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| C K|Xq,..., Xp] ideal

~» ¢(I) := min{number of termsin f | f € [\ {0}}

Example
c(/) = 1 iff I contains a monomial. Can be tested by
Grobner basis computations.

Remarks

e highly dependent on coordinates

e various questions: computational, theoretical

e various techniques: geometry, commutative algebra



The curious case of ¢(/) = 2 3

Example [Jensen-Kahle-Kathan, 2017]
For n € Z=q, In = (x—2)%nx—-y—(n—1)z) C

Qlx, y, z] has ¢(Ip) = 2 but x" — yz"~1 is the lowest-degree
binomial in /,.
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The curious case of ¢(/) = 2 3

Example [Jensen-Kahle-Kathan, 2017]
For n € Zsq, In == (x—=2)%nx—-y—(n—1)z) C

Qlx, y, z] has ¢(Ip) = 2 but x" — yz"~1 is the lowest-degree
binomial in /,.

Theorem [Jensen-Kahle-Kathan, 2017]
There exists an algorithm that, on input I C Q|xq, ..., Xn],
decides whether ¢(/) = 2.

Outline:

e Rule out ¢(/) = 1, pass to | C Q[x{, ..., Xi -

o If x* —a-x° ¢ I, then the tropical variety T(/) of /is in the
hyperplane L «; find a basis a1, ..., am € Z" of T(/)=.

e Look for binomials in Q[x*1, ..., x*m| N | (Artinian case) via
membership problem in commutative matrix semigroups.
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Our results ..

K algebraically closed
X C K" closed subvariety
I(X) C K[Xq,..., Xn| ~ c(X) :=c(/(X))

Theorem 1 [D-Kahle-Wiersig, 2021]
For a very general r-dimensional linear space X C K" we
have ¢(X) =r+1.

Theorem 2 [D-Kahle-Wiersig, 2021]
For X .= {Aec K™ |rk(A) <r} wehave c(X)=(r+1)!

Theorem 3 [D-Kahle-Wiersig, 2021]
For reven, X := {A| AT = —A,rk(A) < r} C Kmim=1)/2
we have ¢(X) = (r+1)!!

...and in each case we know all f € I(X) with ¢(X) terms.



Theorem 1 = Theorem 2 5.

We know: for a very general r-space X C K" we have
c(X)=r+1.Toshow: c({rk(A) <r})=(r+1)!

e Induction: assume true for (m—1,r)and (m—1,r—1).
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Theorem 1 = Theorem 2 5.

We know: for a very general r-space X C K" we have
c(X)=r+1.Toshow: c({rk(A) <r})=(r+1)!
e Induction: assume true for (m—1,r)and (m—1,r—1).

eletfc Klx;| i€ |m|je [n]]\{0} vanishon all rank-< r
matrices.

e Expand f(A, xm) = ZaEZ’; ; fv (A) x5 where A stands for the

first m — 1 rows and xp, for the last.

e Each f, # 0 vanishes on rank-< (r — 1) matrices A, hence
has > r! terms.

e If an f, # 0 vanishes on rank-< r matrices, done.

o Take A € K(M=1)xn yery general of rank r. Then
fx(A) # 0 for all & with f, # 0. Theorem 1 applied to the row
space X of Ayields that f, # 0 for at least (r + 1) distinct a.
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Theorem 1
For a very general r-space X C K" we have ¢(X) =r + 1.

e Take some d € Z~(, look at degree-d equations.

e Forany F € Gr(s,K|Xq, ..., Xn|) 4, the set

H(F):={X € Gr(r,K") | d[f] € PF : f|x = 0} is closed.
e May assume that X is outside all H(F) for all F spanned
by monomials with H(F) C Gr(r, K") (countable union).

e If then X € H(F) for a monomial F, then
FeZ={EeGr(s,K|X1,...,Xnlq) | HLE) = Gr(r,K™")}, a
closed set on which GL, acts.

e By Borel’s fixed point theorem, Z contains a point F’
stable under B (upper triangular matrices).




