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Constructible set in C": defined by a finite, meaningful formula
in the alphabet CU {x{,..., x,, -, +,=,7,V, AL

Example
X = {(x1,x2,x3, x4) | x1x4 = x2%3}
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o X)={w,v) |(—Fu=0)vVu=0Av=0)}
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Constructible set in C": defined by a finite, meaningful formula
in the alphabet CU {x{,..., x,, -, +,=,7,V, AL

Example
X = {(x1,x2,x3, x4) | x1x4 = x2%3}

Preserved under union, intersection, complement and.:

Theorem (Chevalley): The image of a constructible set under a
polynomial map 1s constructible. (And computable!)

Example: X = C?, ¢(x,y) = (x, xy)
o X)={w,v) |(—Fu=0)vVu=0Av=0)}

Example: X = CP* p(A) = A - AT € C™"; o(X) =?
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Semi-algebraic set in R": defined by a finite, meaningful formula
in the alphabet R U {x{, ..., x,, -, +,=,7,V, A, >}.

Example: {x ¢ R* | (xixa = 0ox3) A1 +x0 +x3+ x4 = 1) A
(x1,...,x4 = 0)}—probability distributions on {1,2} X {1, 2} such
that the first and second entry are independent.
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Semi-algebraic set in R": defined by a finite, meaningful formula
in the alphabet R U {x{, ..., x,, -, +,=,7,V, A, >}.

Example: {x ¢ R* | (xixa = 0ox3) A1 +x0 +x3+ x4 = 1) A
(x1,...,x4 = 0)}—probability distributions on {1,2} X {1, 2} such
that the first and second entry are independent.

Theorem (Tarski): The image of a semialgebraic set under a poly-
nomial map i1s semialgebraic. (And computable!)

Example: X = R”*, o(A) = A- AT, o(X) = {B| B = B! and each
principal £ X {-subdet of Bi1s > 0 for £ < kand =0 for £ =k + 1}.
Example: X = RZ5, Y = RY™, (A, B) = A - B; ¢(X) = {B € Ry

>()
of nonnegative rank < k}—no “finite characterisation” for k = 3.



A word on algorithms 4

Symbolic (4ti2, Macaulay2, Normaliz, Singular, ...):
manipulate polynomial equations (and inequalities), say with co-
eflicients in Q. Typical application: generators for all equations
vanishing on all of X ~» generators for all equations for ¢(X).

Example: Input {p; + po — 1,q1 — q¢» — 1} and ¢(p,q) =
(P191, P192, P291, P2g2). Output: {x1x4 —X2Xx3, X1 + X2 +X3+x4 — 1}.
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Symbolic (4ti2, Macaulay2, Normaliz, Singular, ...):
manipulate polynomial equations (and inequalities), say with co-
eflicients in Q. Typical application: generators for all equations
vanishing on all of X ~» generators for all equations for ¢(X).

Example: Input {p; + po — 1,q1 — q¢» — 1} and ¢(p,q) =
(P191, P192, P291, P2g2). Output: {x1x4 —X2Xx3, X1 + X2 +X3+x4 — 1}.

Numerical (Bertini, Macaulay, ...): solve square systems
of equations using homotopy continuation.

t=1 ° = t=0
easy system > original system
o—_
choice?? o

N
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Discrete algebraic-statistical model: semi-algebraic subset M of
the probabiliy simplex Ay, := {x € R, | 2;x; = 1}. A pomt
X € M 1s a probability distribution on [7].
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Discrete algebraic-statistical model: semi-algebraic subset M of
the probabiliy simplex Ay, := {x € R, | 2;x; = 1}. A pomt
X € M 1s a probability distribution on [7].

Typical questions:

1. It M given as ¢(X), find a quantifier-free formula for M.
2. How does 1 vary with combinatorial parameters of M?

3. For u € Z7 , recording independent observations, compute

jul

x € M maximising the likelihood L(u|x) = ( .,

)x“ of u.
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Discrete algebraic-statistical model: semi-algebraic subset M of
the probabiliy simplex Ay, := {x € R, | 2;x; = 1}. A pomt
X € M 1s a probability distribution on [7].

Typical questions:

1. It M given as ¢(X), find a quantifier-free formula for M.
2. How does 1 vary with combinatorial parameters of M?

3. For u € Z7 , recording independent observations, compute

jul

x € M maximising the likelihood L(u|x) = ( .,

)x“ of u.

