Orthogonally decomposable tensors as semisimple algebras

Jan Draisma
TU Eindhoven and VU Amsterdam

With:

Ada Boralevi (TU/e)

Emil Horobeţ (TU/e)

Elina Robeva (Berkeley)

VU, 6 November 2015

(*Perpendicular* w.r.t. the standard Hermitian forms (.|.) on \mathbb{C}^m , \mathbb{C}^n —but ordinary transposition.)

(*Perpendicular* w.r.t. the standard Hermitian forms (.|.) on \mathbb{C}^m , \mathbb{C}^n —but ordinary transposition.)

The *singular values* $||u_i|| \cdot ||v_i||$ are uniquely determined by A, and if these are distinct, then so are the terms $u_i v_i^T$.

(*Perpendicular* w.r.t. the standard Hermitian forms (.|.) on \mathbb{C}^m , \mathbb{C}^n —but ordinary transposition.)

The *singular values* $||u_i|| \cdot ||v_i||$ are uniquely determined by A, and if these are distinct, then so are the terms $u_i v_i^T$.

If m = n and A is symmetric, one can take $u_i = v_i$, so $A = \sum_i u_i u_i^T$.

(*Perpendicular* w.r.t. the standard Hermitian forms (.|.) on \mathbb{C}^m , \mathbb{C}^n —but ordinary transposition.)

The *singular values* $||u_i|| \cdot ||v_i||$ are uniquely determined by A, and if these are distinct, then so are the terms $u_i v_i^T$.

If m = n and A is symmetric, one can take $u_i = v_i$, so $A = \sum_i u_i u_i^T$.

If m = n and A is skew, then $k = 2\ell$ and one can take $v_i = u_{i+\ell}$ for $i \le \ell$ and $v_i = -u_{i-\ell}$ for $i > \ell$; then $A = \sum_{i=1}^{l} (u_i v_i^T - v_i u_i^T)$.

(*Perpendicular* w.r.t. the standard Hermitian forms (.|.) on \mathbb{C}^m , \mathbb{C}^n —but ordinary transposition.)

The singular values $||u_i|| \cdot ||v_i||$ are uniquely determined by A, and if these are distinct, then so are the terms $u_i v_i^T$.

If m = n and A is symmetric, one can take $u_i = v_i$, so $A = \sum_i u_i u_i^T$.

If m = n and A is skew, then $k = 2\ell$ and one can take $v_i = u_{i+\ell}$ for $i \le \ell$ and $v_i = -u_{i-\ell}$ for $i > \ell$; then $A = \sum_{i=1}^{l} (u_i v_i^T - v_i u_i^T)$.

Question. Which *tensors* admit orthogonal decompositions?

Definition. A tensor $T \in V_1 \otimes \cdots \otimes V_d$ is *odeco/udeco* if it can be written as $T = \sum_{i=1}^k v_{i1} \otimes \cdots \otimes v_{id}$ where for each $j = 1, \ldots, d$ the vectors v_{1j}, \ldots, v_{kj} are nonzero and pairwise perpendicular.

Definition. A tensor $T \in V_1 \otimes \cdots \otimes V_d$ is *odeco/udeco* if it can be written as $T = \sum_{i=1}^k v_{i1} \otimes \cdots \otimes v_{id}$ where for each $j = 1, \ldots, d$ the vectors v_{1j}, \ldots, v_{kj} are nonzero and pairwise perpendicular.

Definition. A symmetric tensor $T \in \operatorname{Sym}^d(V) \subseteq V^{\otimes d}$ is symmetrically odeco/udeco if it can be written as $T = \sum_{i=1}^k \pm v_i^{\otimes d}$ for nonzero, pairwise perpendicular v_i .

Definition. A tensor $T \in V_1 \otimes \cdots \otimes V_d$ is *odeco/udeco* if it can be written as $T = \sum_{i=1}^k v_{i1} \otimes \cdots \otimes v_{id}$ where for each $j = 1, \ldots, d$ the vectors v_{1j}, \ldots, v_{kj} are nonzero and pairwise perpendicular.