Proof of Theorem 1, continued
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under the linear maps x; — X; + cx; with j < /.
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Proof of Theorem 1, continued 7.

e Then F’ is spanned by s monomials, and preserved
under the linear maps x; — X; + cx; with j < /.

e In characteristic zero, this means that if x? € F’ and

B; > 0andj < i, then also xP~¢7% ¢ F'.

e Soif B; > 0forsome i > r,then also xP—€+e1 _  xP-eiter
arein F',so |F|=|F'|=s>r+1.

e Assume F’ contains only monomials in xq,...,x,. Then

there are linear spaces on which no polynomial in F’ van-
ishes, e.g. K" x {0}"~". Hence F’ ¢ Z, a contradiction.

e A similar argument works in characteristic p > 0.
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Characterisation of equality 5

If fe I C K|xq,..., Xn], then also:
ec-x"-felforallce K*,a € Z7,,
e fP € | where p is the char. exp. of K.

and these operations preserve the number of terms.

Theorem 1’ [D-Kahle-Wiersig, 2021]
For r > 2, the only (r + 1)-term polynomials that vanish on

a very general r-space X C K" are c- x* - ¢P° where / is a
linear form with r + 1 terms.

Theorem 2’ [D-Kahle-Wiersig, 2021]
For r > 2, the only (r + 1)!-term polynomials that vanish on
rank-r matrices are c- x* - det®” where det is some (r4+1) x
(r+1)-minor.

Theorem 3. (r + 2)-Pfaffians in the skew-symmetric case.
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Proof idea g

Consider
/ = {FE GI’(f—I—1,K[X1,...,Xn]d) ‘
VX € Gr(r, K”)El[f] c PF: f]x — O}

Seen before: if X is very general and /( X) contains an r + 1-
term polynomial f, then the terms of f spanan F € Z.

Then for any g € GL,, F' := in.gF € Z for any monomial
order < with xy > ... > Xp; this is a B-stable point in GL, - F.

For g € GL, sufficiently general, F’ is constant, called
gin_ F, the generic initial space of F.

Have seen: gin_F is not contained in K|x, ..., X;], and in

characteristic zero, gin_ F = x7 - (xy, ..., X-41).
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Definition
reverse lexicographic order < qyiex defined by xP < oyiex X*

if the largest i with a; #= B; satisfies a; < f;.
d d—1 d—2,.2 d d—1
SO X{ > X7 'Xo > X{ X5 > ...> X5 >X{ Xz >

X1d_2X2X3 > > Xg_1X3 > X1d_2X§ > ... for >=>gyex
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Definition
reverse lexicographic order < qyiex defined by xP < oyiex X*
if the largest i with a; #= B; satisfies a; < f;.

Sox¢ > x9 x> xI72x2 > . > xd > x9 7 xg >

X1d_2X2X3 > > Xg_1X3 > X1d_2X§ > ... for >=>gyex

Theorem [Floystad, 1999]

If s > 3, charK = 0 and a subspace F C K|X1,..., Xn]qg
satisfies gin<revlexF — )(1d_1 : <x1,___,xs>, then F = f.

(l1,...,0s) for some f € K|xq,...,Xn]4q—1 and some linear
forms 44, ..., 4s.
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Definition
reverse lexicographic order < qyiex defined by xP < oyiex X*
if the largest i with a; #= B; satisfies a; < f;.

d-2,2 d—1

Sox¢ > x9 x> xI72x2 > . > xd > x9 7 xg >
d—1 d—2,2

X1d_2X2X3 > > Xy X3 > Xy X3 > for >=>oyjex

Theorem [Floystad, 1999]
If s > 3, charK = 0 and a subspace F C K|X1,..., Xn]qg

satisfies gin<revlexF — )(1d_1 : <x1,___,xs>, then F = f.
(l1,...,0s) for some f € K|xq,...,Xn]4q—1 and some linear
forms 44, ..., 4s.

We have proved a characteristic-p analogue of this, with
p®-th powers of linear forms.
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Definition

For a family of nonzero polynomials S C K|xq, ..., Xn|, a hit-
ting set generator is a polynomial map g : K™ — K" such
that fog € K|yq,...,ym| \ {0} forall f € S.

One wants m small compared to n and deg(g) small.

Observation [Robert Andrews]
For S = {polynomials with < t terms}, choose r such that
(r+1)! > t, Theorem 2 gives a degree-two hitting set gen-

erator g : KVM<I x KM<Vn _ KVn=<vn — Kn (A B) — AB.
The resulting m = ¢-/n-log(t)/ log(log(t)) is near optimal.

Thank you!
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