

Jan Draisma
Mathematical Institute
University of Bern
and Eindhoven University of Technology

Osnabruck, 30 November 2017

Constructible set in \mathbb{C}^n : defined by a finite, meaningful formula in the alphabet $\mathbb{C} \cup \{x_1, \dots, x_n, \cdot, +, =, \neg, \vee, \wedge\}$.

Example

$$X = \{(x_1, x_2, x_3, x_4) \mid x_1x_4 = x_2x_3\}$$

Constructible set in \mathbb{C}^n : defined by a finite, meaningful formula in the alphabet $\mathbb{C} \cup \{x_1, \dots, x_n, \cdot, +, =, \neg, \vee, \wedge\}$.

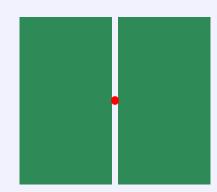
Example

$$X = \{(x_1, x_2, x_3, x_4) \mid x_1x_4 = x_2x_3\}$$

Preserved under union, intersection, complement and:

Theorem (Chevalley): The image of a constructible set under a polynomial map is constructible. (*And computable!*)

Example:
$$X = \mathbb{C}^2$$
, $\varphi(x, y) = (x, xy)$
 $\varphi(X) = \{(u, v) \mid (\neg u = 0) \lor (u = 0 \land v = 0)\}.$



Constructible set in \mathbb{C}^n : defined by a finite, meaningful formula in the alphabet $\mathbb{C} \cup \{x_1, \dots, x_n, \cdot, +, =, \neg, \vee, \wedge\}$.

Example

$$X = \{(x_1, x_2, x_3, x_4) \mid x_1x_4 = x_2x_3\}$$

Preserved under union, intersection, complement and:

Theorem (Chevalley): The image of a constructible set under a polynomial map is constructible. (And computable!)

Example:
$$X = \mathbb{C}^2$$
, $\varphi(x, y) = (x, xy)$
 $\varphi(X) = \{(u, v) \mid (\neg u = 0) \lor (u = 0 \land v = 0)\}.$

Example:
$$X = \mathbb{C}^{n \times k}, \varphi(A) = A \cdot A^T \in \mathbb{C}^{n \times n}; \varphi(X) = ?$$

Semi-algebraic set in \mathbb{R}^n : defined by a finite, meaningful formula in the alphabet $\mathbb{R} \cup \{x_1, \dots, x_n, \cdot, +, =, \neg, \vee, \wedge, \geq\}$.

Example: $\{x \in \mathbb{R}^4 \mid (x_1x_4 = x_2x_3) \land (x_1 + x_2 + x_3 + x_4 = 1) \land (x_1, \dots, x_4 \ge 0)\}$ —probability distributions on $\{1, 2\} \times \{1, 2\}$ such that the first and second entry are independent.

Semi-algebraic set in \mathbb{R}^n : defined by a finite, meaningful formula in the alphabet $\mathbb{R} \cup \{x_1, \dots, x_n, \cdot, +, =, \neg, \vee, \wedge, \geq\}$.

Example: $\{x \in \mathbb{R}^4 \mid (x_1x_4 = x_2x_3) \land (x_1 + x_2 + x_3 + x_4 = 1) \land (x_1, \dots, x_4 \ge 0)\}$ —probability distributions on $\{1, 2\} \times \{1, 2\}$ such that the first and second entry are independent.

Theorem (Tarski): The image of a semialgebraic set under a polynomial map is semialgebraic. (And computable!)

Example: $X = \mathbb{R}^{n \times k}$, $\varphi(A) = A \cdot A^T$, $\varphi(X) = \{B \mid B = B^T \text{ and each principal } \ell \times \ell\text{-subdet of } B \text{ is } \geq 0 \text{ for } \ell \leq k \text{ and } = 0 \text{ for } \ell = k + 1\}.$

Semi-algebraic set in \mathbb{R}^n : defined by a finite, meaningful formula in the alphabet $\mathbb{R} \cup \{x_1, \dots, x_n, \cdot, +, =, \neg, \vee, \wedge, \geq\}$.

Example: $\{x \in \mathbb{R}^4 \mid (x_1x_4 = x_2x_3) \land (x_1 + x_2 + x_3 + x_4 = 1) \land (x_1, \dots, x_4 \ge 0)\}$ —probability distributions on $\{1, 2\} \times \{1, 2\}$ such that the first and second entry are independent.

Theorem (Tarski): The image of a semialgebraic set under a polynomial map is semialgebraic. (And computable!)

Example: $X = \mathbb{R}^{n \times k}$, $\varphi(A) = A \cdot A^T$, $\varphi(X) = \{B \mid B = B^T \text{ and each principal } \ell \times \ell\text{-subdet of } B \text{ is } \geq 0 \text{ for } \ell \leq k \text{ and } = 0 \text{ for } \ell = k + 1\}.$

Example: $X = \mathbb{R}^{n \times k}_{\geq 0}, Y = \mathbb{R}^{k \times m}_{\geq 0}, \varphi(A, B) = A \cdot B; \varphi(X) = \{B \in \mathbb{R}_{\geq 0} \text{ of nonnegative rank } \leq k\}$ —no "finite characterisation" for k = 3.

