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?



2Constructible sets

Constructible set in Cn: defined by a finite, meaningful formula
in the alphabet C ∪ {x1, . . . , xn, ·,+,=,¬,∨,∧}.

Example
X = {(x1, x2, x3, x4) | x1x4 = x2x3}
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Preserved under union, intersection, complement and:

Theorem (Chevalley): The image of a constructible set under a
polynomial map is constructible. (And computable!)

Example: X = C2, ϕ(x, y) = (x, xy)
ϕ(X) = {(u, v) | (¬u = 0) ∨ (u = 0 ∧ v = 0)}.
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Constructible set in Cn: defined by a finite, meaningful formula
in the alphabet C ∪ {x1, . . . , xn, ·,+,=,¬,∨,∧}.

Example
X = {(x1, x2, x3, x4) | x1x4 = x2x3}

Preserved under union, intersection, complement and:

Theorem (Chevalley): The image of a constructible set under a
polynomial map is constructible. (And computable!)

Example: X = C2, ϕ(x, y) = (x, xy)
ϕ(X) = {(u, v) | (¬u = 0) ∨ (u = 0 ∧ v = 0)}.

Example: X = Cn×k, ϕ(A) = A · AT ∈ Cn×n; ϕ(X) =?



3Semi-algebraic sets

Semi-algebraic set in Rn: defined by a finite, meaningful formula
in the alphabet R ∪ {x1, . . . , xn, ·,+,=,¬,∨,∧,≥}.

Example: {x ∈ R4 | (x1x4 = x2x3) ∧ (x1 + x2 + x3 + x4 = 1) ∧
(x1, . . . , x4 ≥ 0)}—probability distributions on {1, 2} × {1, 2} such
that the first and second entry are independent.
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Semi-algebraic set in Rn: defined by a finite, meaningful formula
in the alphabet R ∪ {x1, . . . , xn, ·,+,=,¬,∨,∧,≥}.

Example: {x ∈ R4 | (x1x4 = x2x3) ∧ (x1 + x2 + x3 + x4 = 1) ∧
(x1, . . . , x4 ≥ 0)}—probability distributions on {1, 2} × {1, 2} such
that the first and second entry are independent.

Theorem (Tarski): The image of a semialgebraic set under a poly-
nomial map is semialgebraic. (And computable!)

Example: X = Rn×k, ϕ(A) = A · AT , ϕ(X) = {B | B = BT and each
principal ` × `-subdet of B is ≥ 0 for ` ≤ k and = 0 for ` = k + 1}.

Example: X = Rn×k
≥0 ,Y = Rk×m

≥0 , ϕ(A, B) = A · B; ϕ(X) = {B ∈ R≥0
of nonnegative rank ≤ k}—no “finite characterisation” for k = 3.



4A word on algorithms

Symbolic (4ti2, Macaulay2, Normaliz, Singular, ...):
manipulate polynomial equations (and inequalities), say with co-
efficients in Q. Typical application: generators for all equations
vanishing on all of X generators for all equations for ϕ(X).

Example: Input {p1 + p2 − 1, q1 − q2 − 1} and ϕ(p, q) =

(p1q1, p1q2, p2q1, p2q2). Output: {x1x4− x2x3, x1 + x2 + x3 + x4−1}.



4A word on algorithms

Symbolic (4ti2, Macaulay2, Normaliz, Singular, ...):
manipulate polynomial equations (and inequalities), say with co-
efficients in Q. Typical application: generators for all equations
vanishing on all of X generators for all equations for ϕ(X).

Example: Input {p1 + p2 − 1, q1 − q2 − 1} and ϕ(p, q) =

(p1q1, p1q2, p2q1, p2q2). Output: {x1x4− x2x3, x1 + x2 + x3 + x4−1}.

Numerical (Bertini, Macaulay, ...): solve square systems
of equations using homotopy continuation.

t = 1
easy system

t = 0
original system

choice??



5Algebraic-statistical models

Discrete algebraic-statistical model: semi-algebraic subset M of
the probabiliy simplex ∆n−1 := {x ∈ Rn

≥0 |
∑

i xi = 1}. A point
x ∈ M is a probability distribution on [n].
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the probabiliy simplex ∆n−1 := {x ∈ Rn

≥0 |
∑

i xi = 1}. A point
x ∈ M is a probability distribution on [n].

