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If m = n and A is symmetric, one can take ui = vi, so A =
∑

i uiuT
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If m = n and A is skew, then k = 2` and one can take vi = ui+` for
i ≤ ` and vi = −ui−` for i > `; then A =
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i=1(uivT

i − viuT
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Question. Which tensors admit orthogonal decompositions?
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T = e0 ⊗ e0 ⊗ e0 + e0 ⊗ e1 ⊗ e1 + e1 ⊗ e0 ⊗ e1 + e1 ⊗ e1 ⊗ e0
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Main theorem. For d ≥ 3 odeco/udeco tensors form a real-
algebraic variety defined by polynomials of the following degrees:

odeco (R) udeco (C)

ordinary

symmetric

alternating

2 (associativity)

2 (partial associativity)

2 (Jacobi), 4 (Casimir)

3 (semi-associativity)

3 (partial semi-asso.)

3,4??
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Proposition. For d ≥ 3 the orthogonal decomposition is unique.

Proof (ordinary case). Contracting T =
∑k

i=1 vi1 ⊗ · · · ⊗ vid with a
general tensor in V3 ⊗ · · · ⊗ Vd yields a two-tensor A with distinct
nonzero singular values. �

(This yields an algorithm for orthogonal decomposition—Kolda.)
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Conjecture (Robeva). This characterises ordinary odeco tensors.
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(xy)z = (
∑

i(ui|x)(ui|y)ui)z =
∑

i(ui|x)(ui|y)(ui|z)||ui||
2ui = x(yz)

⇐ may assume (V, ·) is simple. Pick x such that Mx : y 7→ xy is
nonzero. Then ker Mx is an ideal, so 0. Define y ∗ z := M−1

x (yz).
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�
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The proof is very similar, except now T ∈ U ⊗ V ⊗W gives rise to
a commutative algebra structure on U ⊕ V ⊕ W with U · V ⊆ W,
U ·U = {0}, etc., and we are interested only in homogeneous ideals.

Partial associativity means that (xy)z = x(yz) whenever x, y, z are
homogeneous and x, z belong to the same space (U,V,W).
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Again, T ∈ Alt3(V) gives a bilinear multiplication (x, y) 7→ xy.
Now we have xy = −yx and (xy|z) = −(xz|y).

Proposition. T is alternatingly odeco iff (V, ·) satisfies the Jacobi
identity and furthermore has the property that for each x, y, z ∈ V
the map C := MxM(yz) + MyM(zx) + MzM(xy) centralises all Mu.

Proof. ⇒: V decomposes as an orthogonal direct sum of copies of
(R3,×), for which the expression above is the Casimir element.

⇐: (V, ·) is then a compact Lie algebra. Their classification implies
that the only simple one for which C is central, is (R3,×). �
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V a complex vector space V s = {semilinear functions V → C}

The inner product gives a linear isomorphism V → V s, v 7→ (v|.).

T ∈ V⊗3 gives a bi-semilinear product V × V → V .

Proposition. T ∈ Sym3(V) is symmetrically udeco iff the product
is semi-associative: x(y(zu)) = z(y(xu)) and (xy)(zu) = (xu)(zy).

x
y

z u

= z
y

x u

We have a similar characterisation for ordinary three-tensors.
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Ordinary case. For d ≥ 4, a tensor in V1⊗ · · ·⊗Vd is odeco/udeco
iff its flattening into (
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I1, . . . , Ie of {1, . . . , d} with at least one |I j| > 1.

Symmetric case. A symmetric tensor is symmetrically odeco/

udeco iff it is odeco/udeco as an ordinary tensor.

Alternating case. For d ≥ 4, a tensor in AltdV is alternatingly
odeco/udeco iff all its contractions into Altd−1V are.

This proves the main theorem, except . . .
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odeco (R) udeco (C)

ordinary

symmetric

alternating

2 (associativity)

2 (partial associativity)

2 (Jacobi), 4 (Casimir)

3 (semi-associativity)

3 (partial semi-asso.)

3,4??

There is a 280-dimensional space of cubic equations for udeco
tensors in Alt3C6, one of which looks like:
t1,4,5t2,3,4 t̄1,3,5 − t1,3,4t2,4,5 t̄1,3,5 + t1,2,4t3,4,5 t̄1,3,5 + t1,4,6t2,3,4 t̄1,3,6 −
t1,3,4t2,4,6 t̄1,3,6 + t1,2,4t3,4,6 t̄1,3,6 − t1,4,6t2,4,5 t̄1,5,6 + t1,4,5t2,4,6 t̄1,5,6 −
t1,2,4t4,5,6 t̄1,5,6 + t2,4,6t3,4,5 t̄3,5,6 − t2,4,5t3,4,6 t̄3,5,6 + t2,3,4t4,5,6 t̄3,5,6
. . . but the algebra has no polynomial identities of degree 3 :-(
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