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Definition
K field
I ⊆ K [x1, ... , xn] ideal
 c(I) := min{number of terms in f | f ∈ I \ {0}}

Remarks
• highly dependent on coordinates
• various questions: computational, theoretical
• various techniques: geometry, commutative algebra

Example
c(I) = 1 iff I contains a monomial. Can be tested by
Gröbner basis computations.
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Theorem [Jensen-Kahle-Kathän, 2017]
There exists an algorithm that, on input I ⊆ Q[x1, ... , xn],
decides whether c(I) = 2.

Outline:
• Rule out c(I) = 1, pass to I ⊆ Q[x±1 , ... , x±n ].
• If xα − a · x0 ∈ I, then the tropical variety T (I) of I is in the
hyperplane ⊥ α; find a basis α1, ... , αm ∈ Zn of T (I)⊥.
• Look for binomials in Q[xα1 , ... , xαm ] ∩ I (Artinian case) via
membership problem in commutative matrix semigroups.

Example [Jensen-Kahle-Kathän, 2017]
For n ∈ Z≥1, In := ((x − z)2, nx − y − (n − 1)z) ⊆
Q[x , y , z] has c(In) = 2 but xn − yzn−1 is the lowest-degree
binomial in In.
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K algebraically closed
X ⊆ K n closed subvariety
I(X ) ⊆ K [x1, ... , xn] c(X ) := c(I(X ))

Theorem 1 [D-Kahle-Wiersig, 2021]
For a very general r -dimensional linear space X ⊆ K n we
have c(X ) = r + 1.

Theorem 2 [D-Kahle-Wiersig, 2021]
For X := {A ∈ K m×n | rk(A) ≤ r} we have c(X ) = (r + 1)!

Theorem 3 [D-Kahle-Wiersig, 2021]
For r even, X := {A | AT = −A, rk(A) ≤ r} ⊆ K m(m−1)/2

we have c(X ) = (r + 1)!!

. . . and in each case we know all f ∈ I(X ) with c(X ) terms.
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We know: for a very general r -space X ⊆ K n we have
c(X ) = r + 1. To show: c({rk(A) ≤ r}) = (r + 1)!

• Let f ∈ K [xij | i ∈ [m], j ∈ [n]] \ {0} vanish on all rank-≤ r
matrices.
• Expand f (A, xm) = ∑α∈Zn

≥0
fα(A)xα

m where A stands for the
first m− 1 rows and xm for the last.

• If an fα 6= 0 vanishes on rank-≤ r matrices, done.

• Each fα 6= 0 vanishes on rank-≤ (r − 1) matrices A, hence
has ≥ r ! terms.

• Take A ∈ K (m−1)×n very general of rank r . Then
fα(A) 6= 0 for all α with fα 6= 0. Theorem 1 applied to the row
space X of A yields that fα 6= 0 for at least (r + 1) distinct α.

�

• Induction: assume true for (m− 1, r ) and (m− 1, r − 1).
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Theorem 1
For a very general r -space X ⊆ K n we have c(X ) = r + 1.

• Take some d ∈ Z≥0, look at degree-d equations.

• For any F ∈ Gr(s, K [x1, ... , xn])d , the set
H(F ) := {X ∈ Gr(r , K n) | ∃[f ] ∈ PF : f |X = 0} is closed.

• May assume that X is outside all H(F ) for all F spanned
by monomials with H(F ) ( Gr(r , K n) (countable union).

• If then X ∈ H(F ) for a monomial F , then
F ∈ Z = {E ∈ Gr(s, K [x1, ... , xn]d ) | H(E) = Gr(r , K n)}, a
closed set on which GLn acts.
• By Borel’s fixed point theorem, Z contains a point F ′

stable under B (upper triangular matrices).
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• Then F ′ is spanned by s monomials, and preserved
under the linear maps xi 7→ xi + cxj with j < i .