Why 1?

e Model validation: if u/()}; u;) almost satisfies the equations and
inequalities, then M 1s a good model (without need to find x).

e Markov chains for Fisher’s exact test for log-linear models.
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Independence:
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X . . 2
3. Observe u € Z’go” > ML-estimate x;; := u; uyj/ui,.
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Independence:
M ={(piq))ijlpi=0,q9; 20,2, pi=2;q; =1} C Apu1.

— X — —
1. M = {X e R | Zi,j Xij = 1,)Cl'j > O, Xij Xkl — XilXkj = O}
2. x11 = 0 and xy1x2 — x120x21 = 0 + row and col permutations.
X . . 2
3. Observe u € Z’go” > ML-estimate x;; := u; uyj/ui,.

Markov Chain for Fisher’s exact test (Diaconis-Sturmfels): for
some test function ¢, want to compute the probability of #(v) >
t(u) conditional on v,y = u;y and v,; = u,; and sampled from
the same distribution x. Approximate by sampling such v using
Markov moves from u:

+1 -1
-1  +1
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Example: M| = M, = M C A,,,,_1 model of independence.
LM+ M={x|2;;xj=1x;=0,1k(x) < 2}
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2. one orbit of 3 X 3-dets, one orbit of inequalities

3. ML-estimate?



Mixtures of independence

Mixture of M, and M>:
M+ M, ={tx+ (1 - t)y |t €[0,1],x € M,y e M-}

Example: M| = M, = M C A,,,,_1 model of independence.
LM+ M={x|2;;xj=1x;=0,1k(x) < 2}
(nonnegative rank 2 = nonnegative + rank 2)

2. one orbit of 3 X 3-dets, one orbit of inequalities

3. ML-estimate?

Thm (Kubjas-Robeva-Sturmfels and Eggermont-Horobet-K):
M + M + M = {x of nonneg rank < 3 and »; ; x;; = 1}.

1. quant-free description; comps of the algebraic boundary

2. three orbits of boundary components

3. experiments: the EM algorithm often runs into the boundary
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Critical points of the likelihood function:
L(ulx) = C(u)x", so dyL(u|)(v) = L(ulx) - 2; Jvi

Xi

~»> necessary for x € M™ N R7, to be the ML-estimate 1s that
x ' T M 1 u—which makes sense for u € C" and x € M N (T
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Zariski-closure: M of M in {D,xi=1}CcC".

Critical points of the likelihood function:
L(ulx) = C(u)x", so dyL(u|)(v) = L(ulx) - 2; Jvi

Xi

~»> necessary for x € M™ N R7, to be the ML-estimate 1s that
x ' T M 1 u—which makes sense for u € C" and x € M N (T

ML-degree of M: the numberof x € M - N(C*)" with x - T, M L
u, for u € C" sufficiently general.

Example: ML-degree of independence is 1: (u;ruy;)/(u?,).

Theorem (Huh): all varieties with ML-degree 1 are image of a
composition ¥ of a linear map C" — C’ and a rational monomial
map C" — (C*)" with monomials of degree 0.




ML-degree for mixtures ot independence

Theorem (Hauenstein-Rodriguez-Sturmfels):
M C A,,,—1 independence. Values of ML-degree for kM:

(m, n)
3,3) (3,4 (3,5 4,4 4,5 “4,6) (5,)5)
1 1 1 1 1 J 1

10 26 |58 191 843 3119 6776
1 | 191 843 3119 61326
1 1 1 6776 Bertini

o
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(G-

1



ML-degree for mixtures ot independence

Theorem (Hauenstein-Rodriguez-Sturmfels):
M C A,,,—1 independence. Values of ML-degree for kM:

(m, n)
3,3) (3,4 (3,5 4,4 4,5 “4,6) (5,)5)
1 1 1 1 1 J 1

10 26 |58 191 843 3119 6776
1 | 191 843 3119 61326
1 1 1 6776 Bertini

o

DN =~ W N =
ek
(G-

1

Theorem (D-Rodriguez)
The above symmetry really holds.



