Bounded-rank tensors and group-based models

Jan Draisma TU Eindhoven

(with Rob Eggermont, Jochen Kuttler)

Algebraic Statistics, Penn State, June 2012

Flatten and contract!

B alphabet π distribution on B

B alphabet

 π distribution on B

 M, \ldots, S transition matrices

B alphabet

 π distribution on B

 M, \ldots, S transition matrices

 $\text{Prob}(i,j,k,l) = \sum_{m,n,p} \pi_m M_{mn} P_{ni} Q_{nj} N_{mp} R_{pk} S_{pl}$

Tree models and tensors

 $Prob(i, j, k, l) = \sum_{m,n,p} \pi_m M_{mn} P_{ni} Q_{nj} N_{mp} R_{pk} S_{pl}$

Tree models and tensors

 $Prob(i, j, k, l) = \sum_{m,n,p} \pi_m M_{mn} P_{ni} Q_{nj} N_{mp} R_{pk} S_{pl}$ $(Prob(i, j, k, l))_{i,j,k,l} \in \mathbb{C}B \otimes \mathbb{C}B \otimes \mathbb{C}B \otimes \mathbb{C}B$

Tree models and tensors

Prob $(i, j, k, l) = \sum_{m,n,p} \pi_m M_{mn} P_{ni} Q_{nj} N_{mp} R_{pk} S_{pl}$ (Prob(i, j, k, l))_{i,j,k,l} $\in \mathbb{C}B \otimes \mathbb{C}B \otimes \mathbb{C}B \otimes \mathbb{C}B$

 $GM(T) := \overline{\{\text{Prob} \mid \pi, M, \dots, S\}} \subseteq (\mathbb{C}B)^{\otimes 4}$

Goal: decide membership of GM(T)

Equivariant tree models

group G permutes B

Equivariant tree models

group G permutes B π invariant, M, \ldots, S equivariant

Equivariant tree models

group G permutes B

 π invariant, M, \ldots, S equivariant

 $EM(T) = \overline{\{Prob \mid \pi, M, \dots, S\}} \subseteq (\mathbb{C}B)^{\otimes 4}$

Goal: decide membership of EM(T)

General Markov

$$G = \{1\}, EM(T) = GM(T)$$

(Allman-Rhodes, Friedland-Gross, Bates-Oeding, . . . trivalent trees)

General Markov

$$G = \{1\}, EM(T) = GM(T)$$

Strand-symmetric

$$G = \langle (A,G), (C,T) \rangle$$

(Allman-Rhodes, Friedland-Gross, Bates-Oeding, . . . trivalent trees)

(Casanellas-Sullivant)

General Markov

$$G = \{1\}, EM(T) = GM(T)$$

(Allman-Rhodes, Friedland-Gross, Bates-Oeding, . . . trivalent trees)

Strand-symmetric

$$G = \langle (A,G), (C,T) \rangle$$

(Casanellas-Sullivant)

Jukes-Cantor binary

$$G = B = \{-1, +1\}$$

(Sturmfels-Sullivant, arbitrary trees)

General Markov

$$G = \{1\}, EM(T) = GM(T)$$

(Allman-Rhodes, Friedland-Gross, Bates-Oeding, . . . trivalent trees)

Strand-symmetric

$$G = \langle (A,G), (C,T) \rangle$$

Jukes-Cantor binary

$$G = B = \{-1, +1\}$$

(Sturmfels-Sullivant, arbitrary trees)

(Casanellas-Sullivant)

Kimura 3-parameter

$$G = B = \mathbb{Z}/2 \times \mathbb{Z}/2$$

(Michalek, arbitrary trees)

General Markov

$$G = \{1\}, EM(T) = GM(T)$$

(Allman-Rhodes, Friedland-Gross, Bates-Oeding, . . . trivalent trees)

Strand-symmetric

$$G = \langle (A,G), (C,T) \rangle$$

(Casanellas-Sullivant)

Jukes-Cantor binary

$$G = B = \{-1, +1\}$$

(Sturmfels-Sullivant, arbitrary trees)

Kimura 3-parameter

$$G = B = \mathbb{Z}/2 \times \mathbb{Z}/2$$

(Michalek, arbitrary trees)

Kimura 2-parameter

G dihedral

(Sturmfels-Sullivant, trivalent trees)

Our results

Theorem

For fixed B and abelian G, EM(T) is defined by polynomials of uniformly bounded degree, independent of T.