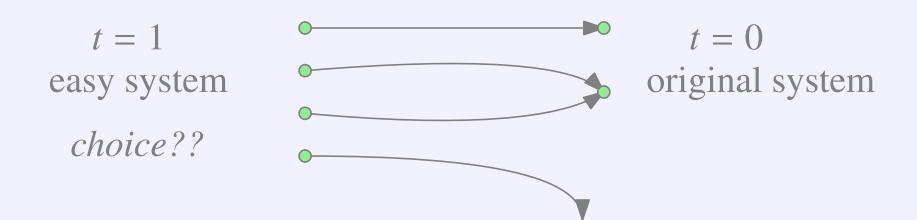
Symbolic (4ti2, Macaulay2, Normaliz, Singular, ...): manipulate polynomial equations (and inequalities), say with coefficients in \mathbb{Q} . *Typical application:* generators for all equations vanishing on all of $X \rightsquigarrow$ generators for all equations for $\varphi(X)$.

Example: Input $\{p_1 + p_2 - 1, q_1 - q_2 - 1\}$ and $\varphi(p,q) = (p_1q_1, p_1q_2, p_2q_1, p_2q_2)$. Output: $\{x_1x_4 - x_2x_3, x_1 + x_2 + x_3 + x_4 - 1\}$.

Symbolic (4ti2, Macaulay2, Normaliz, Singular, ...): manipulate polynomial equations (and inequalities), say with coefficients in \mathbb{Q} . *Typical application:* generators for all equations vanishing on all of $X \rightsquigarrow$ generators for all equations for $\varphi(X)$.

Example: Input $\{p_1 + p_2 - 1, q_1 - q_2 - 1\}$ and $\varphi(p,q) = (p_1q_1, p_1q_2, p_2q_1, p_2q_2)$. Output: $\{x_1x_4 - x_2x_3, x_1 + x_2 + x_3 + x_4 - 1\}$.

Numerical (Bertini, Macaulay, ...): solve square systems of equations using homotopy continuation.



Discrete algebraic-statistical model: semi-algebraic subset M of the *probability simplex* $\Delta_{n-1} := \{x \in \mathbb{R}^n_{\geq 0} \mid \sum_i x_i = 1\}$. A point $x \in M$ is a probability distribution on [n].

Discrete algebraic-statistical model: semi-algebraic subset M of the *probability simplex* $\Delta_{n-1} := \{x \in \mathbb{R}^n_{\geq 0} \mid \sum_i x_i = 1\}$. A point $x \in M$ is a probability distribution on [n].

Typical questions:

- 1. If M given as $\varphi(X)$, find a quantifier-free formula for M.
- 2. How does 1 vary with combinatorial parameters of *M*?
- 3. For $u \in \mathbb{Z}_{\geq 0}^n$ recording independent observations, compute

$$x \in M$$
 maximising the *likelihood* $L(u|x) = {|u| \choose u} x^u$ of u .

Discrete algebraic-statistical model: semi-algebraic subset M of the *probability simplex* $\Delta_{n-1} := \{x \in \mathbb{R}^n_{\geq 0} \mid \sum_i x_i = 1\}$. A point $x \in M$ is a probability distribution on [n].

Typical questions:

- 1. If M given as $\varphi(X)$, find a quantifier-free formula for M.
- 2. How does 1 vary with combinatorial parameters of *M*?
- 3. For $u \in \mathbb{Z}_{\geq 0}^n$ recording independent observations, compute

$$x \in M$$
 maximising the *likelihood* $L(u|x) = {|u| \choose u} x^u$ of u .

Why 1?

- Model validation: if $u/(\sum_i u_i)$ almost satisfies the equations and inequalities, then M is a good model (without need to find x).
- Markov chains for Fisher's exact test for log-linear models.

Independence:

$$M = \{(p_i q_j)_{i,j} \mid p_i \ge 0, q_j \ge 0, \sum_i p_i = \sum_j q_j = 1\} \subseteq \Delta_{mn-1}.$$

Independence:

$$M = \{(p_i q_j)_{i,j} \mid p_i \ge 0, q_j \ge 0, \sum_i p_i = \sum_j q_j = 1\} \subseteq \Delta_{mn-1}.$$

- 1. $M = \{x \in \mathbb{R}^{m \times n} \mid \sum_{i,j} x_{ij} = 1, x_{ij} \ge 0, x_{ij} x_{kl} x_{il} x_{kj} = 0\}.$
- 2. $x_{11} \ge 0$ and $x_{11}x_{22} x_{12}x_{21} = 0 + \text{row and col permutations}$.
- 3. Observe $u \in \mathbb{Z}_{\geq 0}^{m \times n} \rightsquigarrow ML$ -estimate $x_{ij} := u_{i+}u_{+j}/u_{++}^2$.

