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Given a sequence X1, X2, X3, . . . , Xn, . . . of algebraic varieties, do
their equations look alike for n � 0?

Here, an algebraic variety is the solution set X to a system of poly-
nomial equations defined on a finite-dimensional vector space A.

Running example
An = {symetric n × n-matrices}; and
Xn = {matrices of rank at most 1} ⊆ A.

X2 is the solution set to x11x22 − x12x21 = 0.

Xn is the solution set to {xi jxkl − xilxk j = 0 | i , k, j , l}.

For all n ≥ 2, the equations for Xn are found from the equation for
X2 by applying symmetries of the form a 7→ gagT . (if char , 2)
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Observation
If π : Am → An is a linear map with π(Xm) ⊆ Xn, and if f is an
equation for Xn, then f ◦π is an equation for Xm of degree (≤) deg f .

Running example
a 7→ gagT (for m = n), taking a principal submatrix (m > n),
padding with zeroes (m < n).

“Equations pull back contravariantly along linear maps.”

General message
Often, the equations of finitely many varieties pull back to yield
sufficient equations for defining all varieties in the sequence.

In particular, this holds for varieties in polynomial functors!
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Polynomial functors P:
• behave like univariate polynomials;
• take as argument a finite-dimensional vector space V;
• return as value a finite-dimensional vector space P(V);
• take a linear ϕ : V → W to a linear P(ϕ) : P(V)→ P(W);
• in such a manner that P(1V ) = 1P(V) and P(ψ ◦ ϕ) = P(ψ) ◦ P(ϕ);
• are in particular basis-independent;
• can be added (direct sum) and multiplied (tensor product).
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• return as value a finite-dimensional vector space P(V);
• take a linear ϕ : V → W to a linear P(ϕ) : P(V)→ P(W);
• in such a manner that P(1V ) = 1P(V) and P(ψ ◦ ϕ) = P(ψ) ◦ P(ϕ);
• are in particular basis-independent;
• can be added (direct sum) and multiplied (tensor product).

Trivial example
V 7→ V , a polynomial functor of degree 1.

Running example
A : V 7→ {a ∈ V ⊗ V | aT = a}, of degree 2.
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Vec the category of finite-dimensional K-vector spaces

Definition
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Hom(P(V), P(W)) is polynomial of degree ≤ d for all V,W.
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Definition
P : Vec → Vec is polynomial of degree ≤ d if P : Hom(V,W) →
Hom(P(V), P(W)) is polynomial of degree ≤ d for all V,W.

Examples
• P(V) = V⊗d with P(ϕ)v1 ⊗ · · · ⊗ vd = (ϕv1) ⊗ · · · ⊗ (ϕvd)
• P(V) = S dV = V⊗d/〈{v1 ⊗ · · · ⊗ vd − vπ(1) ⊗ · · · ⊗ vπ(d)}〉

• char K = p > 0, K perfect, P(V) = S p(V)/{ f p | f ∈ V}

Homogeneous decomposition
P = P0 ⊕ · · · ⊕ Pd with Pe = {q ∈ P(V) | ∀t ∈ K : P(t1V )q = teq}
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P a functor Vec→ Top, where P(V) has the Zariski topology

Definition
A Vec-subvariety X of P assigns to each V a subvariety X(V) ⊆
P(V), such that for all ϕ : V → W the linear map P(ϕ) : P(V) →
P(W) maps X(V) into X(W).
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Examples
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• d-th powers of linear forms: X(V) = {vd} ⊆ S dV (Veronese)
• joins (X + Y)(V) := X(V) + Y(V)

Main Theorem (Noetherianity for polynomial functors)
For any Vec-subvariety X in a polynomial functor P of finite de-
gree, ∃ a V0 such that ∀V: X(V) is defined by the pull-backs of
equations for X(V0) under linear maps P(ϕ) for ϕ : V → V0.
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Actually, any Vec-subvariety X ⊆ A : V 7→ {a ∈ V ⊗ V | aT = a}
consists of matrices of rank at most k for some k ∈ {0, 1, 2, . . . ,∞}.

So either X = A or we can take V0 = Kk+1, which is the smallest
dimension for which you see a (k + 1) × (k + 1)-determinant.

Case 1: char K , 2
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Case 2: char K = 2

Then A is not an irreducible polynomial functor, as it contains
B : V 7→ {a ∈ V ⊗ V | aT = a,∀x ∈ V∗ : xT ax = 0}, the nonzero
subspace of (skew-)symmetric matrices with zeroes on the diago-
nal. Now first prove the theorem for A/B, then lift to A.
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• for S 3V (cubics, Derksen-Eggermont-Snowden 2016)
• much stronger statement in char 0 for S 2V
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Known before
• degree ≤ 2 (tuples of matrices, Eggermont 2014)
• for S 3V (cubics, Derksen-Eggermont-Snowden 2016)
• much stronger statement in char 0 for S 2V
(Nagpal-Sam-Snowden 2015)

Slice rank
X1(V) := {T ∈ V⊗d | ∃i ∈ [d], v ∈ V, S ∈

⊗
j,i V : T = v ⊗ S }

Xk := X1 + · · · + X1 tensors of slice rank ≤ k
In fact, no closure is needed (Tao-Sawin).