ML-degree for mixtures ot independence

Theorem (Hauenstein-Rodriguez-Sturmfels):
M C A,,,—1 independence. Values of ML-degree for kM:

(m, n)
3,3) (3,4 (3,5 4,4 4,5 “4,6) (5,)5)
1 1 1 1 1 J 1

10 26 58 191 843 3119 6776
191 843 3119 61326
1 1 1 6776 Bertini

o
DN =~ W N =
ek
(G-
ek

1

Theorem (D-Rodriguez)
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Theorem (Rodriguez-Wang)
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Theorem (Hauenstein-Rodriguez-Sturmfels):
M C A,,,—1 independence. Values of ML-degree for kM:

(m, n)
3,3) (3,4 (3,5 4,4 4,5 “4,6) (5,)5)
1 1 1 1 1 J 1

10 26 58 191 843 3119 6776
191 843 3119 61326
1 1 1 6776 Bertini

o
DN =~ W N =
ek
(G-
ek

1

Theorem (D-Rodriguez)
The above symmetry really holds.

Theorem (Rodriguez-Wang)
The ML-degree for m = 3,k = 2 equals 2"+ — 6.



Crazy but beautiful idea tor ML-estimation

Idea (Hauenstein, Leykin, Rodriguez, Sottile, ...)

e construct a pair (x, ;) with x[lTxIM 1 u; (easy: pick any
x| € M N (C*)"*, solve linear system for u;).

e perform many homotopy continuations for the system

x; €M A x,‘l T M L u, with ug the actual data.
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all critical points for uy are obtained in this manner!
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Idea (Hauenstein, Leykin, Rodriguez, Sottile, ...)

e construct a pair (x, ;) with x[lTle 1 u; (easy: pick any
—Treg )

x1 € M N (C)", solve linear system for uy).

e perform many homotopy continuations for the system

x; €M A x,‘l T M L u, with ug the actual data.

xo depends on the chosen path u,, and if M N (C*)" is irreducible,
all critical points for uy are obtained in this manner!

X
1< o X0
Question: When to stop? Ulo—" o W

Answer: when the trace test says you can!

—o A1




Undirected graphical models

Setting

G = (V, E) finite, stmple undirected graph

Q);,1 € V finite sets

P a probability distribution on the state space € := [ ];cy €2;
X; : Q — Q; the ith coordinate function

A C V ~» probability vector X4 taking values 1n €24.
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Q);,1 € V finite sets

P a probability distribution on the state space € := [ ];cy €2;
X; : Q — Q; the ith coordinate function

A C V ~» probability vector X4 taking values 1n €24.

Conditional independence

X4 L Xp | Xc means: for each x¢c € Q¢ with P(X¢c = x¢) > 0,
P(Xy = xa ANxp=2xp| Xc=xc)=

P(Xy = xa | Xc = x¢) - P(Xp = xp | Xc = x¢).
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Undirected graphical models

Setting

G = (V, E) finite, stmple undirected graph

Q);,1 € V finite sets

P a probability distribution on the state space € := [ ];cy €2;
X; : Q — Q; the ith coordinate function

A C V ~» probability vector X4 taking values 1n €24.

Conditional independence

X4 L Xp | Xc means: for each x¢c € Q¢ with P(X¢c = x¢) > 0,
P(Xy = xa ANxp=2xp| Xc=xc)=

P(Xy = xa | Xc = x¢) - P(Xp = xp | Xc = x¢).

Pairwise Markov properties from G
X; I Xj | XV\{i,j} fori # ]Wlth {i, ]} ¢ E.

11
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Example: Independence

G= 9 % 03 P((x1, X2, X3)) = qx, Tx, Sx,
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interaction parameters c¢,d > 0

P(X) — % : (Hi~k,x,-:xk C) ) (Hika,xiixk d)
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Undirected graphical models 12

Example: Independence

G= 9 % 03 P((x1, X2, X3)) = qx, Tx, Sx,

Example: Ising model

Q, ={-1,1}foralli
interaction parameters c¢,d > 0

P(X) — % : (Hi~k,x,-:xk C) ) (Hi~k,xiixk d)

C2 C3
P(XuX) = (LD |- = oot = PXi=1]--)-PX;=1]--)

~» P satisfies all the pairwise Markov properties for G.
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Hammersley-Clifford Theorem

Assume P > O on all of Q. Then P satisfies all the pairwise Markov
properties & 1 interaction parameters 0¢c € Rgg, where C runs
through the maximal cliques of G, such that P(x) = [ |- 6c(xc¢).
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Hammersley-Clifford Theorem

Assume P > O on all of Q. Then P satisfies all the pairwise Markov
properties & 1 interaction parameters 0¢c € ng, where C runs
through the maximal cliques of G, such that P(x) = [ |- 6c(xc¢).