Independence:

$$M = \{(p_i q_j)_{i,j} \mid p_i \ge 0, q_j \ge 0, \sum_i p_i = \sum_j q_j = 1\} \subseteq \Delta_{mn-1}.$$

- 1. $M = \{x \in \mathbb{R}^{m \times n} \mid \sum_{i,j} x_{ij} = 1, x_{ij} \ge 0, x_{ij} x_{kl} x_{il} x_{kj} = 0\}.$
- 2. $x_{11} \ge 0$ and $x_{11}x_{22} x_{12}x_{21} = 0 + \text{row and col permutations}$.
- 3. Observe $u \in \mathbb{Z}_{\geq 0}^{m \times n} \rightsquigarrow ML$ -estimate $x_{ij} := u_{i+}u_{+j}/u_{++}^2$.

Markov Chain for Fisher's exact test (Diaconis-Sturmfels): for some test function t, want to compute the probability of $t(v) \ge t(u)$ conditional on $v_{i+} = u_{i+}$ and $v_{+j} = u_{+j}$ and sampled from the same distribution x. Approximate by sampling such v using

$$+1$$
 -1 -1 $+1$

Mixture of M_1 and M_2 :

$$M_1 + M_2 := \{tx + (1 - t)y \mid t \in [0, 1], x \in M_1, y \in M_2\}$$

Mixture of M_1 and M_2 :

$$M_1 + M_2 := \{tx + (1 - t)y \mid t \in [0, 1], x \in M_1, y \in M_2\}$$

Example: $M_1 = M_2 = M \subseteq \Delta_{mn-1}$ model of independence.

1.
$$M + M = \{x \mid \sum_{i,j} x_{ij} = 1, x_{ij} \ge 0, \text{rk}(x) \le 2\}$$

(nonnegative rank 2 = nonnegative + rank 2)

- 2. one orbit of 3×3 -dets, one orbit of inequalities
- 3. ML-estimate?

Mixture of M_1 and M_2 :

$$M_1 + M_2 := \{tx + (1 - t)y \mid t \in [0, 1], x \in M_1, y \in M_2\}$$

Example: $M_1 = M_2 = M \subseteq \Delta_{mn-1}$ model of independence.

1.
$$M + M = \{x \mid \sum_{i,j} x_{ij} = 1, x_{ij} \ge 0, \text{rk}(x) \le 2\}$$

(nonnegative rank 2 = nonnegative + rank 2)

- 2. one orbit of 3×3 -dets, one orbit of inequalities
- 3. ML-estimate?

Thm (Kubjas-Robeva-Sturmfels and Eggermont-Horobeţ-K):

 $M + M + M = \{x \text{ of nonneg rank} \le 3 \text{ and } \sum_{i,j} x_{ij} = 1\}.$

- 1. quant-free description; comps of the algebraic boundary
- 2. three orbits of boundary components
- 3. experiments: the EM algorithm often runs into the boundary

Zariski-closure: \overline{M} of M in $\{\sum_i x_i = 1\} \subseteq \mathbb{C}^n$.

ML degree

Zariski-closure: \overline{M} of M in $\{\sum_i x_i = 1\} \subseteq \mathbb{C}^n$.

Critical points of the likelihood function:

 $L(u|x) = C(u)x^u$, so $d_xL(u|.)(v) = L(u|x) \cdot \sum_i \frac{u_i}{x_i}v_i$ \rightsquigarrow necessary for $x \in M^{\text{reg}} \cap \mathbb{R}^n_{>0}$ to be the ML-estimate is that $x^{-1} \cdot T_xM \perp u$ —which makes sense for $u \in \mathbb{C}^n$ and $x \in \overline{M} \cap (\mathbb{C}^*)^n$! **Zariski-closure:** \overline{M} of M in $\{\sum_i x_i = 1\} \subseteq \mathbb{C}^n$.

Critical points of the likelihood function:

 $L(u|x) = C(u)x^u$, so $d_xL(u|.)(v) = L(u|x) \cdot \sum_i \frac{u_i}{x_i} v_i$ \leadsto necessary for $x \in M^{\text{reg}} \cap \mathbb{R}^n_{>0}$ to be the ML-estimate is that $x^{-1} \cdot T_xM \perp u$ —which makes sense for $u \in \mathbb{C}^n$ and $x \in \overline{M} \cap (\mathbb{C}^*)^n$!

ML-degree of M: the number of $x \in \overline{M}^{reg} \cap (\mathbb{C}^*)^n$ with $x^{-1} \cdot T_x \overline{M} \perp u$, for $u \in \mathbb{C}^n$ sufficiently general.

Zariski-closure: \overline{M} of M in $\{\sum_i x_i = 1\} \subseteq \mathbb{C}^n$.

Critical points of the likelihood function:

 $L(u|x) = C(u)x^u$, so $d_xL(u|.)(v) = L(u|x) \cdot \sum_i \frac{u_i}{x_i} v_i$ \leadsto necessary for $x \in M^{\text{reg}} \cap \mathbb{R}^n_{>0}$ to be the ML-estimate is that $x^{-1} \cdot T_xM \perp u$ —which makes sense for $u \in \mathbb{C}^n$ and $x \in \overline{M} \cap (\mathbb{C}^*)^n$!