Our results

Theorem

For fixed B and abelian G, EM(T) is defined by polynomials of uniformly bounded degree, independent of T.

Theorem

For fixed B and abelian G there exists a polynomial-time algorithm that on input T and a tensor in $(\mathbb{C}B)^{\otimes \operatorname{leaf}(T)}$ decides membership of $\operatorname{EM}(T)$.

Our results

Theorem

For fixed B and abelian G, EM(T) is defined by polynomials of uniformly bounded degree, independent of T.

Theorem

For fixed B and abelian G there exists a polynomial-time algorithm that on input T and a tensor in $(\mathbb{C}B)^{\otimes \operatorname{leaf}(T)}$ decides membership of $\operatorname{EM}(T)$.

Disclaimer

- What's the bound? What's the algorithm?
- Polynomial in $|V|^{|\text{leaf}(T)|}$ can still be very slow.
- No ideal-theoretic result.

Our results, scope

General Markov

$$G = \{1\}, EM(T) = GM(T)$$

Strand-symmetric

$$G = \langle (A,G), (C,T) \rangle$$

Jukes-Cantor binary

$$G = B = \{-1, +1\}$$

Kimura 3-parameter

$$G = B = \mathbb{Z}/2 \times \mathbb{Z}/2$$

abelian

Our results, scope

General Markov

$$G = \{1\}, EM(T) = GM(T)$$

Strand-symmetric

$$G = \langle (A,G), (C,T) \rangle$$

Jukes-Cantor binary

$$G = B = \{-1, +1\}$$

Kimura 3-parameter

$$G = B = \mathbb{Z}/2 \times \mathbb{Z}/2$$

abelian

group-based

Our results, scope

General Markov

$$G = \{1\}, EM(T) = GM(T)$$

Strand-symmetric

$$G = \langle (A,G), (C,T) \rangle$$

Jukes-Cantor binary

$$G = B = \{-1, +1\}$$

Kimura 3-parameter

$$G = B = \mathbb{Z}/2 \times \mathbb{Z}/2$$

abelian

group-based

Kimura 2-parameter *G* dihedral

not abelian

Flatten and contract!

 $b_s: (\mathbb{C}B)^{\otimes 4} \to \mathbb{C}B \otimes \mathbb{C}B \otimes \mathbb{C}(B \times B)$ maps EM(T) into $EM(b_sT)$.

Flattening (I), reduction

Theorem

(Allman-Rhodes, D-K)

$$EM(T) = \bigcap_{s} EM(b_{s}T)$$

Flattening (I), reduction

Theorem

(Allman-Rhodes, D-K)

$$EM(T) = \bigcap_{s} EM(b_{s}T)$$

→ degree bound and algorithm reduce to star trees:

Flattening (I), reduction

Theorem

(Allman-Rhodes, D-K)

$$EM(T) = \bigcap_{s} EM(b_{s}T)$$

→ degree bound and algorithm reduce to star trees:

Proposition

(A-R, Landsberg-Manivel, D-K)

Further reduction to *B*-leaved trees.

Summary so far

 $V := \mathbb{C}B$ space of distributions on B $V^{\otimes p}$ space of distributions on B^p $\mathrm{EM}(S_p) \subseteq V^{\otimes p}$ equivariant model of S_p

Summary so far

 $V := \mathbb{C}B$ space of distributions on B $V^{\otimes p}$ space of distributions on B^p $\mathrm{EM}(S_p) \subseteq V^{\otimes p}$ equivariant model of S_p

Degree bound + membership test for $EM(S_p)$ \Rightarrow same for EM(T).