Definition. A symmetric tensor $T \in \operatorname{Sym}^d(V) \subseteq V^{\otimes d}$ is symmetrically odeco/udeco if it can be written as $T = \sum_{i=1}^k \pm v_i^{\otimes d}$ for nonzero, pairwise perpendicular v_i .

Example. With $V = \mathbb{R}^2$ and d = 3 the tensor $T = e_0 \otimes e_0 \otimes e_0 + e_0 \otimes e_1 \otimes e_1 \otimes e_1 + e_1 \otimes e_0 \otimes e_1 + e_1 \otimes e_0$ is symmetrically odeco: T =

Definition. A tensor $T \in V_1 \otimes \cdots \otimes V_d$ is *odeco/udeco* if it can be written as $T = \sum_{i=1}^k v_{i1} \otimes \cdots \otimes v_{id}$ where for each $j = 1, \ldots, d$ the vectors v_{1j}, \ldots, v_{kj} are nonzero and pairwise perpendicular.

Definition. A symmetric tensor $T \in \operatorname{Sym}^d(V) \subseteq V^{\otimes d}$ is symmetrically odeco/udeco if it can be written as $T = \sum_{i=1}^k \pm v_i^{\otimes d}$ for nonzero, pairwise perpendicular v_i .

Example. With $V = \mathbb{R}^2$ and d = 3 the tensor $T = e_0 \otimes e_0 \otimes e_0 + e_0 \otimes e_1 \otimes e_1 \otimes e_1 + e_1 \otimes e_0 \otimes e_1 + e_1 \otimes e_0 \otimes e_1$ is symmetrically odeco: $T = (e_0 + e_1)^{\otimes 3}/2 + (e_0 - e_1)^{\otimes 3}/2$

Definition. An alternating tensor $T \in \text{Alt}^d V \subseteq V^{\otimes d}$ is alternatingly odeco/udeco if $T = \sum_{i=1}^k v_{i1} \wedge \cdots \wedge v_{id}$ for $k \cdot d$ nonzero, pairwise perpendicular vectors v_{11}, \ldots, v_{kd} .

(superpositions of points on the Grassmannian representing pairwise perpendicular d-subspaces of V; in particular $k \leq \lfloor \frac{\dim V}{d} \rfloor$)

Definition. An alternating tensor $T \in \text{Alt}^d V \subseteq V^{\otimes d}$ is alternatingly odeco/udeco if $T = \sum_{i=1}^k v_{i1} \wedge \cdots \wedge v_{id}$ for $k \cdot d$ nonzero, pairwise perpendicular vectors v_{11}, \ldots, v_{kd} .

(superpositions of points on the Grassmannian representing pairwise perpendicular d-subspaces of V; in particular $k \leq \lfloor \frac{\dim V}{d} \rfloor$)

Main theorem. For $d \ge 3$ odeco/udeco tensors form a real-algebraic variety defined by polynomials of the following degrees:

	$odeco(\mathbb{R})$	$udeco(\mathbb{C})$
symmetric	2 (associativity)	3 (semi-associativity)
ordinary	2 (partial associativity)	3 (partial semi-asso.)
alternating	2 (Jacobi), 4 (Casimir)	3,4??

Proof (symmetrically odeco case). For $V = \mathbb{R}^n$ consider

$$([v_1|\cdots|v_n],\lambda) \longmapsto \sum_{i=1}^n \lambda_i v_i^{\otimes d}$$

$$O_n \times \mathbb{P}^{n-1} \longrightarrow \mathbb{P}(\operatorname{Sym}^d V)$$

The lhs is compact, so the image is closed, and its pre-image in $Sym^d(V) \setminus \{0\}$ is the set of nonzero sym odeco tensors. \square

Proof (symmetrically odeco case). For $V = \mathbb{R}^n$ consider

$$([v_1|\cdots|v_n],\lambda) \longmapsto \sum_{i=1}^n \lambda_i v_i^{\otimes d}$$

$$O_n \times \mathbb{P}^{n-1} \longrightarrow \mathbb{P}(\operatorname{Sym}^d V)$$

The lhs is compact, so the image is closed, and its pre-image in $Sym^d(V) \setminus \{0\}$ is the set of nonzero sym odeco tensors. \square

Proposition. For $d \ge 3$ the orthogonal decomposition is unique.