Typical questions:
1. If M given as ϕ(X), find a quantifier-free formula for M.
2. How does 1 vary with combinatorial parameters of M?
3. For u ∈ Zn

≥0 recording independent observations, compute

x ∈ M maximising the likelihood L(u|x) =

(
|u|
u

)
xu of u.
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Discrete algebraic-statistical model: semi-algebraic subset M of
the probabiliy simplex ∆n−1 := {x ∈ Rn

≥0 |
∑

i xi = 1}. A point
x ∈ M is a probability distribution on [n].

Typical questions:
1. If M given as ϕ(X), find a quantifier-free formula for M.
2. How does 1 vary with combinatorial parameters of M?
3. For u ∈ Zn

≥0 recording independent observations, compute

x ∈ M maximising the likelihood L(u|x) =

(
|u|
u

)
xu of u.

Why 1?
• Model validation: if u/(

∑
i ui) almost satisfies the equations and

inequalities, then M is a good model (without need to find x).
•Markov chains for Fisher’s exact test for log-linear models.



6Independence, two variables

Independence:
M = {(piq j)i, j | pi ≥ 0, q j ≥ 0,

∑
i pi =

∑
j q j = 1} ⊆ ∆mn−1.
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Independence:
M = {(piq j)i, j | pi ≥ 0, q j ≥ 0,

∑
i pi =

∑
j q j = 1} ⊆ ∆mn−1.

1. M = {x ∈ Rm×n |
∑

i, j xi j = 1, xi j ≥ 0, xi jxkl − xilxk j = 0}.
2. x11 ≥ 0 and x11x22 − x12x21 = 0 + row and col permutations.
3. Observe u ∈ Zm×n

≥0  ML-estimate xi j := ui+u+ j/u2
++.
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Independence:
M = {(piq j)i, j | pi ≥ 0, q j ≥ 0,

∑
i pi =

∑
j q j = 1} ⊆ ∆mn−1.

1. M = {x ∈ Rm×n |
∑

i, j xi j = 1, xi j ≥ 0, xi jxkl − xilxk j = 0}.
2. x11 ≥ 0 and x11x22 − x12x21 = 0 + row and col permutations.
3. Observe u ∈ Zm×n

≥0  ML-estimate xi j := ui+u+ j/u2
++.

Markov Chain for Fisher’s exact test (Diaconis-Sturmfels): for
some test function t, want to compute the probability of t(v) ≥
t(u) conditional on vi+ = ui+ and v+ j = u+ j and sampled from
the same distribution x. Approximate by sampling such v using
Markov moves from u:

+1 −1
−1 +1



7Mixtures of independence

Mixture of M1 and M2:
M1 + M2 := {tx + (1 − t)y | t ∈ [0, 1], x ∈ M1, y ∈ M2}
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M1 + M2 := {tx + (1 − t)y | t ∈ [0, 1], x ∈ M1, y ∈ M2}

Example: M1 = M2 = M ⊆ ∆mn−1 model of independence.
1. M + M = {x |

∑
i, j xi j = 1, xi j ≥ 0, rk(x) ≤ 2}

(nonnegative rank 2 = nonnegative + rank 2)
2. one orbit of 3 × 3-dets, one orbit of inequalities
3. ML-estimate?
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Mixture of M1 and M2:
M1 + M2 := {tx + (1 − t)y | t ∈ [0, 1], x ∈ M1, y ∈ M2}

Example: M1 = M2 = M ⊆ ∆mn−1 model of independence.
1. M + M = {x |

∑
i, j xi j = 1, xi j ≥ 0, rk(x) ≤ 2}

(nonnegative rank 2 = nonnegative + rank 2)
2. one orbit of 3 × 3-dets, one orbit of inequalities
3. ML-estimate?

Thm (Kubjas-Robeva-Sturmfels and Eggermont-Horobeţ-K):
M + M + M = {x of nonneg rank ≤ 3 and

∑
i, j xi j = 1}.

1. quant-free description; comps of the algebraic boundary
2. three orbits of boundary components
3. experiments: the EM algorithm often runs into the boundary
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Zariski-closure: M of M in {
∑

i xi = 1} ⊆ Cn.
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∑

i xi = 1} ⊆ Cn.

Critical points of the likelihood function:
L(u|x) = C(u)xu, so dxL(u|.)(v) = L(u|x) ·

∑
i

ui
xi
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 necessary for x ∈ Mreg ∩ Rn
>0 to be the ML-estimate is that

x−1 · TxM ⊥ u—which makes sense for u ∈ Cn and x ∈ M∩ (C∗)n!
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Zariski-closure: M of M in {
∑

i xi = 1} ⊆ Cn.