 $G = \{1\} \leadsto \mathrm{EM}(S_p) = \{\mathrm{tensors\ of\ border\ rank} \le |B|\}$

Example: Jukes-Cantor binary

$$G = B = \{-1, +1\}$$

 $V = \mathbb{C}B = \langle (-1), (1) \rangle = \langle e_0 := (-1) + (1), e_1 := (-1) - (1) \rangle$

Example: Jukes-Cantor binary

$$G = B = \{-1, +1\}$$

 $V = \mathbb{C}B = \langle (-1), (1) \rangle = \langle e_0 := (-1) + (1), e_1 := (-1) - (1) \rangle$

Theorem

(Sturmfels-Sullivant)

P lies in $EM(S_p) \subseteq V^{\otimes p}$ iff

- $P_w = 0$ if $w \in \{0, 1\}^p$ has odd weight
- $P_{w00}P_{u11} P_{w11}P_{w00} = 0$, $P_{w01}P_{u10} P_{w10}P_{u01} = 0$

Flatten and contract!

Contraction

P distribution on B^p Q distribution on B^q , $q \le p$ $U \sim Q$, $W = (W_{p-q}, W_q) \sim P$ independent

Contraction

P distribution on B^p

Q distribution on B^q , $q \le p$

$$U \sim Q$$
, $W = (W_{p-q}, W_q) \sim P$ independent

distribution of W_{p-q} conditioned on $W_q = U$:

Prob
$$(W_{p-q} = w_{p-q}|W_q = U) = \frac{1}{Z} \left(\sum_{w_q \in B^q} P(w_{p-q}, w_q) \cdot Q(w_q) \right)$$

Contraction

P distribution on B^p

Q distribution on B^q , $q \le p$

$$U \sim Q$$
, $W = (W_{p-q}, W_q) \sim P$ independent

distribution of W_{p-q} conditioned on $W_q = U$:

Prob
$$(W_{p-q} = w_{p-q}|W_q = U) = \frac{1}{Z} \left(\sum_{w_q \in B^q} P(w_{p-q}, w_q) \cdot Q(w_q) \right)$$

Lemma

if $P \in EM(S_p)$ and Q is G-invariant \rightsquigarrow new distribution $\in EM(S_{p-q})$.

Example: Jukes-Cantor binary

$$G = B = \{-1, +1\}$$

 $V = \mathbb{C}B = \langle (-1), (1) \rangle = \langle e_0 := (-1) + (1), e_1 := (-1) - (1) \rangle$

Theorem

(Sturmfels-Sullivant)

P lies in $EM(S_p) \subseteq V^{\otimes p}$ iff

- $P_w = 0$ if $w \in \{0, 1\}^p$ has odd weight
- $P_{w00}P_{u11} P_{w11}P_{w00} = 0$, $P_{w01}P_{u10} P_{w10}P_{u01} = 0$

Example: Jukes-Cantor binary

$$G = B = \{-1, +1\}$$

 $V = \mathbb{C}B = \langle (-1), (1) \rangle = \langle e_0 := (-1) + (1), e_1 := (-1) - (1) \rangle$

Theorem

(Sturmfels-Sullivant)

 $P \text{ lies in EM}(S_p) \subseteq V^{\otimes p} \text{ iff}$

- $P_w = 0$ if $w \in \{0, 1\}^p$ has odd weight
- $P_{w00}P_{u11} P_{w11}P_{w00} = 0$, $P_{w01}P_{u10} P_{w10}P_{u01} = 0$

```
P \in V^{\otimes [p]}

Q \in V^{\otimes I}, I \subseteq [p]

\leadsto contraction \langle P, Q \rangle \in V^{\otimes [p]-I}:

\langle P, Q \rangle (w_{[p]-I}) := \sum_{w_I \in B^I} P(w_{[p]-I}, w_I) Q(w_I)
```

$$P \in V^{\otimes [p]}$$

 $Q \in V^{\otimes I}, I \subseteq [p]$
 $\leadsto contraction \langle P, Q \rangle \in V^{\otimes [p]-I}$:
 $\langle P, Q \rangle (w_{[p]-I}) := \sum_{w_I \in B^I} P(w_{[p]-I}, w_I) Q(w_I)$

Theorem

For fixed B and abelian G, there exists a p_0 such that for all $p > p_0$ and $P \in V^{\otimes p}$ t.f.a.e.:

$$P \in V^{\otimes [p]}$$

 $Q \in V^{\otimes I}, I \subseteq [p]$
 $\leadsto contraction \langle P, Q \rangle \in V^{\otimes [p]-I}$:
 $\langle P, Q \rangle (w_{[p]-I}) := \sum_{w_I \in B^I} P(w_{[p]-I}, w_I) Q(w_I)$