Proof (ordinary case). Contracting $T = \sum_{i=1}^{k} v_{i1} \otimes \cdots \otimes v_{id}$ with a general tensor in $V_3 \otimes \cdots \otimes V_d$ yields a two-tensor A with distinct nonzero singular values.

Proof (symmetrically odeco case). For $V = \mathbb{R}^n$ consider

$$([v_1|\cdots|v_n],\lambda) \longmapsto \sum_{i=1}^n \lambda_i v_i^{\otimes d}$$

$$O_n \times \mathbb{P}^{n-1} \longrightarrow \mathbb{P}(\operatorname{Sym}^d V)$$

The lhs is compact, so the image is closed, and its pre-image in $Sym^d(V) \setminus \{0\}$ is the set of nonzero sym odeco tensors. \square

Proposition. For $d \ge 3$ the orthogonal decomposition is unique.

Proof (ordinary case). Contracting $T = \sum_{i=1}^{k} v_{i1} \otimes \cdots \otimes v_{id}$ with a general tensor in $V_3 \otimes \cdots \otimes V_d$ yields a two-tensor A with distinct nonzero singular values.

(This yields an algorithm for orthogonal decomposition—Kolda.)

Proof. For $d \ge 3$, use the uniqueness of the decomposition. \square

Proof. For $d \ge 3$, use the uniqueness of the decomposition. \square

This reduces the proof of the main theorem for symmetrically odeco/udeco tensors to the case of ordinary tensors.

Proof. For $d \ge 3$, use the uniqueness of the decomposition. \square

This reduces the proof of the main theorem for symmetrically odeco/udeco tensors to the case of ordinary tensors.

Proposition. If T is udeco and real, then it is odeco.

Proof. For $d \ge 3$, use the uniqueness of the decomposition. \square

Further facts

Proposition. An odeco symmetric tensor is symmetrically odeco.

Proof. For $d \ge 3$, use the uniqueness of the decomposition. \square

This reduces the proof of the main theorem for symmetrically odeco/udeco tensors to the case of ordinary tensors.

Proposition. If T is udeco and real, then it is odeco.

Proof. For $d \ge 3$, use the uniqueness of the decomposition. \square

Observation. If $K = \mathbb{R}$ and $T = \sum_{i} v_{i1} \otimes \cdots \otimes v_{id}$ odeco, then for each j_0 the contraction $\bigotimes_{j} V_j \times \bigotimes_{j} V_j \to \bigotimes_{j \neq j_0} (V_j \otimes V_j)$ maps (T, T) into $\sum_{i} (v_{ij_0} | v_{ij_0}) \bigotimes_{j \neq j_0} v_j \otimes v_j$, which lies in $\bigotimes_{j \neq j_0} \operatorname{Sym}^2(V_j)$

Proof. For $d \ge 3$, use the uniqueness of the decomposition. \square

This reduces the proof of the main theorem for symmetrically odeco/udeco tensors to the case of ordinary tensors.

Proposition. If T is udeco and real, then it is odeco.

Proof. For $d \ge 3$, use the uniqueness of the decomposition. \square

Observation. If $K = \mathbb{R}$ and $T = \sum_{i} v_{i1} \otimes \cdots \otimes v_{id}$ odeco, then for each j_0 the contraction $\bigotimes_{j} V_j \times \bigotimes_{j} V_j \to \bigotimes_{j \neq j_0} (V_j \otimes V_j)$ maps (T, T) into $\sum_{i} (v_{ij_0} | v_{ij_0}) \bigotimes_{j \neq j_0} v_j \otimes v_j$, which lies in $\bigotimes_{j \neq j_0} \operatorname{Sym}^2(V_j)$

Conjecture (Robeva). This characterises ordinary odeco tensors.

Via the isomorphism $V^{\otimes 3} \cong V^* \otimes V^* \otimes V$, a $T \in \operatorname{Sym}^3(V) \subseteq V^{\otimes 3}$ gives rise to a bilinear map $V \times V \to V$, $(u, v) \mapsto u \cdot v = uv$. Note: uv = vu since (12)T = T; and (uv|w) = (uw|v) since (23)T = T.