ML-degree of M: the number of $x \in \overline{M}^{reg} \cap (\mathbb{C}^*)^n$ with $x^{-1} \cdot T_x \overline{M} \perp u$, for $u \in \mathbb{C}^n$ sufficiently general.

Example: ML-degree of independence is 1: $(u_{i+}u_{+j})/(u_{++}^2)$.

Theorem (Huh): all varieties with ML-degree 1 are image of a composition Ψ of a linear map $\mathbb{C}^n \to \mathbb{C}^r$ and a rational monomial map $\mathbb{C}^r \to (\mathbb{C}^*)^n$ with monomials of degree 0.

 $M \subseteq \Delta_{mn-1}$ independence. Values of ML-degree for kM:

				(m,n)				
	(3,3)	(3,4)	(3,5)	(4, 4)	(4,5)	(4, 6)	(5,5)	_
1	1	1 _	1	1	1	1	1	
2	10	26	58	191	843	3119	6776	
<i>k</i> 3	1	1	1	191	843	3119	61326	
4				1	1	1	6776	Bertini
5							1	

 $M \subseteq \Delta_{mn-1}$ independence. Values of ML-degree for kM:

				(m, n)				
	(3,3)	(3,4)	(3,5)	(4, 4)	(4, 5)	(4, 6)	(5,5)	_
1	1	1 _	1	1	1	1	1	
2	10	26	58	191	843	3119	6776	
<i>k</i> 3	1	1	1	191	843	3119	61326	
4				1	1	1	6776	Bertini
5							1	

Theorem (D-Rodriguez)

The above symmetry really holds.

 $M \subseteq \Delta_{mn-1}$ independence. Values of ML-degree for \overline{kM} :

				(m, n)				
	(3,3)	(3,4)	(3,5)	(4, 4)	(4, 5)	(4, 6)	(5,5)	_
1	1	1	1	1	1	1	1	
2	10	26	58	191	843	3119	6776	
<i>k</i> 3	1	1	1	191	843	3119	61326	
4				1	1	1	6776	Bertini
5							1	

Theorem (D-Rodriguez)

The above symmetry really holds.

Theorem (Rodriguez-Wang)

The ML-degree for m = 3, k = 2 equals

 $M \subseteq \Delta_{mn-1}$ independence. Values of ML-degree for \overline{kM} :

				(m, n)				
	(3,3)	(3,4)	(3, 5)	(4, 4)	(4, 5)	(4, 6)	(5,5)	_
1	1	1	1	1	1	1	1	
2	10	26	58	191	843	3119	6776	
<i>k</i> 3	1	1	1	191	843	3119	61326	
4				1	1	1	6776	Bertini
5							1	

Theorem (D-Rodriguez)

The above symmetry really holds.

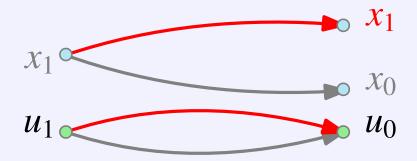
Theorem (Rodriguez-Wang)

The ML-degree for m = 3, k = 2 equals $2^{n+1} - 6$.

- construct a pair (x_1, u_1) with $x_1^{-1}T_{x_1}\overline{M} \perp u_1$ (easy: pick any $x_1 \in \overline{M}^{\text{reg}} \cap (\mathbb{C}^*)^n$, solve linear system for u_1).
- perform many homotopy continuations for the system $x_t \in \overline{M} \wedge x_t^{-1} T_{x_t} \overline{M} \perp u_t$ with u_0 the actual data.

- construct a pair (x_1, u_1) with $x_1^{-1}T_{x_1}\overline{M} \perp u_1$ (easy: pick any $x_1 \in \overline{M}^{\text{reg}} \cap (\mathbb{C}^*)^n$, solve linear system for u_1).
- perform many homotopy continuations for the system $x_t \in \overline{M} \wedge x_t^{-1} T_{x_t} \overline{M} \perp u_t$ with u_0 the actual data.

 x_0 depends on the chosen path u_t , and if $\overline{M} \cap (\mathbb{C}^*)^n$ is irreducible, all critical points for u_0 are obtained in this manner!



- construct a pair (x_1, u_1) with $x_1^{-1}T_{x_1}\overline{M} \perp u_1$ (easy: pick any $x_1 \in \overline{M}^{\text{reg}} \cap (\mathbb{C}^*)^n$, solve linear system for u_1).
- perform many homotopy continuations for the system $x_t \in \overline{M} \wedge x_t^{-1} T_{x_t} \overline{M} \perp u_t$ with u_0 the actual data.

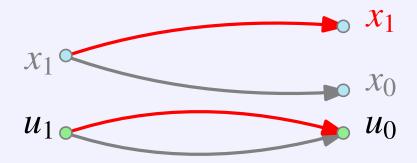
 x_0 depends on the chosen path u_t , and if $M \cap (\mathbb{C}^*)^n$ is irreducible, all critical points for u_0 are obtained in this manner!

Question: When to stop?