Theorem

For fixed B and abelian G, there exists a p_0 such that for all $p > p_0$ and $P \in V^{\otimes p}$ t.f.a.e.:

• $P \in EM(S_p)$

```
P \in V^{\otimes [p]}

Q \in V^{\otimes I}, I \subseteq [p]

\leadsto contraction \langle P, Q \rangle \in V^{\otimes [p]-I}:

\langle P, Q \rangle (w_{[p]-I}) := \sum_{w_I \in B^I} P(w_{[p]-I}, w_I) Q(w_I)
```

Theorem

For fixed B and abelian G, there exists a p_0 such that for all $p > p_0$ and $P \in V^{\otimes p}$ t.f.a.e.:

- $P \in EM(S_p)$
- for all $I \subseteq [p]$ with $|I| \ge p p_0$ and all G-invariant $Q \in V^{\otimes I}$ we have $\langle P, Q \rangle \in \text{EM}(S_{[p]-I})$.

```
P \in V^{\otimes [p]}

Q \in V^{\otimes I}, I \subseteq [p]

\leadsto contraction \langle P, Q \rangle \in V^{\otimes [p]-I}:

\langle P, Q \rangle (w_{[p]-I}) := \sum_{w_I \in B^I} P(w_{[p]-I}, w_I) Q(w_I)
```

Theorem

For fixed B and abelian G, there exists a p_0 such that for all $p > p_0$ and $P \in V^{\otimes p}$ t.f.a.e.:

- $P \in EM(S_p)$
- for all $I \subseteq [p]$ with $|I| \ge p p_0$ and all G-invariant $Q \in V^{\otimes I}$ we have $\langle P, Q \rangle \in \text{EM}(S_{[p]-I})$.

implies main theorems!

Flatten and contract!

 $b_{I,J}: \mathrm{EM}(S_p) \to \mathrm{EM}(b_{I,J}S_p)$

 $k_{\chi} := \text{multiplicity of character } \chi \text{ in } V = \mathbb{C}B$

 $b_{I,J}: \mathrm{EM}(S_p) \to \mathrm{EM}(b_{I,J}S_p)$

 $k_{\chi} := \text{multiplicity of character } \chi \text{ in } V = \mathbb{C}B$

Lemma

 $\mathrm{EM}(b_{I,J}S_p) = \{ G\text{-equivariant linear maps } V^{\otimes I} \to V^{\otimes J}$ of rank $\leq k_\chi$ in component $\chi \}$

 \rightsquigarrow determinantal equations for EM(S_p)

Flattening variety $Y_p := \bigcap_{I,J} EM(b_{I,J}S_p)$

upper approximation: $V^{\otimes p} \supseteq Y_p \supseteq EM(S_p)$

Flattening variety $Y_p := \bigcap_{I,J} EM(b_{I,J}S_p)$

upper approximation: $V^{\otimes p} \supseteq Y_p \supseteq EM(S_p)$

 $Y_p = EM(S_p)$ for some models:

JC binary

(Sturmfels-Sullivant)

GM binary

(Landsberg-Manivel, Raicu)

$$V^{\otimes 0} \stackrel{\langle \, \cdot \, , \, Q \rangle}{\longleftarrow} V^{\otimes q} \stackrel{\longleftarrow}{\longleftarrow} V^{\otimes (\infty q)}$$

$$V^{\otimes 0}$$
 $V^{\otimes q}$
 $V^{\otimes q}$

Infinite tree models, symmetries

$$H_p := \operatorname{Sym}(p) \ltimes \operatorname{GL}_G(V)^p$$

acts on $V^{\otimes p} \supseteq Y_p \supseteq \operatorname{EM}(S_p)$

$$V^{\otimes 0} \stackrel{\langle \, \cdot \, , \, Q \rangle}{\longleftarrow} V^{\otimes q} \stackrel{\longleftarrow}{\longleftarrow} V^{\otimes (\infty q)}$$