Example

o [ndependence: maximal cliques=vertices ~» P(x) = [ ],cy 0:(x;).
e [sing: maximal cliques are edges {i,k}, and ¢ = 0y (—-1,—-1) =
Oi(1,1)and d = 0 (1,—-1) = 6;x(—1, 1) (up to normalisation).
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Hammersley-Clifford Theorem

Assume P > O on all of Q. Then P satisfies all the pairwise Markov
properties < 1 interaction parameters O¢c € ng, where C runs
through the maximal cliques of G, such that P(x) = [ |- 6c(xc¢).

Example

o [ndependence: maximal cliques=vertices ~» P(x) = [ ],cy 0:(x;).
e [sing: maximal cliques are edges {i,k}, and ¢ = 0y (—-1,—-1) =
Oi(1,1)and d = 0 (1,—-1) = 6;x(—1, 1) (up to normalisation).

Monomial parameterisation of M: P(x) = [1cOc(xc).

Here we forget that the P(x) must sum to 1 and must be positive.
Hence the 6. are unconstrained parameters. What polynomial re-
lations among the P(x) hold independently of the parameters 6.7



Growing state spaces 14

Example: Independence

P(x1,x2,X3) = Iy Syly, Satisty the binomial equations
P(x1, x2, x3)P(x}, x5, x3) — P(x1, x5, x3)P(X], x2,x3) and similar
ones; these generate the i1deal of all polynomial relations—note
that there are three orbits up to Sym(€2;) X Sym(€2,) X Sym(€23).
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Example: Independence

P(x1,x2,X3) = Iy Syly, Satisty the binomial equations
P(x1, x2, x3)P(x}, x5, x3) — P(x1, x5, x3)P(X], x2,x3) and similar
ones; these generate the i1deal of all polynomial relations—note
that there are three orbits up to Sym(€2;) X Sym(€2,) X Sym(€23).

Much more generally:

Independent Set Theorem (Hillar-Sullivant, 2012)
It A C V is an independent set in G, then the i1deal of M 1s gen-

erated by boundedly many |[];c4 Sym(£2;)-orbits of binomials as
1€2;| —» oo forall i € A.
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Example: Independence

P(x1,x2,X3) = Iy Syly, Satisty the binomial equations
P(x1, x2, x3)P(x}, x5, x3) — P(x1, x5, x3)P(X], x2,x3) and similar
ones; these generate the i1deal of all polynomial relations—note
that there are three orbits up to Sym(€2;) X Sym(€2,) X Sym(€23).

Much more generally:

Independent Set Theorem (Hillar-Sullivant, 2012)
It A C V is an independent set in G, then the i1deal of M 1s gen-

erated by boundedly many |[];c4 Sym(£2;)-orbits of binomials as
1€2;| —» oo forall i € A.

There are variants where G grows instead~Eggermont’s talk!

Thank you!
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Example (Rauh-Sullivant, 2014) N
If G 1s K3y, and all state spaces are {0, 1}, then the 1deal of M 1s
generated by binomials of degree < 12, independently of N.
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Example (Rauh-Sullivant, 2014) N
If G 1s K3y, and all state spaces are {0, 1}, then the 1deal of M 1s
generated by binomials of degree < 12, independently of N.

2.

Construction: Gy, ..., Gy finite graphs with a common induced
subgraph H ~» §1G +p - - - +g 53 Gy obtained from disjoint copies
of the G; by 1dentifying their instances of H.
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Example (Rauh-Sullivant, 2014) N
If G 1s K3y, and all state spaces are {0, 1}, then the 1deal of M 1s
generated by binomials of degree < 12, independently of N.

2.

Construction: Gy, ..., Gy finite graphs with a common induced
subgraph H ~» s1G| +p - - - +5 5:G obtained from disjoint copies
of the G; by 1dentifying their instances of H.

Theorem (D-Oosterhof, 2016)
Fixing state spaces for the vertices of each G ;, compatible with H,

the ideal of M (51G1+g- - -+55:Gy) 1s generated in bounded degree
uniformly in the s;.
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Crucial fact: Suppose that G has vertex set A LI B, where A 1s the
vertex set of H; so G has state space Q4 X Qp.
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vertex set of H; so G has state space Q4 X Qp.

Then sG has the vertex set A LI ([s] X B) and state space €(s) :=
Qu X Qp. Any map f : [s] — [r] yields a map Q(r) — €2(s) and
a linear map R — R which turns out to map M(s) in the
former space 1nto M (r) in the latter space.
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Crucial fact: Suppose that G has vertex set A LI B, where A 1s the
vertex set of H; so G has state space Q4 X Qp.

