Bounded-rank tensors and
group-based models

Jan Draisma
TU Eindhoven

(with Rob Eggermont, Jochen Kuttler)

Algebraic Statistics, Penn State, June 2012



Flatten and contract!




Tree models



Tree models

Tt

B alphabet

7t distribution on B



Tree models

Tt

M N

B alphabet

7t distribution on B

M, ..., S transition matrices



Tree models

B alphabet

7t distribution on B

M, ..., S transition matrices

PI‘Ob(i, j, k, l) = Zm,n,p anmnPnianNmpRkapl
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Tree models and tensors

Prob(i, j, k,I) = Zm,n,}? T Min PriQniNmp Rk Spi
(Prob(i, j, k, 1)) ix1 € CB® CB® CB® CB

GM(T) := {Prob | =, M, ...,S} C (CB)®*
Goal: decide membership of GM(T)
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group G permutes B

7 invariant, M, ..., S equivariant

EM(T) = {Prob | =, M, ..., S} C (CB)®*
Goal: decide membership of EM(T)
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Equivariant tree models, examples

General Markov (Allman-Rhodes, Friedland-Gross,
G = {1}, EM(T) = GM(T) Bates-Oeding, . . . trivalent trees)
Strand-symmetric (Casanellas-Sullivant)
G ={((A,G),(CT))

Jukes-Cantor binary q p (Sturmfels-Sullivant,
G=B=/{-1,+1) p q arbitrary trees)
Kimura 3-parameter (Michalek,
G=B=Z/2X7/2 arbitrary trees)

A—T

Kimura 2-parameter ‘ ‘ (Sturmfels-Sullivant,

G dihedral

trivalent trees)
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Our results

Theorem

For tixed B and abelian G, EM(T) is defined by polynomials
of uniformly bounded degree, independent of T.

Theorem

For fixed B and abelian G there exists a polynomial-time

algorithm that on input T and a tensor in (CB)®'¢31) decides
membership of EM(T).

Disclaimer
e What's the bound? What’s the algorithm?
e Polynomial in |V |eaf (Dl can still be very slow.
e No ideal-theoretic result.



Our results, scope

General Markov
G = {1}, EM(T) = GM(T)

Strand-symmetric abelian
G ={(AG), (CT))

Jukes-Cantor binary
G=B={-1,+1}

Kimura 3-parameter
G=B=27Z/2X17]2




Our results, scope

General Markov
G = {1}, EM(T) = GM(T)

Strand-symmetric abelian
G =({(AG),(CT))
Jukes-Cantor binary

G=B={-1+1] group-based
Kimura 3-parameter
G=B=27/2X7Z/2




Our results, scope

General Markov
G = {1}, EM(T) = GM(T)

Strand-symmetric abelian
G =({(AG),(CT))
Jukes-Cantor binary

G=B={-1+1] group-based
Kimura 3-parameter
G=B=27/2X7Z/2

Kimura 2-parameter
G dihedral

not abelian
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Flattening (I)

Lemma B B

bs : (CB)®* — CB® CB ® C(B X B)
maps EM(T) into EM(b;T).
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Flattening (I), reduction

Theorem (Allman-Rhodes, D-K)
EM(T) = (), EM(bsT)

~+ degree bound and algorithm
reduce to star trees:

B B

B:1 B B, B B B
Proposition (A-R, Landsberg-Manivel, D-K)

Further reduction to B-leaved trees.
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Summary so far

V := CB space of distributions on B
V¥ space of distributions on B?
EM(S,) € V¥ equivariant model of S,

Degree bound + membership test for EM(S,)
= same for EM(T).

G = {1} ~ EM(S,) = {tensors of border rank < |B|}
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Contraction

P distribution on B”
Q distribution on B, g < p
U~Q, W=(W,_, W,;)~ P independent

distribution of W,_, conditioned on W, = U.:
Prob(Wy—g = wy—glWy = U) = % (Lop,epr Pwp—g, wg) - Qawy))

Lemma

if P € EM(S,)
and Q is G-invariant
~ new distribution € EM(S,_,).

P—4 q
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Example: Jukes-Cantor binary

G=B={-1,+1}
V =CB ={((-1),(1)) = {ep := (=1) + (1), &1 := (=1) = (1))

Theorem (Sturmfels-Sullivant)
P lies in EM(S,) C V*7 iff

o P, =01if w € {0,1} has odd weight

® PyoolPu11 — Pwi1Puwoo = 0, Pwo1Puio — PwioPuo1 =0

P’ = <P,€()> — Pév = PwO ]
P =(Pe1®e) = Péu = P11 map EM(SP) into (SP’)
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Contraction characterises models

P e yelrl

Qe Ve, IC[y]

~ contraction (P, Q) € VelrI-I.