Infinite tree models, symmetries

$$H_p := \operatorname{Sym}(p) \ltimes \operatorname{GL}_G(V)^p$$

acts on $V^{\otimes p} \supseteq Y_p \supseteq \operatorname{EM}(S_p)$

$$V^{\otimes 0} \stackrel{\langle \, \cdot \, , \, Q \rangle}{\longleftarrow} V^{\otimes q} \stackrel{\longleftarrow}{\longleftarrow} V^{\otimes (\infty q)}$$

$$H_{(\infty q)} := \bigcup_n H_{nq}$$

acts on $V^{\otimes (\infty q)} \supseteq Y_{\infty q} \supseteq EM(S_{\infty q})$

Infinite tree models, symmetries

$$H_p := \operatorname{Sym}(p) \ltimes \operatorname{GL}_G(V)^p$$

acts on $V^{\otimes p} \supseteq Y_p \supseteq \operatorname{EM}(S_p)$

$$V^{\otimes 0} \stackrel{\langle \cdot, Q \rangle}{\longleftarrow} V^{\otimes q} \stackrel{\longleftarrow}{\longleftarrow} V^{\otimes (\infty q)}$$

$$H_{(\infty q)} := \bigcup_n H_{nq}$$

acts on $V^{\otimes (\infty q)} \supseteq Y_{\infty q} \supseteq EM(S_{\infty q})$

Theorem

For suitable q and Q, every $H_{(\infty q)}$ -stable closed subvariety of $Y_{(\infty q)}$ is defined by finitely many $H_{(\infty q)}$ -orbits of equations.

In particular for EM($S_{(\infty q)}$)!

Summary

first for S_p , then for general T

Summary

first for S_p , then for general T

Contraction for Jukes-Cantor binary

$$G = B = \{-1, +1\}$$

 $V = \mathbb{C}B = \langle (-1), (1) \rangle = \langle e_0 := (-1) + (1), e_1 := (-1) - (1) \rangle$

Contraction for Jukes-Cantor binary

$$G = B = \{-1, +1\}$$

 $V = \mathbb{C}B = \langle (-1), (1) \rangle = \langle e_0 := (-1) + (1), e_1 := (-1) - (1) \rangle$

Theorem

(Sturmfels-Sullivant)

 $P \text{ lies in EM}(S_p) \subseteq V^{\otimes p} \text{ iff}$

- $P_w = 0$ if $w \in \{0, 1\}^p$ has odd weight
- $P_{w00}P_{u11} P_{w11}P_{w00} = 0$, $P_{w01}P_{u10} P_{w10}P_{u01} = 0$

Contraction for Jukes-Cantor binary

$$G = B = \{-1, +1\}$$

 $V = \mathbb{C}B = \langle (-1), (1) \rangle = \langle e_0 := (-1) + (1), e_1 := (-1) - (1) \rangle$

Theorem

(Sturmfels-Sullivant)

 $P \text{ lies in EM}(S_p) \subseteq V^{\otimes p} \text{ iff}$

- $P_w = 0$ if $w \in \{0, 1\}^p$ has odd weight
- $P_{w00}P_{u11} P_{w11}P_{w00} = 0$, $P_{w01}P_{u10} P_{w10}P_{u01} = 0$

Equivalently: $P: V^{\otimes I} \to V^{\otimes [p]-I}$ is *G*-equivariant and has rank ≤ 1 in each character.

$$\rightsquigarrow \mathrm{EM}(S_p) = Y_p.$$

$$V = \langle e_0, e_1 \rangle$$

$$P \in V^{\otimes p} \text{ with } p \ge 6$$

$$V = \langle e_0, e_1 \rangle$$

$$P \in V^{\otimes p} \text{ with } p \ge 6$$

Claim: $P \notin EM(S_p) \Rightarrow \text{some } \langle P, Q \rangle \notin EM(S_{p-q}).$