Then sG has the vertex set A LI ([s] X B) and state space €(s) :=
Qu X Qp. Any map f : [s] — [r] yields a map Q(r) — €2(s) and
a linear map R — R which turns out to map M(s) in the
former space 1nto M (r) in the latter space.

Thus M is a variety over the category Fin of finite sets. We show
that 1ts ambient space 1s a Noetherian Fin-variety.

(The Independent Set Theorem concerns a FinP-variety!)

Open: What happens if both state spaces and graphs grow?
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Definition
Given two models M; and M, in R}, their mixture is the set {AP +
(I1-DO|PeM;,QeM,Ae]0,1]}.
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Example (Independence)

The mixture of two copies of independence is the set of all [€2;] X
1€, | X |Q23|-tensors of nonnegative rank at most two whose entries
add up to one.
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Definition
Given two models M; and M, in R}, their mixture is the set {AP +
(I1-DO|PeM;,QeM,Ae]0,1]}.

Example (Independence)

The mixture of two copies of independence is the set of all [€2;] X
1€, | X |Q23|-tensors of nonnegative rank at most two whose entries
add up to one.

Theorem (Allman-Rhodes-Sturmfels-Zwiernik, 2013)

An m; X my X ms-tensor P with entries in R,y has nonnega-
tive rank at most two 1f and only if P has rank at most two
and 1s moreover (log-)supermodular: P(xy, x2, x3)P(y1,y2,V3) <
P(uy,ur,u3)P(z1,20,23) tH {x,,v,} = {u,,z} and u, < z, for all r, or
in the Sym(€;) X Sym(£2,) X Sym(£23)-orbit of such a tensor.



Boundedness of equations of some mixtures 18

Forget again about inequalities and summing up to 1.

Easy fact: _
If G 1s a disjoint union of cliques, then M 1s not only stable under
[ l;ev Sym(£2;), but even under | ],cy GLg,. Hence the same holds

for mixtures 1\71 + 1\72 ={P+Q|Pc€ 1\71, QO e ]\72} coming from
graphs G, G, that are unions of cliques.




Boundedness of equations of some mixtures 18

Forget again about inequalities and summing up to 1.

Easy fact: _
If G 1s a disjoint union of cliques, then M 1s not only stable under
[ l;ev Sym(£2;), but even under | ],cy GLg,. Hence the same holds

for mixtures 1\71 + 1\72 ={P+Q|Pc€ 1\71, QO e ]\72} coming from
graphs G, G, that are unions of cliques.

Theorem (D, 2017)
For any fixed k, a closed subvariety in a tensor product W ®- - -@W;
of vector spaces that depends functorially on Wy, ..., Wy 1s defined

by finitely many equations up to [ |[; GL(W;), independently of the
dimensions of the W;.
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A mixture challenge

- {P(x19x29x3) — /lZ( d)CX1,XQdX3 + (1 _ /l)

1
Z' (e.f)

exl »X3 fo }

Here: 1 € [0, 1], c € RQIXQZ d e RQ?’ € Rf(l)x%, /€ R?S
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— {P(Xl, X2 XS) — /lZ( d)cxl,xde3 + (1 _ A)Z/(i,f)exl,)@fxz}
Q; xQ 0 Q;xQ 0
Here: 1€ [0,1],c e R;)?, de R, e e R, f e RY]
Challenge: Find a quantifier-free description of M'!

Oosterhof found polynomial equations cutting out M of degrees 3
and 6: certain 2 X 2-determinants of 3 X 3-determinants.

There’s a beautiful relation with matrix spaces of rank two!
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e cquations for phylogenetic tree models (Casanellas et al,
Allman-Rhodes, Sturmfels-Sullivant, Michatek et al, .. .)

e determinantal equations for Gaussian graphical models
(Sullivant-Talaska-D)

e 1dentifiability of Gaussian graphical models (Foygel-Drton-D)
e (non-)singularity of hypersurfaces defined by conditional
independence statements for Gaussian graphical models
(Lin-Uhler-Sturmfels-Biihlmann)

e twisted commutative algebras (Sam-Snowden)
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e cquations for phylogenetic tree models (Casanellas et al,
Allman-Rhodes, Sturmfels-Sullivant, Michatek et al, .. .)

e determinantal equations for Gaussian graphical models
(Sullivant-Talaska-D)

e 1dentifiability of Gaussian graphical models (Foygel-Drton-D)
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e twisted commutative algebras (Sam-Snowden)

Thank you!
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