Critical points of the likelihood function:
L(u|x) = C(u)xu, so dxL(u|.)(v) = L(u|x) ·

∑
i

ui
xi

vi

 necessary for x ∈ Mreg ∩ Rn
>0 to be the ML-estimate is that

x−1 · TxM ⊥ u—which makes sense for u ∈ Cn and x ∈ M∩ (C∗)n!

ML-degree of M: the number of x ∈ M
reg
∩(C∗)n with x−1 ·TxM ⊥

u, for u ∈ Cn sufficiently general.

Example: ML-degree of independence is 1: (ui+u+ j)/(u2
++).

Theorem (Huh): all varieties with ML-degree 1 are image of a
composition Ψ of a linear map Cn → Cr and a rational monomial
map Cr → (C∗)n with monomials of degree 0.



9ML-degree for mixtures of independence

Theorem (Hauenstein-Rodriguez-Sturmfels):
M ⊆ ∆mn−1 independence. Values of ML-degree for kM:

(3, 3) (3, 4) (3, 5) (4, 4) (4, 5) (4, 6) (5, 5)
1
2
3
4
5

1
10

1

1
26

1

1
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1

1
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1

1
843
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1
3119
3119

1

1
6776

61326
6776

1

(m, n)

k
Bertini
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Theorem (Hauenstein-Rodriguez-Sturmfels):
M ⊆ ∆mn−1 independence. Values of ML-degree for kM:

(3, 3) (3, 4) (3, 5) (4, 4) (4, 5) (4, 6) (5, 5)
1
2
3
4
5

1
10

1

1
26

1

1
58

1

1
191
191

1

1
843
843

1

1
3119
3119

1

1
6776

61326
6776

1

(m, n)

k
Bertini

Theorem (D-Rodriguez)
The above symmetry really holds.

Theorem (Rodriguez-Wang)
The ML-degree for m = 3, k = 2 equals 2n+1 − 6.



10Crazy but beautiful idea for ML-estimation

Idea (Hauenstein, Leykin, Rodriguez, Sottile, . . . )
• construct a pair (x1, u1) with x−1

1 Tx1 M ⊥ u1 (easy: pick any
x1 ∈ M

reg
∩ (C∗)n, solve linear system for u1).

• perform many homotopy continuations for the system
xt ∈ M ∧ x−1

t Txt M ⊥ ut with u0 the actual data.
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Idea (Hauenstein, Leykin, Rodriguez, Sottile, . . . )
• construct a pair (x1, u1) with x−1

1 Tx1 M ⊥ u1 (easy: pick any
x1 ∈ M

reg
∩ (C∗)n, solve linear system for u1).

• perform many homotopy continuations for the system
xt ∈ M ∧ x−1

t Txt M ⊥ ut with u0 the actual data.

x0 depends on the chosen path ut, and if M ∩ (C∗)n is irreducible,
all critical points for u0 are obtained in this manner!

Answer: when the trace test says you can!

Question: When to stop? u1 u0

x1 x0

x1



11Undirected graphical models

Setting
G = (V, E) finite, simple undirected graph
Ωi, i ∈ V finite sets
P a probability distribution on the state space Ω :=

∏
i∈V Ωi

Xi : Ω→ Ωi the ith coordinate function
A ⊆ V probability vector XA taking values in ΩA.
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Setting
G = (V, E) finite, simple undirected graph
Ωi, i ∈ V finite sets
P a probability distribution on the state space Ω :=

∏
i∈V Ωi

Xi : Ω→ Ωi the ith coordinate function
A ⊆ V probability vector XA taking values in ΩA.

Conditional independence
XA ⊥⊥ XB | XC means: for each xC ∈ ΩC with P(XC = xC) > 0,
P(XA = xA ∧ xB = xB | XC = xC) =

P(XA = xA | XC = xC) · P(XB = xB | XC = xC).