- construct a pair (x_1, u_1) with $x_1^{-1}T_{x_1}\overline{M} \perp u_1$ (easy: pick any $x_1 \in \overline{M}^{\text{reg}} \cap (\mathbb{C}^*)^n$, solve linear system for u_1).
- perform many homotopy continuations for the system $x_t \in \overline{M} \wedge x_t^{-1} T_{x_t} \overline{M} \perp u_t$ with u_0 the actual data.

 x_0 depends on the chosen path u_t , and if $\overline{M} \cap (\mathbb{C}^*)^n$ is irreducible, all critical points for u_0 are obtained in this manner!

Question: When to stop?



Answer: when the trace test says you can!

Setting

G = (V, E) finite, simple undirected graph

 Ω_i , $i \in V$ finite sets

P a probability distribution on the state space $\Omega := \prod_{i \in V} \Omega_i$

 $X_i: \Omega \to \Omega_i$ the *i*th coordinate function

 $A \subseteq V \leadsto$ probability vector X_A taking values in Ω_A .

Setting

G = (V, E) finite, simple undirected graph $\Omega_i, i \in V$ finite sets P a probability distribution on the state space $\Omega := \prod_{i \in V} \Omega_i$ $X_i : \Omega \to \Omega_i$ the ith coordinate function $A \subseteq V \leadsto$ probability vector X_A taking values in Ω_A .

Conditional independence

 $X_A \perp \!\!\! \perp X_B \mid X_C$ means: for each $x_C \in \Omega_C$ with $P(X_C = x_C) > 0$, $P(X_A = x_A \land x_B = x_B \mid X_C = x_C) = P(X_A = x_A \mid X_C = x_C) \cdot P(X_B = x_B \mid X_C = x_C)$.

Setting

G = (V, E) finite, simple undirected graph $\Omega_i, i \in V$ finite sets P a probability distribution on the state space $\Omega := \prod_{i \in V} \Omega_i$

 $X_i: \Omega \to \Omega_i$ the *i*th coordinate function

 $A \subseteq V \leadsto \text{probability vector } X_A \text{ taking values in } \Omega_A.$

Conditional independence

$$X_A \perp \!\!\!\perp X_B \mid X_C$$
 means: for each $x_C \in \Omega_C$ with $P(X_C = x_C) > 0$, $P(X_A = x_A \land x_B = x_B \mid X_C = x_C) = P(X_A = x_A \mid X_C = x_C) \cdot P(X_B = x_B \mid X_C = x_C)$.

Pairwise Markov properties from G

 $X_i \perp \!\!\! \perp X_j \mid X_{V \setminus \{i,j\}} \text{ for } i \neq j \text{ with } \{i,j\} \notin E.$

Example: Independence

$$G = {f 0}$$

$$G = \begin{pmatrix} \bullet & \bullet & \bullet \\ 1 & 2 & 3 \end{pmatrix}$$
 $P((x_1, x_2, x_3)) = q_{x_1} r_{x_2} s_{x_3}$

Example: Independence

$$G = \begin{pmatrix} \bullet & \bullet & \bullet \\ 1 & 2 & 3 \end{pmatrix}$$

Example: Ising model

$$G = \bigcirc$$

$$\Omega_i = \{-1, 1\}$$
 for all i interaction parameters $c, d > 0$

 $P((x_1, x_2, x_3)) = q_{x_1} r_{x_2} s_{x_3}$

$$P(x) = \frac{1}{Z} \cdot \left(\prod_{i \sim k, x_i = x_k} c \right) \cdot \left(\prod_{i \sim k, x_i \neq x_k} d \right)$$

Example: Independence

$$G = \begin{array}{ccc} \bullet & \bullet & \bullet \\ 1 & 2 & 3 \end{array}$$

Example: Ising model

$$G = \bigoplus_{j} i$$

$$\Omega_i = \{-1, 1\}$$
 for all i interaction parameters $c, d > 0$

 $P((x_1, x_2, x_3)) = q_{x_1} r_{x_2} s_{x_3}$

$$P(x) = \frac{1}{Z} \cdot \left(\prod_{i \sim k, x_i = x_k} c \right) \cdot \left(\prod_{i \sim k, x_i \neq x_k} d \right)$$

$$P((X_i, X_j) = (1, 1) \mid \cdots) = \frac{(c^2 d)(c^3)}{(c^2 d + c d^2)(c^3 + d^3)} = P(X_i = 1 \mid \cdots) \cdot P(X_j = 1 \mid \cdots)$$

$$G = \begin{array}{ccc} \bullet & \bullet & \bullet \\ 1 & 2 & 3 \end{array}$$

Example: Ising model

$$G = \bigoplus_{j} i$$

$$\Omega_i = \{-1, 1\}$$
 for all i interaction parameters $c, d > 0$

 $P((x_1, x_2, x_3)) = q_{x_1} r_{x_2} s_{x_3}$

$$P(x) = \frac{1}{Z} \cdot \left(\prod_{i \sim k, x_i = x_k} c \right) \cdot \left(\prod_{i \sim k, x_i \neq x_k} d \right)$$

$$P((X_i, X_j) = (1, 1) \mid \cdots) = \frac{(c^2 d)(c^3)}{(c^2 d + c d^2)(c^3 + d^3)} = P(X_i = 1 \mid \cdots) \cdot P(X_j = 1 \mid \cdots)$$

 \rightsquigarrow P satisfies all the pairwise Markov properties for G.

