).

• P not invariant
⇒ some 〈P, e0〉 or some 〈P, e1 ⊗ e1〉 not invariant

• P invariant but [I,JP has rank ≥ 2 in χ = 0 or 1

• |J| ≥ 4⇒ image in V⊗J of [I,JP can be contracted with
some e0 or ce0 ⊗ e0 + de1 ⊗ e1 without dropping dimension

• |I| = |J| = 3⇒ P can be contracted
in one factor in each of I, J
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Proof sketch
Theorem
For suitable q and Q, every H(∞q)-stable closed subvariety of
Y(∞q) is defined by finitely many H(∞q)-orbits of equations.

• Y(∞q) itself is defined by finitely many orbits
(Borel’s fixed point theorem, uses G abelian)

• C`×N is Sym(N) Noetherian (Cohen, Hillar-Sullivant)
• Y(∞q) is covered by finitely many spaces C`×N in a

Sym(N)-equivariant way.



Abelian equivariant tree models are
characterised by flattening and contracting

to bounded star models.