Via the isomorphism $V^{\otimes 3} \cong V^* \otimes V^* \otimes V$, a $T \in \operatorname{Sym}^3(V) \subseteq V^{\otimes 3}$ gives rise to a bilinear map $V \times V \to V$, $(u, v) \mapsto u \cdot v = uv$. Note: uv = vu since (12)T = T; and (uv|w) = (uw|v) since (23)T = T.

This makes V a commutative \mathbb{R} -algebra that decomposes as an orthogonal direct sum of simple ideals.

Via the isomorphism $V^{\otimes 3} \cong V^* \otimes V^* \otimes V$, a $T \in \operatorname{Sym}^3(V) \subseteq V^{\otimes 3}$ gives rise to a bilinear map $V \times V \to V$, $(u, v) \mapsto u \cdot v = uv$. Note: uv = vu since (12)T = T; and (uv|w) = (uw|v) since (23)T = T.

This makes V a commutative \mathbb{R} -algebra that decomposes as an orthogonal direct sum of simple ideals.

Proposition. T is symmetrically odeco iff (V, \cdot) is also associative.

Via the isomorphism $V^{\otimes 3} \cong V^* \otimes V^* \otimes V$, a $T \in \operatorname{Sym}^3(V) \subseteq V^{\otimes 3}$ gives rise to a bilinear map $V \times V \to V$, $(u, v) \mapsto u \cdot v = uv$. Note: uv = vu since (12)T = T; and (uv|w) = (uw|v) since (23)T = T.

This makes V a commutative \mathbb{R} -algebra that decomposes as an orthogonal direct sum of simple ideals.

Proposition. T is symmetrically odeco iff (V, \cdot) is also associative.

Proof.
$$\Rightarrow$$
: If $T = \sum_i u_i^{\otimes 3}$, then $(xy)z = (\sum_i (u_i|x)(u_i|y)u_i)z = \sum_i (u_i|x)(u_i|y)(u_i|z)||u_i||^2 u_i = x(yz)$

Via the isomorphism $V^{\otimes 3} \cong V^* \otimes V^* \otimes V$, a $T \in \operatorname{Sym}^3(V) \subseteq V^{\otimes 3}$ gives rise to a bilinear map $V \times V \rightarrow V$, $(u, v) \mapsto u \cdot v = uv$. Note: uv = vu since (12)T = T; and (uv|w) = (uw|v) since (23)T = T.

This makes V a commutative \mathbb{R} -algebra that decomposes as an orthogonal direct sum of simple ideals.

Proposition. T is symmetrically odeco iff (V, \cdot) is also associative.

Proof. \Rightarrow : If $T = \sum_i u_i^{\otimes 3}$, then $(xy)z = (\sum_{i}(u_{i}|x)(u_{i}|y)u_{i})z = \sum_{i}(u_{i}|x)(u_{i}|y)(u_{i}|z)||u_{i}||^{2}u_{i} = x(yz)$

 \Leftarrow may assume (V, \cdot) is simple. Pick x such that $M_x : y \mapsto xy$ is nonzero. Then ker M_x is an ideal, so 0. Define $y * z := M_x^{-1}(yz)$. \rightsquigarrow (V,*) is simple, comm, ass, with 1 and compatible (.|.), so $\cong \mathbb{R}$. The proof is very similar, except now $T \in U \otimes V \otimes W$ gives rise to a commutative algebra structure on $U \oplus V \oplus W$ with $U \cdot V \subseteq W$, $U \cdot U = \{0\}$, etc., and we are interested only in *homogeneous* ideals.

The proof is very similar, except now $T \in U \otimes V \otimes W$ gives rise to a commutative algebra structure on $U \oplus V \oplus W$ with $U \cdot V \subseteq W$, $U \cdot U = \{0\}$, etc., and we are interested only in *homogeneous* ideals.

Partial associativity means that (xy)z = x(yz) whenever x, y, z are homogeneous and x, z belong to the same space (U, V, W).

Proposition. T is alternatingly odeco iff (V, \cdot) satisfies the Jacobi identity and furthermore has the property that for each $x, y, z \in V$ the map $C := M_x M_{(yz)} + M_y M_{(zx)} + M_z M_{(xy)}$ centralises all M_u .