Hammersley-Clifford Theorem

Assume P > 0 on all of Ω . Then P satisfies all the pairwise Markov properties $\Leftrightarrow \exists$ interaction parameters $\theta_C \in \mathbb{R}_{>0}^{\Omega_C}$, where C runs through the maximal cliques of G, such that $P(x) = \prod_C \theta_C(x_C)$.

Hammersley-Clifford Theorem

Assume P > 0 on all of Ω . Then P satisfies all the pairwise Markov properties $\Leftrightarrow \exists$ interaction parameters $\theta_C \in \mathbb{R}_{>0}^{\Omega_C}$, where C runs through the maximal cliques of G, such that $P(x) = \prod_C \theta_C(x_C)$.

Example

- *Independence*: maximal cliques=vertices $\rightsquigarrow P(x) = \prod_{i \in V} \theta_i(x_i)$.
- *Ising*: maximal cliques are edges $\{i, k\}$, and $c = \theta_{ik}(-1, -1) = \theta_{ik}(1, 1)$ and $d = \theta_{ik}(1, -1) = \theta_{ik}(-1, 1)$ (up to normalisation).

Hammersley-Clifford Theorem

Assume P > 0 on all of Ω . Then P satisfies all the pairwise Markov properties $\Leftrightarrow \exists$ interaction parameters $\theta_C \in \mathbb{R}_{>0}^{\Omega_C}$, where C runs through the maximal cliques of G, such that $P(x) = \prod_C \theta_C(x_C)$.

Example

- *Independence*: maximal cliques=vertices $\rightsquigarrow P(x) = \prod_{i \in V} \theta_i(x_i)$.
- *Ising*: maximal cliques are edges $\{i, k\}$, and $c = \theta_{ik}(-1, -1) = \theta_{ik}(1, 1)$ and $d = \theta_{ik}(1, -1) = \theta_{ik}(-1, 1)$ (up to normalisation).

Monomial parameterisation of \widehat{M} : $P(x) = \prod_C \theta_C(x_C)$.

Here we forget that the P(x) must sum to 1 and must be positive. Hence the θ_C are unconstrained parameters. What polynomial relations among the P(x) hold independently of the parameters θ_C ?

 $P(x_1, x_2, x_3) = r_{x_1} s_{x_2} t_{x_3}$ satisfy the binomial equations $P(x_1, x_2, x_3) P(x'_1, x'_2, x_3) - P(x_1, x'_2, x_3) P(x'_1, x_2, x_3)$ and similar ones; these generate the ideal of all polynomial relations—note that there are three orbits up to $\text{Sym}(\Omega_1) \times \text{Sym}(\Omega_2) \times \text{Sym}(\Omega_3)$.

 $P(x_1, x_2, x_3) = r_{x_1} s_{x_2} t_{x_3}$ satisfy the binomial equations $P(x_1, x_2, x_3) P(x'_1, x'_2, x_3) - P(x_1, x'_2, x_3) P(x'_1, x_2, x_3)$ and similar ones; these generate the ideal of all polynomial relations—note that there are three orbits up to $\text{Sym}(\Omega_1) \times \text{Sym}(\Omega_2) \times \text{Sym}(\Omega_3)$.

Much more generally:

 $P(x_1, x_2, x_3) = r_{x_1} s_{x_2} t_{x_3}$ satisfy the binomial equations $P(x_1, x_2, x_3) P(x'_1, x'_2, x_3) - P(x_1, x'_2, x_3) P(x'_1, x_2, x_3)$ and similar ones; these generate the ideal of all polynomial relations—note that there are three orbits up to $\text{Sym}(\Omega_1) \times \text{Sym}(\Omega_2) \times \text{Sym}(\Omega_3)$.

Much more generally:

Independent Set Theorem (Hillar-Sullivant, 2012)

If $A \subseteq V$ is an independent set in G, then the ideal of M is generated by boundedly many $\prod_{i \in A} \operatorname{Sym}(\Omega_i)$ -orbits of binomials as $|\Omega_i| \to \infty$ for all $i \in A$.

 $P(x_1, x_2, x_3) = r_{x_1} s_{x_2} t_{x_3}$ satisfy the binomial equations $P(x_1, x_2, x_3) P(x'_1, x'_2, x_3) - P(x_1, x'_2, x_3) P(x'_1, x_2, x_3)$ and similar ones; these generate the ideal of all polynomial relations—note that there are three orbits up to $\text{Sym}(\Omega_1) \times \text{Sym}(\Omega_2) \times \text{Sym}(\Omega_3)$.