Pairwise Markov properties from G
Xi ⊥⊥ X j | XV\{i, j} for i , j with {i, j} < E.
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Example: Independence

1 2 3 P((x1, x2, x3)) = qx1 rx2 sx3G =
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Example: Ising model

G = Ωi = {−1, 1} for all i
interaction parameters c, d > 0

P(x) = 1
Z ·

(∏
i∼k,xi=xk

c
)
·
(∏

i∼k,xi,xk
d
)
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Example: Independence

1 2 3 P((x1, x2, x3)) = qx1 rx2 sx3G =

Example: Ising model

G = Ωi = {−1, 1} for all i
interaction parameters c, d > 0

P(x) = 1
Z ·

(∏
i∼k,xi=xk

c
)
·
(∏

i∼k,xi,xk
d
)

+ − −

− +

+ +

i

j

P((Xi, X j) = (1, 1) | · · ·) =
(c2d)(c3)

(c2d+cd2)(c3+d3) = P(Xi = 1 | · · ·) · P(X j = 1 | · · ·)
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Example: Independence

1 2 3 P((x1, x2, x3)) = qx1 rx2 sx3

 P satisfies all the pairwise Markov properties for G.

G =
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13Hammersley-Clifford Theorem

Hammersley-Clifford Theorem
Assume P > 0 on all of Ω. Then P satisfies all the pairwise Markov
properties ⇔ ∃ interaction parameters θC ∈ R

ΩC
>0 , where C runs

through the maximal cliques of G, such that P(x) =
∏

C θC(xC).
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Assume P > 0 on all of Ω. Then P satisfies all the pairwise Markov
properties ⇔ ∃ interaction parameters θC ∈ R

ΩC
>0 , where C runs

through the maximal cliques of G, such that P(x) =
∏

C θC(xC).

Example
• Independence: maximal cliques=vertices P(x) =

∏
i∈V θi(xi).

• Ising: maximal cliques are edges {i, k}, and c = θik(−1,−1) =

θik(1, 1) and d = θik(1,−1) = θik(−1, 1) (up to normalisation).
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Hammersley-Clifford Theorem
Assume P > 0 on all of Ω. Then P satisfies all the pairwise Markov
properties ⇔ ∃ interaction parameters θC ∈ R

ΩC
>0 , where C runs

through the maximal cliques of G, such that P(x) =
∏

C θC(xC).

Example
• Independence: maximal cliques=vertices P(x) =

∏
i∈V θi(xi).

• Ising: maximal cliques are edges {i, k}, and c = θik(−1,−1) =

θik(1, 1) and d = θik(1,−1) = θik(−1, 1) (up to normalisation).

Monomial parameterisation of M̂: P(x) =
∏

C θC(xC).
Here we forget that the P(x) must sum to 1 and must be positive.
Hence the θC are unconstrained parameters. What polynomial re-
lations among the P(x) hold independently of the parameters θC?



14Growing state spaces

Example: Independence
P(x1, x2, x3) = rx1 sx2 tx3 satisfy the binomial equations
P(x1, x2, x3)P(x′1, x

′
2, x3) − P(x1, x′2, x3)P(x′1, x2, x3) and similar

ones; these generate the ideal of all polynomial relations—note
that there are three orbits up to Sym(Ω1) × Sym(Ω2) × Sym(Ω3).
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|Ωi| → ∞ for all i ∈ A.
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Example: Independence
P(x1, x2, x3) = rx1 sx2 tx3 satisfy the binomial equations
P(x1, x2, x3)P(x′1, x

′
2, x3) − P(x1, x′2, x3)P(x′1, x2, x3) and similar

ones; these generate the ideal of all polynomial relations—note
that there are three orbits up to Sym(Ω1) × Sym(Ω2) × Sym(Ω3).

Much more generally:

Independent Set Theorem (Hillar-Sullivant, 2012)
If A ⊆ V is an independent set in G, then the ideal of M̂ is gen-
erated by boundedly many

∏
i∈A Sym(Ωi)-orbits of binomials as

|Ωi| → ∞ for all i ∈ A.

There are variants where G grows instead Eggermont’s talk!

Thank you!



15Growing graphs

Example (Rauh-Sullivant, 2014)
If G is K3,N , and all state spaces are {0, 1}, then the ideal of M̂ is
generated by binomials of degree ≤ 12, independently of N.

. . .
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of the G j by identifying their instances of H.

= N

H
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Example (Rauh-Sullivant, 2014)
If G is K3,N , and all state spaces are {0, 1}, then the ideal of M̂ is
generated by binomials of degree ≤ 12, independently of N.

. . .

Construction: G1, . . . ,Gk finite graphs with a common induced
subgraph H s1G1 +H · · · +H skGk obtained from disjoint copies
of the G j by identifying their instances of H.