Proposition. T is alternatingly odeco iff (V, \cdot) satisfies the Jacobi identity and furthermore has the property that for each $x, y, z \in V$ the map $C := M_x M_{(yz)} + M_y M_{(zx)} + M_z M_{(xy)}$ centralises all M_u .

Proof. \Rightarrow : *V* decomposes as an orthogonal direct sum of copies of (\mathbb{R}^3, \times) , for which the expression above is the Casimir element.

Proposition. T is alternatingly odeco iff (V, \cdot) satisfies the Jacobi identity and furthermore has the property that for each $x, y, z \in V$ the map $C := M_x M_{(yz)} + M_y M_{(zx)} + M_z M_{(xy)}$ centralises all M_u .

Proof. \Rightarrow : *V* decomposes as an orthogonal direct sum of copies of (\mathbb{R}^3, \times) , for which the expression above is the Casimir element.

 \Leftarrow : (V, \cdot) is then a compact Lie algebra. Their classification implies that the only simple one for which C is central, is (\mathbb{R}^3, \times) .

The inner product gives a linear isomorphism $V \to V^s$, $v \mapsto (v|.)$.

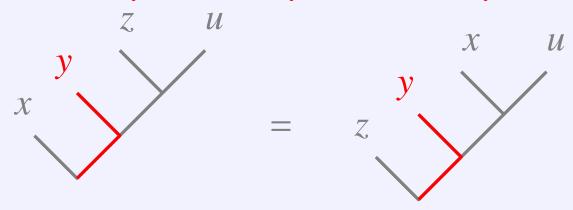
The inner product gives a linear isomorphism $V \to V^s$, $v \mapsto (v|.)$.

 $T \in V^{\otimes 3}$ gives a bi-semilinear product $V \times V \to V$.

The inner product gives a linear isomorphism $V \to V^s$, $v \mapsto (v|.)$.

 $T \in V^{\otimes 3}$ gives a bi-semilinear product $V \times V \to V$.

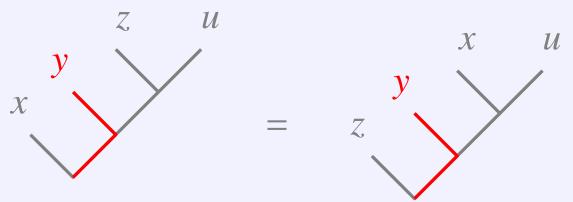
Proposition. $T \in \operatorname{Sym}^3(V)$ is symmetrically udeco iff the product is *semi-associative*: x(y(zu)) = z(y(xu)) and (xy)(zu) = (xu)(zy).



The inner product gives a linear isomorphism $V \to V^s$, $v \mapsto (v|.)$.

 $T \in V^{\otimes 3}$ gives a bi-semilinear product $V \times V \to V$.

Proposition. $T \in \operatorname{Sym}^3(V)$ is symmetrically udeco iff the product is *semi-associative*: x(y(zu)) = z(y(xu)) and (xy)(zu) = (xu)(zy).



We have a similar characterisation for ordinary three-tensors.

Ordinary case. For $d \ge 4$, a tensor in $V_1 \otimes \cdots \otimes V_d$ is odeco/udeco iff its *flattening* into $(\bigotimes_{i \in I_1} V_i) \otimes \cdots \otimes (\bigotimes_{i \in I_e} V_i)$ is for each partition I_1, \ldots, I_e of $\{1, \ldots, d\}$ with at least one $|I_j| > 1$.

Ordinary case. For $d \ge 4$, a tensor in $V_1 \otimes \cdots \otimes V_d$ is odeco/udeco iff its *flattening* into $(\bigotimes_{i \in I_1} V_i) \otimes \cdots \otimes (\bigotimes_{i \in I_e} V_i)$ is for each partition I_1, \ldots, I_e of $\{1, \ldots, d\}$ with at least one $|I_i| > 1$.

Symmetric case. A symmetric tensor is symmetrically odeco/udeco iff it is odeco/udeco as an ordinary tensor.

