

```
K field I \subseteq K[x_1, ..., x_n] ideal
```

 $\leadsto c(I) := \min\{\text{number of terms in } f \mid f \in I \setminus \{0\}\}$

2 - 1

The setting

Definition

```
K field I \subseteq K[x_1, ..., x_n] ideal \leadsto c(I) := \min\{\text{number of terms in } f \mid f \in I \setminus \{0\}\}
```

Example

c(I) = 1 iff I contains a monomial. Can be tested by Gröbner basis computations.

```
K field I \subseteq K[x_1, ..., x_n] ideal \leadsto c(I) := \min\{\text{number of terms in } f \mid f \in I \setminus \{0\}\}
```

Example

c(I) = 1 iff I contains a monomial. Can be tested by Gröbner basis computations.

Remarks

- highly dependent on coordinates
- various questions: computational, theoretical
- various techniques: geometry, commutative algebra

The curious case of c(I) = 2

Example

[Jensen-Kahle-Kathän, 2017]

For $n \in \mathbb{Z}_{\geq 1}$, $I_n := ((x-z)^2, nx - y - (n-1)z) \subseteq \mathbb{Q}[x, y, z]$ has $c(I_n) = 2$ but $x^n - yz^{n-1}$ is the lowest-degree binomial in I_n .

The curious case of c(I) = 2

Example

[Jensen-Kahle-Kathän, 2017]

For $n \in \mathbb{Z}_{\geq 1}$, $I_n := ((x-z)^2, nx - y - (n-1)z) \subseteq \mathbb{Q}[x, y, z]$ has $c(I_n) = 2$ but $x^n - yz^{n-1}$ is the lowest-degree binomial in I_n .

Theorem

[Jensen-Kahle-Kathän, 2017]

There exists an algorithm that, on input $I \subseteq \mathbb{Q}[x_1, ..., x_n]$, decides whether c(I) = 2.

Example

[Jensen-Kahle-Kathän, 2017]

For $n \in \mathbb{Z}_{\geq 1}$, $I_n := ((x-z)^2, nx - y - (n-1)z) \subseteq \mathbb{Q}[x, y, z]$ has $c(I_n) = 2$ but $x^n - yz^{n-1}$ is the lowest-degree binomial in I_n .

Theorem

[Jensen-Kahle-Kathän, 2017]

There exists an algorithm that, on input $I \subseteq \mathbb{Q}[x_1, ..., x_n]$, decides whether c(I) = 2.

Outline:

- Rule out c(I) = 1, pass to $I \subseteq \mathbb{Q}[x_1^{\pm}, \dots, x_n^{\pm}]$.
- If $x^{\alpha} a \cdot x^{0} \in I$, then the tropical variety T(I) of I is in the hyperplane $\perp \alpha$; find a basis $\alpha_{1}, \dots, \alpha_{m} \in \mathbb{Z}^{n}$ of $T(I)^{\perp}$.
- Look for binomials in $\mathbb{Q}[x^{\alpha_1}, ..., x^{\alpha_m}] \cap I$ (Artinian case) via membership problem in commutative matrix semigroups.

K algebraically closed

 $X \subseteq K^n$ closed subvariety

$$I(X) \subseteq K[x_1, ..., x_n] \leadsto c(X) := c(I(X))$$

Our results

K algebraically closed

 $X \subseteq K^n$ closed subvariety

$$I(X) \subseteq K[x_1, ..., x_n] \leadsto c(X) := c(I(X))$$

Theorem 1

[D-Kahle-Wiersig, 2021]

For a very general r-dimensional *linear space* $X \subseteq K^n$ we have c(X) = r + 1.

Our results

K algebraically closed

 $X \subseteq K^n$ closed subvariety

$$I(X) \subseteq K[x_1, ..., x_n] \leadsto c(X) := c(I(X))$$

Theorem 1

[D-Kahle-Wiersig, 2021]

For a very general r-dimensional *linear space* $X \subseteq K^n$ we have c(X) = r + 1.

Theorem 2

[D-Kahle-Wiersig, 2021]

For
$$X := \{A \in K^{m \times n} \mid \operatorname{rk}(A) \leq r\}$$
 we have $c(X) = (r+1)!$

K algebraically closed

 $X \subseteq K^n$ closed subvariety

$$I(X) \subseteq K[x_1, ..., x_n] \leadsto c(X) := c(I(X))$$

Theorem 1

[D-Kahle-Wiersig, 2021]

For a very general r-dimensional *linear space* $X \subseteq K^n$ we have c(X) = r + 1.

