Finiteness of the *k*-factor model

Jan Draisma

A real-algebraic problem

Definition

 $F_{k,n}:=\{D+SS^T\mid D>0 \text{ diagonal,}S\in M_{n,k}(\mathbb{R})\}$ k-factor model with n observed variables

Observation

 $Y \in F_{k,n} \Rightarrow Y[I] \in F_{k,|I|}$ for all $I \subseteq \{1,\ldots,n\}$.

Question

 $\exists ? n_0 = n_0(k)$ such that for $n \ge n_0$: $Y \in F_{k,n} \Leftrightarrow Y[I] \in F_{k,n_0}$ for all $I, |I| = n_0$.

Theorem (Drton-Xiao 2008)

Yes for $k = 1 \ (n_0 = 4)$ and $k = 2 \ (n_0 = 6)$. Open in general.

The Gaussian k-factor model

Density

$$X_1,\ldots,X_n,Z_1,\ldots,Z_k$$
 jointly Gaussian, mean 0 $f_{X,Z}(x,z)=rac{1}{\sqrt{(2\pi)^{(n+k)}\det(\Sigma)}}\exp\left(-rac{1}{2}(x,z)\Sigma^{-1}(x,z)^T
ight)$

Conditions

- ullet positive definite; and
- the X_i ("observed") pairwise independent given Z_1, \ldots, Z_k ("hidden").

Projection to $M_n(\mathbb{R})$ gives parameter space $F_{k,n}$.

Ideal approach to model validation

Definition

 $\overline{F_{k,n}}\subseteq M_n(\mathbb{C})$ Zariski closure

Observation

 $Y \in \overline{F_{k,n}} \Rightarrow Y[I] \in \overline{F_{k,|I|}} \text{ for all } I \subseteq \{1,\ldots,n\}.$

Main Theorem

 $\exists n_1 = n_1(k)$ such that for $n \geq n_1$:

$$Y \in \overline{F_{k,n}} \Leftrightarrow Y[I] \in \overline{F_{k,n_1}} \text{ for all } I, |I| = n_1.$$

Disclaimer

- No upper bound on n_1 yet, except $n_1(1) = 4$ (Loera-Sturmfels-Thomas 1995).
- Only set-theoretically so far.

TU/e Technische Universiteit Eindhoven University of Technology

Definition

G group acting on ring R R is G-Noetherian if every chain $I_1 \subseteq I_2 \subseteq \ldots$ of G-stable ideals stabilises.

Theorem (Aschenbrenner-Hillar-Sullivant 2007)

 $\mathbb{C}[x_{ij} \mid i=1,\ldots,k; j\in\mathbb{N}]$ is $\mathrm{Sym}(\mathbb{N})$ -Noetherian.

Non-example

 $\mathbb{C}[y_{ij} \mid i, j \in \mathbb{N}]$ is not $\mathrm{Sym}(\mathbb{N})$ -Noetherian.

Methods, continued

Definition

G group acting on topological space X X is G-Noetherian if every chain $X_1 \supseteq X_2 \supseteq \ldots$ of G-stable closed subsets stabilises.

Important lemma

 $H \subseteq G$ and X an H-Noetherian space $\Rightarrow G \times_H X$ a G-Noetherian space.

Reformulation

Theorem

$$ilde{F}_{k,\mathbb{N}} := \{Y \in M_{\mathbb{N},\mathbb{N}}(\mathbb{C}) \mid \det(Y[I,J]) = 0$$
 for all disjoint $I,J \subseteq \mathbb{N}$, $|I| = |J| = k+1\}$

is a $Sym(\mathbb{N})$ -Noetherian topological space.

Observation

This implies the Main Theorem:

- ullet $ilde{F}_{k,\mathbb{N}}$ is cut out by one $\mathrm{Sym}(\mathbb{N})$ -orbit of equations;
- $\overline{F_{k,\mathbb{N}}}$ is a $\mathrm{Sym}(\mathbb{N})$ -stable closed subset of $\widetilde{F}_{k,\mathbb{N}}$, hence cut out by finitely many further orbits of equations.

Proof sketch

Induction on k

- ullet $ilde{F}_{0,\mathbb{N}}$ consists of all diagonal matrices, statement follows from Aschenbrenner-Hillar.
- $F_{k,\mathbb{N}}\subseteq F_{k-1,\mathbb{N}}\cup Z$, where Z is again $\mathrm{Sym}(\mathbb{N})$ -Noetherian.

Construction of Z

 $Z \ni$ all elements of $\tilde{F}_{k,\mathbb{N}}$ having some invertible off-diagonal $k \times k$ -minor. First fix the position of this minor to $I = \{1, \dots, k\}$ and $J = \{k+1, \dots, 2k\}$; later move around with

 $\operatorname{Sym}(\mathbb{N})$.

Proof sketch, continued

Hillar-Sullivant (and Hilbert);

take Z the image of $\mathrm{Sym}(\mathbb{N}) \times_{\mathrm{Sym}(\mathbb{N} \setminus (I \cup J))} X$

Tule Technische Universiteit Eindhoven University of Technology

References

Arxiv

Draisma, keyword: finiteness, 2008 Drton-Sturmfels-Sullivant, keyword: factor, 2007

Technische Universiteit
Eindhoven
University of Technology