Ordinary case. For $d \ge 4$, a tensor in $V_1 \otimes \cdots \otimes V_d$ is odeco/udeco iff its *flattening* into $(\bigotimes_{i \in I_1} V_i) \otimes \cdots \otimes (\bigotimes_{i \in I_e} V_i)$ is for each partition I_1, \ldots, I_e of $\{1, \ldots, d\}$ with at least one $|I_j| > 1$.

Symmetric case. A symmetric tensor is symmetrically odeco/udeco iff it is odeco/udeco as an ordinary tensor.

Alternating case. For $d \ge 4$, a tensor in Alt^dV is alternatingly odeco/udeco iff all its contractions into $Alt^{d-1}V$ are.

Ordinary case. For $d \ge 4$, a tensor in $V_1 \otimes \cdots \otimes V_d$ is odeco/udeco iff its *flattening* into $(\bigotimes_{i \in I_1} V_i) \otimes \cdots \otimes (\bigotimes_{i \in I_e} V_i)$ is for each partition I_1, \ldots, I_e of $\{1, \ldots, d\}$ with at least one $|I_j| > 1$.

Symmetric case. A symmetric tensor is symmetrically odeco/udeco iff it is odeco/udeco as an ordinary tensor.

Alternating case. For $d \ge 4$, a tensor in Alt^dV is alternatingly odeco/udeco iff all its contractions into $Alt^{d-1}V$ are.

This proves the main theorem, except ...

Main theorem. For $d \ge 3$ odeco/udeco tensors form a real-algebraic variety defined by polynomials of the following degrees:

	$ odeco(\mathbb{R}) $	$udeco(\mathbb{C})$
symmetric	2 (associativity)	3 (semi-associativity)
ordinary	2 (partial associativity)	3 (partial semi-asso.)
alternating	2 (Jacobi), 4 (Casimir)	3,4??

Main theorem. For $d \ge 3$ odeco/udeco tensors form a real-algebraic variety defined by polynomials of the following degrees:

	$odeco(\mathbb{R})$	$udeco(\mathbb{C})$
symmetric	2 (associativity)	3 (semi-associativity)
ordinary	2 (partial associativity)	3 (partial semi-asso.)
alternating	2 (Jacobi), 4 (Casimir)	3,4??

There is a 280-dimensional space of cubic equations for udeco tensors in $Alt^3\mathbb{C}^6$, one of which looks like:

$$t_{1,4,5}t_{2,3,4}\bar{t}_{1,3,5} - t_{1,3,4}t_{2,4,5}\bar{t}_{1,3,5} + t_{1,2,4}t_{3,4,5}\bar{t}_{1,3,5} + t_{1,4,6}t_{2,3,4}\bar{t}_{1,3,6} - t_{1,3,4}t_{2,4,6}\bar{t}_{1,3,6} + t_{1,2,4}t_{3,4,6}\bar{t}_{1,3,6} - t_{1,4,6}t_{2,4,5}\bar{t}_{1,5,6} + t_{1,4,5}t_{2,4,6}\bar{t}_{1,5,6} - t_{1,2,4}t_{4,5,6}\bar{t}_{1,5,6} + t_{2,4,6}t_{3,4,5}\bar{t}_{3,5,6} - t_{2,4,5}t_{3,4,6}\bar{t}_{3,5,6} + t_{2,3,4}t_{4,5,6}\bar{t}_{3,5,6} + t_{2,4,5}t_{4,5,6}\bar{t}_{3,5,6} + t_{2,4,5}t_{4,5,6}\bar{t}_{3,5,6} + t_{2,4,5}t_{4,5,6}\bar{t}_{3,5,6} + t_{2,4,5}t_{4,5,6}\bar{t}_{3,5,6} + t_{2,4,5}t_{4,5,6}\bar{t}_{3,5,6} + t_{2,4,5}t_{4,5}\bar{t}_{3,5,6} + t_{2,4,5}t_{4,5}\bar{t}_{3,5,6} + t_{2,4,5}t_{4,5}\bar{t}_{3,5,6} + t_{2,4,5}t_{4,5}\bar{t}_{3,5,6} + t_{2,4$$