Theorem 2

[D-Kahle-Wiersig, 2021]

For
$$X := \{A \in K^{m \times n} \mid rk(A) \le r\}$$
 we have $c(X) = (r + 1)!$

Theorem 3

[D-Kahle-Wiersig, 2021]

For r even, $X := \{A \mid A^T = -A, \text{rk}(A) \le r\} \subseteq K^{m(m-1)/2}$ we have c(X) = (r+1)!!

K algebraically closed

 $X \subseteq K^n$ closed subvariety

$$I(X) \subseteq K[x_1, ..., x_n] \leadsto c(X) := c(I(X))$$

Theorem 1

[D-Kahle-Wiersig, 2021]

For a very general r-dimensional *linear space* $X \subseteq K^n$ we have c(X) = r + 1.

Theorem 2

[D-Kahle-Wiersig, 2021]

For
$$X := \{ A \in K^{m \times n} \mid \text{rk}(A) \le r \}$$
 we have $c(X) = (r + 1)!$

Theorem 3

[D-Kahle-Wiersig, 2021]

For r even, $X := \{A \mid A^T = -A, \text{rk}(\bar{A}) \leq r\} \subseteq K^{m(m-1)/2}$ we have c(X) = (r+1)!!

... and in each case we know all $f \in I(X)$ with c(X) terms.

• Induction: assume true for (m-1,r) and (m-1,r-1).

- Induction: assume true for (m-1,r) and (m-1,r-1).
- Let $f \in K[x_{ij} \mid i \in [m], j \in [n]] \setminus \{0\}$ vanish on all rank- $\leq r$ matrices.

- Induction: assume true for (m-1,r) and (m-1,r-1).
- Let $f \in K[x_{ij} \mid i \in [m], j \in [n]] \setminus \{0\}$ vanish on all rank- $\leq r$ matrices.
- Expand $f(A, x_m) = \sum_{\alpha \in \mathbb{Z}_{\geq 0}^n} f_{\alpha}(A) x_m^{\alpha}$ where A stands for the first m-1 rows and x_m for the last.

- Induction: assume true for (m-1,r) and (m-1,r-1).
- Let $f \in K[x_{ij} \mid i \in [m], j \in [n]] \setminus \{0\}$ vanish on all rank- $\leq r$ matrices.
- Expand $f(A, x_m) = \sum_{\alpha \in \mathbb{Z}_{\geq 0}^n} f_{\alpha}(A) x_m^{\alpha}$ where A stands for the first m-1 rows and x_m for the last.
- Each $f_{\alpha} \neq 0$ vanishes on rank- $\leq (r-1)$ matrices A, hence has > r! terms.

- Induction: assume true for (m-1,r) and (m-1,r-1).
- Let $f \in K[x_{ij} \mid i \in [m], j \in [n]] \setminus \{0\}$ vanish on all rank- $\leq r$ matrices.
- Expand $f(A, x_m) = \sum_{\alpha \in \mathbb{Z}_{\geq 0}^n} f_{\alpha}(A) x_m^{\alpha}$ where A stands for the first m-1 rows and x_m for the last.
- Each $f_{\alpha} \neq 0$ vanishes on rank- $\leq (r-1)$ matrices A, hence has > r! terms.
- If an $f_{\alpha} \neq 0$ vanishes on rank- $\leq r$ matrices, done.

- Induction: assume true for (m-1,r) and (m-1,r-1).
- Let $f \in K[x_{ij} \mid i \in [m], j \in [n]] \setminus \{0\}$ vanish on all rank- $\leq r$ matrices.
- Expand $f(A, x_m) = \sum_{\alpha \in \mathbb{Z}_{\geq 0}^n} f_{\alpha}(A) x_m^{\alpha}$ where A stands for the first m-1 rows and x_m for the last.
- Each $f_{\alpha} \neq 0$ vanishes on rank- $\leq (r-1)$ matrices A, hence has > r! terms.
- If an $f_{\alpha} \neq 0$ vanishes on rank- $\leq r$ matrices, done.
- Take $A \in K^{(m-1)\times n}$ very general of rank r. Then $f_{\alpha}(A) \neq 0$ for all α with $f_{\alpha} \neq 0$. Theorem 1 applied to the row space X of A yields that $f_{\alpha} \neq 0$ for at least (r+1) distinct α .