• P not invariant

 \Rightarrow some $\langle P, e_0 \rangle$ or some $\langle P, e_1 \otimes e_1 \rangle$ not invariant

$$V = \langle e_0, e_1 \rangle$$

$$P \in V^{\otimes p} \text{ with } p \ge 6$$

- P not invariant \Rightarrow some $\langle P, e_0 \rangle$ or some $\langle P, e_1 \otimes e_1 \rangle$ not invariant
- P invariant but $b_{I,J}P$ has rank ≥ 2 in $\chi = 0$ or 1

$$V = \langle e_0, e_1 \rangle$$

$$P \in V^{\otimes p} \text{ with } p \ge 6$$

- P not invariant \Rightarrow some $\langle P, e_0 \rangle$ or some $\langle P, e_1 \otimes e_1 \rangle$ not invariant
- P invariant but $b_{I,J}P$ has rank ≥ 2 in $\chi = 0$ or 1
- $|J| \ge 4 \Rightarrow \text{image in } V^{\otimes J} \text{ of } \flat_{I,J} P \text{ can be contracted with some } e_0 \text{ or } ce_0 \otimes e_0 + de_1 \otimes e_1 \text{ without dropping dimension}$

$$V = \langle e_0, e_1 \rangle$$

$$P \in V^{\otimes p} \text{ with } p \ge 6$$

- P not invariant \Rightarrow some $\langle P, e_0 \rangle$ or some $\langle P, e_1 \otimes e_1 \rangle$ not invariant
- P invariant but $b_{I,J}P$ has rank ≥ 2 in $\chi = 0$ or 1
- $|J| \ge 4 \Rightarrow \text{image in } V^{\otimes J} \text{ of } \flat_{I,J} P \text{ can be contracted with some } e_0 \text{ or } ce_0 \otimes e_0 + de_1 \otimes e_1 \text{ without dropping dimension}$
- $|I| = |J| = 3 \Rightarrow P$ can be contracted in one factor in each of I, J

Input

 $P \in V^{\otimes p}$

Output

 $P \in \mathrm{EM}(S_p)$?

Input $P \in V^{\otimes p}$ Output $P \in EM(S_p)$?

Algorithm

```
b:=true;
for each I\subseteq [p], |I|\ge p-5 do
generate G-invariant Q\in V^{\otimes I} at random;
b:=b and \langle P,Q\rangle\in \mathrm{EM}(S_{[p]-I});
od;
return b;
```

```
Input
P \in V^{\otimes p}
Output
P \in EM(S_p)?
Algorithm
b := true;
for each I \subseteq [p], |I| \ge p - 5 do
   generate G-invariant Q \in V^{\otimes I} at random;
   b := b \text{ and } \langle P, Q \rangle \in \text{EM}(S_{[p]-I});
od;
return b;
```

Input $P \in V^{\otimes p}$ Output $P \in EM(S_p)$?

Algorithm

```
b:=true;
for each I \subseteq [p], |I| \ge p-5 do
generate G-invariant Q \in V^{\otimes I} at random;
b:=b and \langle P,Q \rangle \in \mathrm{EM}(S_{[p]-I});
od;
return b;
```

Proof sketch

Theorem

For suitable q and Q, every $H_{(\infty q)}$ -stable closed subvariety of $Y_{(\infty q)}$ is defined by finitely many $H_{(\infty q)}$ -orbits of equations.

• $Y_{(\infty q)}$ itself is defined by finitely many orbits (Borel's fixed point theorem, uses G abelian)

Proof sketch

Theorem

For suitable q and Q, every $H_{(\infty q)}$ -stable closed subvariety of $Y_{(\infty q)}$ is defined by finitely many $H_{(\infty q)}$ -orbits of equations.

- $Y_{(\infty q)}$ itself is defined by finitely many orbits (Borel's fixed point theorem, uses G abelian)
- $\mathbb{C}^{\ell \times \mathbb{N}}$ is Sym(N) Noetherian (Cohen, Hillar-Sullivant)

Proof sketch

Theorem

For suitable q and Q, every $H_{(\infty q)}$ -stable closed subvariety of $Y_{(\infty q)}$ is defined by finitely many $H_{(\infty q)}$ -orbits of equations.

- $Y_{(\infty q)}$ itself is defined by finitely many orbits (Borel's fixed point theorem, uses *G* abelian)
- $\mathbb{C}^{\ell \times \mathbb{N}}$ is Sym(N) Noetherian (Cohen, Hillar-Sullivant)
- $Y_{(\infty q)}$ is covered by finitely many spaces $C^{\ell \times \mathbb{N}}$ in a $\operatorname{Sym}(\mathbb{N})$ -equivariant way.

Abelian equivariant tree models are characterised by flattening and contracting to bounded star models.