The Main Theorem implies: Xk(V) is defined by equations of
bounded degree independent of V .
For k = 2 and d = 3 this degree is 6 (Oosterhof).
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Twisted commutative algebras
P contravariant functor V 7→ K[P(V)] from Vec to K-algebras

Over K = C, this is a twisted commutative algebra (Sam-
Snowden). The Main Theorem implies that finitely generated tcas
are topologically Noetherian.
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Twisted commutative algebras
P contravariant functor V 7→ K[P(V)] from Vec to K-algebras

Over K = C, this is a twisted commutative algebra (Sam-
Snowden). The Main Theorem implies that finitely generated tcas
are topologically Noetherian.

Variants of Stillman’s conjecture [Erman-Sam-Snowden]
Let c be any natural number, and fix degrees d1, . . . , dk. Then the
number of codimension-c linear subspaces of Pn contained in a
projective variety defined by k polynomials of degrees d1, . . . , dk

is either infinite or at most some which doesn’t depend on n!

For k = 1, d1 = 3, c = 2, N is at least 27:

(Uses the main theorem for
⊕k

i=1 S di (V).)
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The shift functor
U a fixed vector space S U : Vec→ Vec,V 7→ U ⊕ V

Observation
If P is a polynomial functor of degree d, then P ◦ S U is also a
polynomial functor of degree d, and Pd � (P ◦ S U)d.
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The shift functor
U a fixed vector space S U : Vec→ Vec,V 7→ U ⊕ V

Observation
If P is a polynomial functor of degree d, then P ◦ S U is also a
polynomial functor of degree d, and Pd � (P ◦ S U)d.

Example
S d(U ⊕ V) =

⊕d
e=0 S d−eU ⊗ S eV = S dV + · · ·

But note that (P ◦ S U)e typically is larger than Pe!
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A “lexicographic order”
Define Q ≺ P if Q � P and for the largest e with Qe � Pe the
former is a homomorphic image of the latter.

This is a well-founded order on finite-degree polynomial functors.
We do induction, and assume the theorem holds for all Q ≺ P.
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A “lexicographic order”
Define Q ≺ P if Q � P and for the largest e with Qe � Pe the
former is a homomorphic image of the latter.

This is a well-founded order on finite-degree polynomial functors.
We do induction, and assume the theorem holds for all Q ≺ P.

Splitting of a term of highest degree
Let R ⊆ Pd be an irreducible subfunctor, and π : P→ Q := P/R.

For X ⊆ P let XQ be the closure of the image in Q. Think of
X as a variety over XQ. Accordingly, IX(V) is the ideal of X in
K[π(V)−1(XQ(V))] � K[XQ(V)] ⊗ K[R(V)] (non-canonically).

Q ≺ P but we’ll need other functors smaller than P
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Another well-founded order
Define δX ∈ {1, 2, . . . ,∞} as the minimal degree of a nonzero poly-
nomial in IX(V) over all V .

For X,Y ⊆ P say X > Y if XQ ) YQ or XQ = YQ and δX > δY . As
Q ≺ P, Q is Noetherian by the induction hypothesis, so this is a
well-founded order.
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Another well-founded order
Define δX ∈ {1, 2, . . . ,∞} as the minimal degree of a nonzero poly-
nomial in IX(V) over all V .

For X,Y ⊆ P say X > Y if XQ ) YQ or XQ = YQ and δX > δY . As
Q ≺ P, Q is Noetherian by the induction hypothesis, so this is a
well-founded order.

Second induction hypothesis
All Y < X are Noetherian.

Now if δX = ∞, X Noetherian. So assume δX ∈ Z≥1.
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• Take f ∈ IX(U) nonzero, homogeneous of degree δX .

• Pick an r0 ∈ R(U) such that h := ∂r0 f is nonzero.
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• Define Y(V) := {q ∈ X(V) | ∀ϕ : V → U, h(P(ϕ)q) = 0}.
• Then either YQ ( XQ or else YQ = XQ and δY ≤ deg h < δX , so Y
is Noetherian by the second induction hypothesis.

• Define Z(V) := X(V) \ Y(V). Goal: also Z is Noetherian.
• Define X′ := X ◦ S U , P′ := P ◦ S U ; then Q′ := P′/R ≺ P, so Q′

is Noetherian.

• Define Z′(V) := {q ∈ X′(V) | h(P(πU)q) , 0} ⊆ Z(U ⊕ V).
• Prove that the projection P′ → Q′ restricts to a closed embedding
Z′ → {h , 0}. Then Q′ Noeth⇒ Z′ Noeth⇒ Z Noetherian. �
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