For a very general *r*-space $X \subseteq K^n$ we have c(X) = r + 1.

• Take some $d \in \mathbb{Z}_{>0}$, look at degree-d equations.

- Take some $d \in \mathbb{Z}_{>0}$, look at degree-d equations.
- For any $F \in Gr(s, K[x_1, ..., x_n])_d$, the set $H(F) := \{X \in Gr(r, K^n) \mid \exists [f] \in \mathbb{P}F : f|_X = 0\}$ is closed.

- Take some $d \in \mathbb{Z}_{>0}$, look at degree-d equations.
- For any $F \in Gr(s, K[x_1, ..., x_n])_d$, the set $H(F) := \{X \in Gr(r, K^n) \mid \exists [f] \in \mathbb{P}F : f|_X = 0\}$ is closed.
- May assume that X is outside all H(F) for all F spanned by monomials with $H(F) \subseteq Gr(r, K^n)$ (countable union).

- Take some $d \in \mathbb{Z}_{>0}$, look at degree-d equations.
- For any $F \in Gr(s, K[x_1, ..., x_n])_d$, the set $H(F) := \{X \in Gr(r, K^n) \mid \exists [f] \in \mathbb{P}F : f|_X = 0\}$ is closed.
- May assume that X is outside all H(F) for all F spanned by monomials with $H(F) \subseteq Gr(r, K^n)$ (countable union).
- If then $X \in H(F)$ for a monomial F, then $F \in Z = \{E \in Gr(s, K[x_1, ..., x_n]_d) \mid H(E) = Gr(r, K^n)\}$, a closed set on which GL_n acts.

- Take some $d \in \mathbb{Z}_{>0}$, look at degree-d equations.
- For any $F \in Gr(s, K[x_1, ..., x_n])_d$, the set $H(F) := \{X \in Gr(r, K^n) \mid \exists [f] \in \mathbb{P}F : f|_X = 0\}$ is closed.
- May assume that X is outside all H(F) for all F spanned by monomials with $H(F) \subseteq Gr(r, K^n)$ (countable union).
- If then $X \in H(F)$ for a monomial F, then $F \in Z = \{E \in Gr(s, K[x_1, ..., x_n]_d) \mid H(E) = Gr(r, K^n)\}$, a closed set on which GL_n acts.
- By Borel's fixed point theorem, Z contains a point F' stable under B (upper triangular matrices).

• Then F' is spanned by s monomials, and preserved under the linear maps $x_i \mapsto x_i + cx_j$ with j < i.

Proof of Theorem 1, continued

- Then F' is spanned by s monomials, and preserved under the linear maps $x_i \mapsto x_i + cx_j$ with j < i.
- In characteristic zero, this means that if $x^{\beta} \in F'$ and $\beta_i > 0$ and j < i, then also $x^{\beta e_i + e_j} \in F'$.

- Then F' is spanned by s monomials, and preserved under the linear maps $x_i \mapsto x_i + cx_j$ with j < i.
- In characteristic zero, this means that if $x^{\beta} \in F'$ and $\beta_i > 0$ and j < i, then also $x^{\beta e_i + e_j} \in F'$.
- So if $\beta_i > 0$ for some i > r, then also $x^{\beta e_i + e_1}, \dots, x^{\beta e_i + e_r}$ are in F', so $|F| = |F'| = s \ge r + 1$.

- Then F' is spanned by s monomials, and preserved under the linear maps $x_i \mapsto x_i + cx_j$ with j < i.
- In characteristic zero, this means that if $x^{\beta} \in F'$ and $\beta_i > 0$ and j < i, then also $x^{\beta e_i + e_j} \in F'$.
- So if $\beta_i > 0$ for some i > r, then also $x^{\beta e_i + e_1}, \dots, x^{\beta e_i + e_r}$ are in F', so $|F| = |F'| = s \ge r + 1$.
- Assume F' contains only monomials in $x_1, ..., x_r$. Then there are linear spaces on which no polynomial in F' vanishes, e.g. $K^r \times \{0\}^{n-r}$. Hence $F' \notin Z$, a contradiction.