= N

H

Theorem (D-Oosterhof, 2016)
Fixing state spaces for the vertices of each G j, compatible with H,
the ideal of M̂(s1G1 +H · · ·+H skGk) is generated in bounded degree
uniformly in the s j.



16Growing graphs

Crucial fact: Suppose that G has vertex set A t B, where A is the
vertex set of H; so G has state space ΩA ×ΩB.
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Crucial fact: Suppose that G has vertex set A t B, where A is the
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Crucial fact: Suppose that G has vertex set A t B, where A is the
vertex set of H; so G has state space ΩA ×ΩB.

Then sG has the vertex set A t ([s] × B) and state space Ω(s) :=
ΩA × Ωs

B. Any map f : [s] → [r] yields a map Ω(r) → Ω(s) and
a linear map RΩ(s) → RΩ(r), which turns out to map M̂(s) in the
former space into M̂(r) in the latter space.

Thus M̂ is a variety over the category Fin of finite sets. We show
that its ambient space is a Noetherian Fin-variety.

(The Independent Set Theorem concerns a Finop-variety!)

Open: What happens if both state spaces and graphs grow?
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Definition
Given two models M1 and M2 in RΩ, their mixture is the set {λP +

(1 − λ)Q | P ∈ M1,Q ∈ M2, λ ∈ [0, 1]}.

Example (Independence)
The mixture of two copies of independence is the set of all |Ω1| ×

|Ω2| × |Ω3|-tensors of nonnegative rank at most two whose entries
add up to one.

Theorem (Allman-Rhodes-Sturmfels-Zwiernik, 2013)
An m1 × m2 × m3-tensor P with entries in R≥0 has nonnega-
tive rank at most two if and only if P has rank at most two
and is moreover (log-)supermodular: P(x1, x2, x3)P(y1, y2, y3) ≤
P(u1, u2, u3)P(z1, z2, z3) if {xr, yr} = {ur, zr} and ur ≤ zr for all r, or
in the Sym(Ω1) × Sym(Ω2) × Sym(Ω3)-orbit of such a tensor.



18Boundedness of equations of some mixtures

Easy fact:
If G is a disjoint union of cliques, then M̂ is not only stable under∏

i∈V Sym(Ωi), but even under
∏

i∈V GLΩi . Hence the same holds

for mixtures M̂1 + M̂2 = {P + Q | P ∈ M̂1,Q ∈ M̂2} coming from
graphs G1,G2 that are unions of cliques.

Forget again about inequalities and summing up to 1.
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i∈V Sym(Ωi), but even under
∏

i∈V GLΩi . Hence the same holds

for mixtures M̂1 + M̂2 = {P + Q | P ∈ M̂1,Q ∈ M̂2} coming from
graphs G1,G2 that are unions of cliques.

Forget again about inequalities and summing up to 1.

Theorem (D, 2017)
For any fixed k, a closed subvariety in a tensor product W1⊗· · ·⊗Wk

of vector spaces that depends functorially on W1, . . . ,Wk is defined
by finitely many equations up to

∏
i GL(Wi), independently of the

dimensions of the Wi.
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+

M = {P(x1, x2, x3) = λ 1
Z(c,d) cx1,x2 dx3 + (1 − λ) 1

Z′(e, f ) ex1,x3 fx2 }

Here: λ ∈ [0, 1], c ∈ RΩ1×Ω2
>0 , d ∈ RΩ3

>0, e ∈ RΩ1×Ω3
>0 , f ∈ RΩ2

>0

Challenge: Find a quantifier-free description of M!

Oosterhof found polynomial equations cutting out M̂ of degrees 3
and 6: certain 2 × 2-determinants of 3 × 3-determinants.

There’s a beautiful relation with matrix spaces of rank two!

1 2

3

1 2

3
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• equations for phylogenetic tree models (Casanellas et al,
Allman-Rhodes, Sturmfels-Sullivant, Michałek et al, . . . )
• determinantal equations for Gaussian graphical models
(Sullivant-Talaska-D)
• identifiability of Gaussian graphical models (Foygel-Drton-D)
• (non-)singularity of hypersurfaces defined by conditional
independence statements for Gaussian graphical models
(Lin-Uhler-Sturmfels-Bühlmann)
• twisted commutative algebras (Sam-Snowden)
...
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Thank you!
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