• In characteristic zero, this means that if x β ∈ F ′ and
βi > 0 and j < i , then also x β−ei+ej ∈ F ′.

• So if βi > 0 for some i > r , then also x β−ei+e1 , ... , x β−ei+er

are in F ′, so |F | = |F ′| = s ≥ r + 1.
• Assume F ′ contains only monomials in x1, ... , xr . Then
there are linear spaces on which no polynomial in F ′ van-
ishes, e.g. K r × {0}n−r . Hence F ′ 6∈ Z , a contradiction.

• A similar argument works in characteristic p > 0.
�
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If f ∈ I ⊆ K [x1, ... , xn], then also:
• c · xα · f ∈ I for all c ∈ K ∗, α ∈ Zn

≥0
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For r ≥ 2, the only (r + 1)-term polynomials that vanish on
a very general r -space X ⊆ K n are c · xα · `pe

where ` is a
linear form with r + 1 terms.
Theorem 2’ [D-Kahle-Wiersig, 2021]
For r ≥ 2, the only (r + 1)!-term polynomials that vanish on
rank-r matrices are c · xα · detp

e
where det is some (r + 1)×

(r + 1)-minor.

Theorem 3’. (r + 2)-Pfaffians in the skew-symmetric case.
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Consider
Z = {F ∈ Gr(r + 1, K [x1, ... , xn]d ) |

∀X ∈ Gr(r , K n)∃[f ] ∈ PF : f |X = 0}

Seen before: if X is very general and I(X ) contains an r + 1-
term polynomial f , then the terms of f span an F ∈ Z .

Then for any g ∈ GLn, F ′ := in<gF ∈ Z for any monomial
order < with x1 > ... > xn; this is a B-stable point in GLn · F .

For g ∈ GLn sufficiently general, F ′ is constant, called
gin<F , the generic initial space of F .

Have seen: gin<F is not contained in K [x1, ... , xr ], and in
characteristic zero, gin<F = xd−1

1 · 〈x1, ... , xr+1〉.
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Theorem [Fløystad, 1999]
If s ≥ 3, char K = 0 and a subspace F ⊆ K [x1, ... , xn]d
satisfies gin<revlex

F = xd−1
1 · 〈x1, ... , xs〉, then F = f ·

〈`1, ... , `s〉 for some f ∈ K [x1, ... , xn]d−1 and some linear
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Definition
reverse lexicographic order <revlex defined by x β <revlex xα

if the largest i with αi 6= βi satisfies αi < βi .

Theorem [Fløystad, 1999]
If s ≥ 3, char K = 0 and a subspace F ⊆ K [x1, ... , xn]d
satisfies gin<revlex

F = xd−1
1 · 〈x1, ... , xs〉, then F = f ·

〈`1, ... , `s〉 for some f ∈ K [x1, ... , xn]d−1 and some linear
forms `1, ... , `s.

So xd
1 > xd−1

1 x2 > xd−2
1 x2

2 > ... > xd
2 > xd−1

1 x3 >

xd−2
1 x2x3 > ... > xd−1

2 x3 > xd−2
1 x2

3 > ... for >=>revlex

We have proved a characteristic-p analogue of this, with
pe-th powers of linear forms.
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Definition
For a family of nonzero polynomials S ⊆ K [x1, ... , xn], a hit-
ting set generator is a polynomial map g : K m → K n such
that f ◦ g ∈ K [y1, ... , ym] \ {0} for all f ∈ S.

One wants m small compared to n and deg(g) small.

Observation [Robert Andrews]
For S = {polynomials with ≤ t terms}, choose r such that
(r + 1)! ≥ t , Theorem 2 gives a degree-two hitting set gen-
erator g : K

√
n×r × K r×

√
n → K

√
n×
√

n = K n, (A, B) 7→ AB.

The resulting m = c ·
√

n · log(t)/ log(log(t)) is near optimal.

Thank you!
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