- Then F' is spanned by s monomials, and preserved under the linear maps $x_i \mapsto x_i + cx_j$ with j < i.
- In characteristic zero, this means that if $x^{\beta} \in F'$ and $\beta_i > 0$ and j < i, then also $x^{\beta e_i + e_j} \in F'$.
- So if $\beta_i > 0$ for some i > r, then also $x^{\beta e_i + e_1}, \dots, x^{\beta e_i + e_r}$ are in F', so $|F| = |F'| = s \ge r + 1$.
- Assume F' contains only monomials in $x_1, ..., x_r$. Then there are linear spaces on which no polynomial in F' vanishes, e.g. $K^r \times \{0\}^{n-r}$. Hence $F' \notin Z$, a contradiction.
- A similar argument works in characteristic p > 0.

Characterisation of equality

If $f \in I \subseteq K[x_1, ..., x_n]$, then also:

• $c \cdot x^{\alpha} \cdot f \in I$ for all $c \in K^*$, $\alpha \in \mathbb{Z}_{\geq 0}^n$

Characterisation of equality

If $f \in I \subseteq K[x_1, ..., x_n]$, then also:

- $c \cdot x^{\alpha} \cdot f \in I$ for all $c \in K^*$, $\alpha \in \mathbb{Z}_{>0}^n$
- $f^p \in I$ where p is the char. exp. of K.

and these operations preserve the number of terms.

Characterisation of equality

If $f \in I \subseteq K[x_1, ..., x_n]$, then also:

- $c \cdot x^{\alpha} \cdot f \in I$ for all $c \in K^*$, $\alpha \in \mathbb{Z}_{>0}^n$
- $f^p \in I$ where p is the char. exp. of K.

and these operations preserve the number of terms.

Theorem 1'

[D-Kahle-Wiersig, 2021]

For $r \ge 2$, the only (r+1)-term polynomials that vanish on a very general r-space $X \subseteq K^n$ are $c \cdot x^{\alpha} \cdot \ell^{p^e}$ where ℓ is a linear form with r+1 terms.

If $f \in I \subseteq K[x_1, ..., x_n]$, then also:

- $c \cdot x^{\alpha} \cdot f \in I$ for all $c \in K^*$, $\alpha \in \mathbb{Z}_{>0}^n$
- $f^p \in I$ where p is the char. exp. of K.

and these operations preserve the number of terms.

Theorem 1'

[D-Kahle-Wiersig, 2021]

For $r \ge 2$, the only (r+1)-term polynomials that vanish on a very general r-space $X \subseteq K^n$ are $c \cdot x^{\alpha} \cdot \ell^{p^e}$ where ℓ is a linear form with r+1 terms.

Theorem 2'

[D-Kahle-Wiersig, 2021]

For $r \ge 2$, the only (r+1)!-term polynomials that vanish on rank-r matrices are $c \cdot x^{\alpha} \cdot \det^{p^e}$ where det is some $(r+1) \times (r+1)$ -minor.

If $f \in I \subseteq K[x_1, ..., x_n]$, then also:

- $c \cdot x^{\alpha} \cdot f \in I$ for all $c \in K^*$, $\alpha \in \mathbb{Z}_{>0}^n$
- $f^p \in I$ where p is the char. exp. of K.

and these operations preserve the number of terms.

Theorem 1'

[D-Kahle-Wiersig, 2021]

For $r \ge 2$, the only (r+1)-term polynomials that vanish on a very general r-space $X \subseteq K^n$ are $c \cdot x^{\alpha} \cdot \ell^{p^e}$ where ℓ is a linear form with r+1 terms.

Theorem 2'

[D-Kahle-Wiersig, 2021]

For $r \ge 2$, the only (r+1)!-term polynomials that vanish on rank-r matrices are $c \cdot x^{\alpha} \cdot \det^{p^e}$ where det is some $(r+1) \times (r+1)$ -minor.