Much more generally:

Independent Set Theorem (Hillar-Sullivant, 2012)

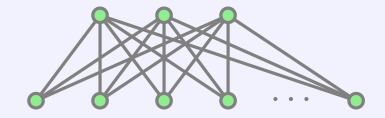
If $A \subseteq V$ is an independent set in G, then the ideal of M is generated by boundedly many $\prod_{i \in A} \operatorname{Sym}(\Omega_i)$ -orbits of binomials as $|\Omega_i| \to \infty$ for all $i \in A$.

There are variants where G grows instead \sim Eggermont's talk!

Thank you!

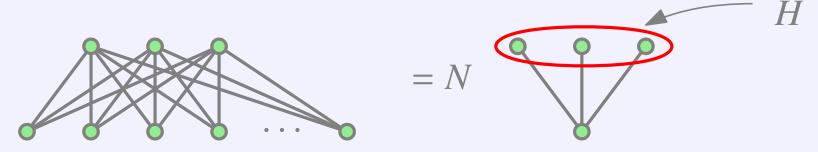
Example (Rauh-Sullivant, 2014)

If G is $K_{3,N}$, and all state spaces are $\{0,1\}$, then the ideal of M is generated by binomials of degree ≤ 12 , independently of N.



Example (Rauh-Sullivant, 2014)

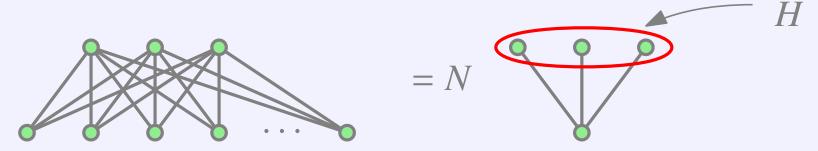
If G is $K_{3,N}$, and all state spaces are $\{0, 1\}$, then the ideal of M is generated by binomials of degree ≤ 12 , independently of N.



Construction: G_1, \ldots, G_k finite graphs with a common induced subgraph $H \rightsquigarrow s_1G_1 +_H \cdots +_H s_kG_k$ obtained from disjoint copies of the G_i by identifying their instances of H.

Example (Rauh-Sullivant, 2014)

If G is $K_{3,N}$, and all state spaces are $\{0,1\}$, then the ideal of M is generated by binomials of degree ≤ 12 , independently of N.



Construction: G_1, \ldots, G_k finite graphs with a common induced subgraph $H \rightsquigarrow s_1G_1 +_H \cdots +_H s_kG_k$ obtained from disjoint copies of the G_j by identifying their instances of H.

Theorem (D-Oosterhof, 2016)

Fixing state spaces for the vertices of each G_j , compatible with H, the ideal of $\widehat{M}(s_1G_1 +_H \cdots +_H s_kG_k)$ is generated in bounded degree uniformly in the s_j .

Growing graphs

Crucial fact: Suppose that G has vertex set $A \sqcup B$, where A is the vertex set of H; so G has state space $\Omega_A \times \Omega_B$.

Growing graphs

Crucial fact: Suppose that G has vertex set $A \sqcup B$, where A is the vertex set of H; so G has state space $\Omega_A \times \Omega_B$.

Then sG has the vertex set $A \sqcup ([s] \times B)$ and state space $\Omega(s) := \Omega_A \times \Omega_B^s$. Any map $f : [s] \to [r]$ yields a map $\Omega(r) \to \Omega(s)$ and a linear map $\mathbb{R}^{\Omega(s)} \to \mathbb{R}^{\Omega(r)}$, which turns out to map $\widehat{M}(s)$ in the former space into $\widehat{M}(r)$ in the latter space.

Crucial fact: Suppose that G has vertex set $A \sqcup B$, where A is the vertex set of H; so G has state space $\Omega_A \times \Omega_B$.

Then sG has the vertex set $A \sqcup ([s] \times B)$ and state space $\Omega(s) := \Omega_A \times \Omega_B^s$. Any map $f : [s] \to [r]$ yields a map $\Omega(r) \to \Omega(s)$ and a linear map $\mathbb{R}^{\Omega(s)} \to \mathbb{R}^{\Omega(r)}$, which turns out to map $\widehat{M}(s)$ in the former space into $\widehat{M}(r)$ in the latter space.

Thus \widehat{M} is a variety over the category **Fin** of finite sets. We show that its ambient space is a Noetherian **Fin**-variety.

(The Independent Set Theorem concerns a **Fin**^{op}-variety!)

Open: What happens if both state spaces and graphs grow?

Definition

Given two models M_1 and M_2 in R^{Ω} , their *mixture* is the set $\{\lambda P + (1 - \lambda)Q \mid P \in M_1, Q \in M_2, \lambda \in [0, 1]\}$.

Mixtures 17

Definition

Given two models M_1 and M_2 in R^{Ω} , their *mixture* is the set $\{\lambda P + (1 - \lambda)Q \mid P \in M_1, Q \in M_2, \lambda \in [0, 1]\}$.

Example (Independence)

The mixture of two copies of independence is the set of all $|\Omega_1| \times |\Omega_2| \times |\Omega_3|$ -tensors of *nonnegative rank* at most two whose entries add up to one.