(P, Q>(w[p]—1) = ZZUIEBI P(w[p]—b wr)Q(wr)

Theorem

For fixed B and abelian G, there exists a py such that for all
p>poand P € V¥F t.f.a.e.

e P € EM(S,)

e forall I C [p] with |I| > p — pp and all G-invariant Q € V®
we have (P, Q) € EM(S,1-1).

implies main theorems!
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Flattening (II)

bl,] . EM(SP) — EM(I?L]SP)
k, := multiplicity of character y in V = CB

Lemma

EM(b;;S,) = { G-equivariant linear maps V® — V&
of rank < k, in component y }

~ determinantal equations for EM(S,)
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Flattening (II)

b1 Sp
B/
Flattening variety Y, := (1 EM(b;;S)
upper approximation: V¥¥ 2 Y, D EM(S,)
Y, = EM(S,) for some models:
e JC binary (Sturmfels-Sullivant)

e GM binary (Landsberg-Manivel, Raicu)
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Infinite tree models

Q € V¥ G-invariant

< “ Q>
/20 - V¥ €—— /%2 4¥——— ... «— |/®(>9)
U U U degree-(k, + 1) U
Y, <= Y, *+—— Y, +— ... +— Y

ol U

EM(S;) *+— EM(S,) +— EM(S,,) *— --- <+—— EM(S.,)




Infinite tree models

Q € V¥ G-invariant

</Q>

/0 V¥ — 20— ... +—— |/®(9)

!

Y, <= Y, *—— Y, *+—— ... +———

!

EM(S) *+— EM(S,) +— EM(Sy,) +— .- <+——

U
U

bounded




Infinite tree models, symmetries

H, := Sym(p) x GLg(V)
acts on V¥’ 2 Y, D EM(S,)
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H, := Sym(p) x GLg(V)
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Infinite tree models, symmetries

H, := Sym(p) x GLg(V)
acts on V¥’ 2 Y, D EM(S,)

</Q>

V0 V¥ €—— /%2 «¥——— ... «—— |/®(9)

Hcog) := U,, Hug
acts on V&1 2 Y., 2 EM(Seq)

Theorem

For suitable g and Q, every H ,)-stable closed subvariety of
Y (coq) 18 defined by finitely many H.)-orbits of equations.

In particular for EM(5(coy))!
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Summary

flattening variety Y ()
H (coq)-noetherian

A 4

EM(S;), p > 0 recognisable

by contractions to bounded p for Jukes-Cantor binary

, N

uniform degree bound poly-time membership

first for S,, then for general T
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Contraction for Jukes-Cantor binary

G=B={-1,+1}
V =CB ={((-1),(1)) = {ep := (=1) + (1), &1 := (=1) = (1))

Theorem (Sturmfels-Sullivant)
P lies in EM(S,) C V*7 iff

o P, =01if w € {0,1} has odd weight

® PyoolPu11 — Pwi1Puwoo = 0, Pwo1Puio — PwioPuo1 =0

Equivalently: P : V® — V®lPl-l is G-equivariant
and has rank < 1 in each character.

~ EM(Sp) = Y.
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Contraction for J-C binary, continued
V= <60/ €1>

P e V® withp > 6

Claim: P ¢ EM(S,) = some (P, Q) € EM(S,_,).

e P not invariant
= some (P, ¢p) or some (P, e; ® e1) not invariant

e Pinvariant but b;;P hasrank >2in y =0or1

e |J]| >4 = image in V¥ of b; ;P can be contracted with
some ey Or cey ® eg + dep ® e1 without dropping dimension

e |I[| =|]| =3 = P can be contracted
in one factorin each of I, |
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Algorithm
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Randomised algorithm for JC binary

Input
P e Ve

Output
P € EM(S,)?

Algorithm

b :=true;

foreachI C [p], |I| 2p—-5do
generate G-invariant Q € V® at random;
b := b and (P, Q) € EM(Spy-1)}

od;

return b;
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Proof sketch

Theorem
For suitable g and Q, every H ) -stable closed subvariety of
Y (coq) 18 defined by finitely many H.)-orbits of equations.
® Y () itself is defined by finitely many orbits
(Borel’s fixed point theorem, uses G abelian)
e C™is Sym(N) Noetherian  (Cohen, Hillar-Sullivant)

® Y(wp) is covered by finitely many spaces C*" in a
Sym(N)-equivariant way.

D

/




Abelian equivariant tree models are
characterised by flattening and contracting
to bounded star models.