Theorem 3'. (r+2)-Pfaffians in the skew-symmetric case.

$$Z = \{ F \in \operatorname{Gr}(r+1, K[x_1, ..., x_n]_d) \mid \\ \forall X \in \operatorname{Gr}(r, K^n) \exists [f] \in \mathbb{P}F : f|_X = 0 \}$$

$$Z = \{ F \in \operatorname{Gr}(r+1, K[x_1, ..., x_n]_d) \mid \\ \forall X \in \operatorname{Gr}(r, K^n) \exists [f] \in \mathbb{P}F : f|_X = 0 \}$$

Seen before: if X is very general and I(X) contains an r + 1-term polynomial f, then the terms of f span an $F \in Z$.

$$Z = \{ F \in \operatorname{Gr}(r+1, K[x_1, ..., x_n]_d) \mid \\ \forall X \in \operatorname{Gr}(r, K^n) \exists [f] \in \mathbb{P}F : f|_X = 0 \}$$

Seen before: if X is very general and I(X) contains an r+1-term polynomial f, then the terms of f span an $F \in Z$.

Then for any $g \in GL_n$, $F' := in_{<}gF \in Z$ for any monomial order < with $x_1 > ... > x_n$; this is a B-stable point in $\overline{GL_n \cdot F}$.

$$Z = \{ F \in \operatorname{Gr}(r+1, K[x_1, ..., x_n]_d) \mid \\ \forall X \in \operatorname{Gr}(r, K^n) \exists [f] \in \mathbb{P}F : f|_X = 0 \}$$

Seen before: if X is very general and I(X) contains an r + 1-term polynomial f, then the terms of f span an $F \in Z$.

Then for any $g \in GL_n$, $F' := in_{<}gF \in Z$ for any monomial order < with $x_1 > ... > x_n$; this is a B-stable point in $\overline{GL_n \cdot F}$.

For $g \in GL_n$ sufficiently general, F' is constant, called $gin_{<}F$, the *generic initial space* of F.

$$Z = \{ F \in \operatorname{Gr}(r+1, K[x_1, ..., x_n]_d) \mid \\ \forall X \in \operatorname{Gr}(r, K^n) \exists [f] \in \mathbb{P}F : f|_X = 0 \}$$

Seen before: if X is very general and I(X) contains an r + 1-term polynomial f, then the terms of f span an $F \in Z$.

Then for any $g \in GL_n$, $F' := in_{<}gF \in Z$ for any monomial order < with $x_1 > ... > x_n$; this is a B-stable point in $\overline{GL_n \cdot F}$.

For $g \in GL_n$ sufficiently general, F' is constant, called $gin_{<}F$, the *generic initial space* of F.

Have seen: $gin_{<}F$ is *not* contained in $K[x_1, ..., x_r]$, and in characteristic zero, $gin_{<}F = x_1^{d-1} \cdot \langle x_1, ..., x_{r+1} \rangle$.

Proof idea 10-1

Definition

reverse lexicographic order $<_{\text{revlex}}$ defined by $x^{\beta} <_{\text{revlex}} x^{\alpha}$ if the largest i with $\alpha_i \neq \beta_i$ satisfies $\alpha_i < \beta_i$.

reverse lexicographic order $<_{\text{revlex}}$ defined by $x^{\beta} <_{\text{revlex}} x^{\alpha}$ if the largest i with $\alpha_i \neq \beta_i$ satisfies $\alpha_i < \beta_i$.

So
$$x_1^d > x_1^{d-1}x_2 > x_1^{d-2}x_2^2 > \dots > x_2^d > x_1^{d-1}x_3 > x_1^{d-2}x_2x_3 > \dots > x_2^{d-1}x_3 > x_1^{d-2}x_2^2 > \dots > x_2^{d-1}x_3 > x_1^{d-2}x_2^2 > \dots > x_2^{d-1}x_3 > x_1^{d-2}x_2^2 > \dots$$
 for $x_1^{d-2}x_2^2 > x_1^{d-2}x_2^2 > \dots$

reverse lexicographic order $<_{\text{revlex}}$ defined by $x^{\beta} <_{\text{revlex}} x^{\alpha}$ if the largest i with $\alpha_i \neq \beta_i$ satisfies $\alpha_i < \beta_i$.