Mixtures 17

Definition

Given two models M_1 and M_2 in R^{Ω} , their *mixture* is the set $\{\lambda P + (1 - \lambda)Q \mid P \in M_1, Q \in M_2, \lambda \in [0, 1]\}$.

Example (Independence)

The mixture of two copies of independence is the set of all $|\Omega_1| \times |\Omega_2| \times |\Omega_3|$ -tensors of *nonnegative rank* at most two whose entries add up to one.

Theorem (Allman-Rhodes-Sturmfels-Zwiernik, 2013)

An $m_1 \times m_2 \times m_3$ -tensor P with entries in $\mathbb{R}_{\geq 0}$ has nonnegative rank at most two if and only if P has rank at most two and is moreover (log-)supermodular: $P(x_1, x_2, x_3)P(y_1, y_2, y_3) \leq P(u_1, u_2, u_3)P(z_1, z_2, z_3)$ if $\{x_r, y_r\} = \{u_r, z_r\}$ and $u_r \leq z_r$ for all r, or in the $\operatorname{Sym}(\Omega_1) \times \operatorname{Sym}(\Omega_2) \times \operatorname{Sym}(\Omega_3)$ -orbit of such a tensor.

Forget again about inequalities and summing up to 1.

Easy fact:

If G is a disjoint union of cliques, then \widehat{M} is not only stable under $\prod_{i \in V} \operatorname{Sym}(\Omega_i)$, but even under $\prod_{i \in V} \operatorname{GL}_{\Omega_i}$. Hence the same holds for mixtures $\widehat{M}_1 + \widehat{M}_2 = \{P + Q \mid P \in \widehat{M}_1, Q \in \widehat{M}_2\}$ coming from graphs G_1, G_2 that are unions of cliques.

Forget again about inequalities and summing up to 1.

Easy fact:

If G is a disjoint union of cliques, then \widehat{M} is not only stable under $\prod_{i \in V} \operatorname{Sym}(\Omega_i)$, but even under $\prod_{i \in V} \operatorname{GL}_{\Omega_i}$. Hence the same holds for mixtures $\widehat{M}_1 + \widehat{M}_2 = \{P + Q \mid P \in \widehat{M}_1, Q \in \widehat{M}_2\}$ coming from graphs G_1, G_2 that are unions of cliques.

Theorem (D, 2017)

For any fixed k, a closed subvariety in a tensor product $W_1 \otimes \cdots \otimes W_k$ of vector spaces that depends functorially on W_1, \ldots, W_k is defined by finitely many equations up to $\prod_i GL(W_i)$, independently of the dimensions of the W_i .

A mixture challenge

A mixture challenge

$$M = \{ P(x_1, x_2, x_3) = \lambda \frac{1}{Z(c,d)} c_{x_1, x_2} d_{x_3} + (1 - \lambda) \frac{1}{Z'(e,f)} e_{x_1, x_3} f_{x_2} \}$$

Here:
$$\lambda \in [0, 1], c \in \mathbb{R}_{>0}^{\Omega_1 \times \Omega_2}, d \in \mathbb{R}_{>0}^{\Omega_3}, e \in \mathbb{R}_{>0}^{\Omega_1 \times \Omega_3}, f \in \mathbb{R}_{>0}^{\Omega_2}$$

A mixture challenge



$$M = \{ P(x_1, x_2, x_3) = \lambda \frac{1}{Z(c,d)} c_{x_1, x_2} d_{x_3} + (1 - \lambda) \frac{1}{Z'(e,f)} e_{x_1, x_3} f_{x_2} \}$$

Here:
$$\lambda \in [0, 1], c \in \mathbb{R}_{>0}^{\Omega_1 \times \Omega_2}, d \in \mathbb{R}_{>0}^{\Omega_3}, e \in \mathbb{R}_{>0}^{\Omega_1 \times \Omega_3}, f \in \mathbb{R}_{>0}^{\Omega_2}$$

Challenge: Find a quantifier-free description of *M*!

Oosterhof found polynomial equations cutting out \widehat{M} of degrees 3 and 6: certain 2 × 2-determinants of 3 × 3-determinants.

There's a beautiful relation with matrix spaces of rank two!

- equations for phylogenetic tree models (Casanellas et al, Allman-Rhodes, Sturmfels-Sullivant, Michałek et al, ...)
- determinantal equations for Gaussian graphical models (Sullivant-Talaska-D)
- identifiability of Gaussian graphical models (Foygel-Drton-D)
- (non-)singularity of hypersurfaces defined by conditional independence statements for Gaussian graphical models (Lin-Uhler-Sturmfels-Bühlmann)
- twisted commutative algebras (Sam-Snowden)

•

- equations for phylogenetic tree models (Casanellas et al, Allman-Rhodes, Sturmfels-Sullivant, Michałek et al, ...)
- determinantal equations for Gaussian graphical models (Sullivant-Talaska-D)
- identifiability of Gaussian graphical models (Foygel-Drton-D)
- (non-)singularity of hypersurfaces defined by conditional independence statements for Gaussian graphical models (Lin-Uhler-Sturmfels-Bühlmann)
- twisted commutative algebras (Sam-Snowden)

•

Thank you!