So
$$x_1^d > x_1^{d-1}x_2 > x_1^{d-2}x_2^2 > \dots > x_2^d > x_1^{d-1}x_3 > x_1^{d-2}x_2x_3 > \dots > x_2^{d-1}x_3 > x_1^{d-2}x_2^2 > \dots$$
 for $x_1^{d-2}x_2 > x_1^{d-2}x_2 > \dots > x_2^{d-1}x_3 > x_1^{d-2}x_2^2 > \dots$ for $x_1^{d-2}x_2^2 > \dots > x_2^{d-1}x_3 > \dots > x_2^{d-1}x_3 > \dots$

Theorem

[Fløystad, 1999]

If $s \geq 3$, char K = 0 and a subspace $F \subseteq K[x_1, ..., x_n]_d$ satisfies $gin_{<_{revlex}}F = x_1^{d-1} \cdot \langle x_1, ..., x_s \rangle$, then $F = f \cdot \langle \ell_1, ..., \ell_s \rangle$ for some $f \in K[x_1, ..., x_n]_{d-1}$ and some linear forms $\ell_1, ..., \ell_s$.

reverse lexicographic order $<_{\text{revlex}}$ defined by $x^{\beta} <_{\text{revlex}} x^{\alpha}$ if the largest i with $\alpha_i \neq \beta_i$ satisfies $\alpha_i < \beta_i$.

So
$$x_1^d > x_1^{d-1}x_2 > x_1^{d-2}x_2^2 > \dots > x_2^d > x_1^{d-1}x_3 > x_1^{d-2}x_2x_3 > \dots > x_2^{d-1}x_3 > x_1^{d-2}x_2^2 > \dots$$
 for $x_1^{d-2}x_2x_3 > \dots > x_2^{d-1}x_3 > x_1^{d-2}x_2^2 > \dots$ for $x_1^{d-2}x_2^2 > \dots > x_2^{d-1}x_3 > \dots$

Theorem

[Fløystad, 1999]

If $s \geq 3$, char K = 0 and a subspace $F \subseteq K[x_1, ..., x_n]_d$ satisfies $gin_{<_{revlex}}F = x_1^{d-1} \cdot \langle x_1, ..., x_s \rangle$, then $F = f \cdot \langle \ell_1, ..., \ell_s \rangle$ for some $f \in K[x_1, ..., x_n]_{d-1}$ and some linear forms $\ell_1, ..., \ell_s$.

We have proved a characteristic-p analogue of this, with p^e -th powers of linear forms.

For a family of nonzero polynomials $S \subseteq K[x_1, ..., x_n]$, a *hitting set generator* is a polynomial map $g : K^m \to K^n$ such that $f \circ g \in K[y_1, ..., y_m] \setminus \{0\}$ for all $f \in S$.

For a family of nonzero polynomials $S \subseteq K[x_1, ..., x_n]$, a *hitting set generator* is a polynomial map $g : K^m \to K^n$ such that $f \circ g \in K[y_1, ..., y_m] \setminus \{0\}$ for all $f \in S$.

One wants m small compared to n and deg(g) small.

For a family of nonzero polynomials $S \subseteq K[x_1, ..., x_n]$, a *hitting set generator* is a polynomial map $g : K^m \to K^n$ such that $f \circ g \in K[y_1, ..., y_m] \setminus \{0\}$ for all $f \in S$.

One wants m small compared to n and deg(g) small.

Observation

[Robert Andrews]

For $S = \{\text{polynomials with} \leq t \text{ terms}\}$, choose r such that $(r+1)! \geq t$, Theorem 2 gives a degree-two hitting set generator $g: K^{\sqrt{n} \times r} \times K^{r \times \sqrt{n}} \to K^{\sqrt{n} \times \sqrt{n}} = K^n$, $(A, B) \mapsto AB$.

The resulting $m = c \cdot \sqrt{n} \cdot \log(t) / \log(\log(t))$ is near optimal.

For a family of nonzero polynomials $S \subseteq K[x_1, ..., x_n]$, a *hitting set generator* is a polynomial map $g : K^m \to K^n$ such that $f \circ g \in K[y_1, ..., y_m] \setminus \{0\}$ for all $f \in S$.

One wants m small compared to n and deg(g) small.

Observation

[Robert Andrews]

For $S = \{\text{polynomials with} \leq t \text{ terms}\}$, choose r such that $(r+1)! \geq t$, Theorem 2 gives a degree-two hitting set generator $g: K^{\sqrt{n} \times r} \times K^{r \times \sqrt{n}} \to K^{\sqrt{n} \times \sqrt{n}} = K^n$, $(A, B) \mapsto AB$.

The resulting $m = c \cdot \sqrt{n} \cdot \log(t) / \log(\log(t))$ is near optimal.

Thank you!