Graphical models and their equations

Jan Draisma
Mathematical Institute
University of Bern
and Eindhoven University of Technology

Montpellier, 16 November 2017

Setting

G = (V, E) finite, simple undirected graph

 Ω_i , $i \in V$ finite sets

P a probability distribution on the state space $\Omega := \prod_{i \in V} \Omega_i$

 $X_i: \Omega \to \Omega_i$ the *i*th coordinate function

 $A \subseteq V \leadsto$ probability vector X_A taking values in Ω_A .

Setting

G = (V, E) finite, simple undirected graph $\Omega_i, i \in V$ finite sets P a probability distribution on the state space $\Omega := \prod_{i \in V} \Omega_i$ $X_i : \Omega \to \Omega_i$ the ith coordinate function

 $A \subseteq V \leadsto \text{probability vector } X_A \text{ taking values in } \Omega_A.$

Conditional independence

 $X_A \perp \!\!\! \perp X_B \mid X_C$ means: for each $x_C \in \Omega_C$ with $P(X_C = x_C) > 0$, $P(X_A = x_A \land x_B = x_B \mid X_C = x_C) = P(X_A = x_A \mid X_C = x_C) \cdot P(X_B = x_B \mid X_C = x_C)$.

Setting

G = (V, E) finite, simple undirected graph

 Ω_i , $i \in V$ finite sets

P a probability distribution on the state space $\Omega := \prod_{i \in V} \Omega_i$

 $X_i: \Omega \to \Omega_i$ the *i*th coordinate function

 $A \subseteq V \leadsto \text{probability vector } X_A \text{ taking values in } \Omega_A.$

Conditional independence

 $X_A \perp \!\!\! \perp X_B \mid X_C$ means: for each $x_C \in \Omega_C$ with $P(X_C = x_C) > 0$, $P(X_A = x_A \land x_B = x_B \mid X_C = x_C) = P(X_A = x_A \mid X_C = x_C) \cdot P(X_B = x_B \mid X_C = x_C)$.

Pairwise Markov properties from G

 $X_i \perp \!\!\! \perp X_j \mid X_{V \setminus \{i,j\}} \text{ for } i \neq j \text{ with } \{i,j\} \notin E.$

$$G = \begin{pmatrix} \bullet & \bullet & \bullet \\ 1 & 2 & 3 \end{pmatrix}$$
 $P((x_1, x_2, x_3)) = q_{x_1} r_{x_2} s_{x_3}$

$$G = \begin{pmatrix} \bullet & \bullet & \bullet \\ 1 & 2 & 3 \end{pmatrix}$$

Example: Ising model

$$G = \bigcirc$$

$$\Omega_i = \{-1, 1\}$$
 for all i interaction parameters $c, d > 0$

 $P((x_1, x_2, x_3)) = q_{x_1} r_{x_2} s_{x_3}$

$$P(x) = \frac{1}{Z} \cdot \left(\prod_{i \sim k, x_i = x_k} c \right) \cdot \left(\prod_{i \sim k, x_i \neq x_k} d \right)$$

$$G = \begin{pmatrix} \bullet & \bullet & \bullet \\ 1 & 2 & 3 \end{pmatrix}$$

Example: Ising model

$$G = \bigoplus_{j} i$$

$$\Omega_i = \{-1, 1\}$$
 for all i interaction parameters $c, d > 0$

 $P((x_1, x_2, x_3)) = q_{x_1} r_{x_2} s_{x_3}$

$$P(x) = \frac{1}{Z} \cdot \left(\prod_{i \sim k, x_i = x_k} c \right) \cdot \left(\prod_{i \sim k, x_i \neq x_k} d \right)$$

$$P((X_i, X_j) = (1, 1) \mid \cdots) = \frac{(c^2 d)(c^3)}{(c^2 d + c d^2)(c^3 + d^3)} = P(X_i = 1 \mid \cdots) \cdot P(X_j = 1 \mid \cdots)$$

$$G = \begin{array}{ccc} \bullet & \bullet & \bullet \\ 1 & 2 & 3 \end{array}$$

Example: Ising model

$$G = \bigoplus_{j} i$$

$$\Omega_i = \{-1, 1\}$$
 for all i interaction parameters $c, d > 0$

 $P((x_1, x_2, x_3)) = q_{x_1} r_{x_2} s_{x_3}$

$$P(x) = \frac{1}{Z} \cdot \left(\prod_{i \sim k, x_i = x_k} c \right) \cdot \left(\prod_{i \sim k, x_i \neq x_k} d \right)$$

$$P((X_i, X_j) = (1, 1) \mid \cdots) = \frac{(c^2 d)(c^3)}{(c^2 d + c d^2)(c^3 + d^3)} = P(X_i = 1 \mid \cdots) \cdot P(X_j = 1 \mid \cdots)$$

 \rightsquigarrow P satisfies all the pairwise Markov properties for G.

Hammersley-Clifford Theorem

Assume P > 0 on all of Ω . Then P satisfies all the pairwise Markov properties $\Leftrightarrow \exists$ interaction parameters $\theta_C \in \mathbb{R}_{>0}^{\Omega_C}$, where C runs through the maximal cliques of G, such that $P(x) = \prod_C \theta_C(x_C)$.

Hammersley-Clifford Theorem

Assume P > 0 on all of Ω . Then P satisfies all the pairwise Markov properties $\Leftrightarrow \exists$ interaction parameters $\theta_C \in \mathbb{R}_{>0}^{\Omega_C}$, where C runs through the maximal cliques of G, such that $P(x) = \prod_C \theta_C(x_C)$.

Example

- *Independence*: maximal cliques=vertices $\rightsquigarrow P(x) = \prod_{i \in V} \theta_i(x_i)$.
- *Ising*: maximal cliques are edges $\{i, k\}$, and $c = \theta_{ik}(-1, -1) = \theta_{ik}(1, 1)$ and $d = \theta_{ik}(1, -1) = \theta_{ik}(-1, 1)$ (up to normalisation).

Hammersley-Clifford Theorem

Assume P > 0 on all of Ω . Then P satisfies all the pairwise Markov properties $\Leftrightarrow \exists$ interaction parameters $\theta_C \in \mathbb{R}_{>0}^{\Omega_C}$, where C runs through the maximal cliques of G, such that $P(x) = \prod_C \theta_C(x_C)$.

Example

- *Independence*: maximal cliques=vertices $\rightsquigarrow P(x) = \prod_{i \in V} \theta_i(x_i)$.
- *Ising*: maximal cliques are edges $\{i, k\}$, and $c = \theta_{ik}(-1, -1) = \theta_{ik}(1, 1)$ and $d = \theta_{ik}(1, -1) = \theta_{ik}(-1, 1)$ (up to normalisation).

Working Definition

The *graphical model M* associated to (G, Ω) is the set of all positive probability distributions P on Ω as above—a semialgebraic set in \mathbb{R}^{Ω} whose Zariski closure is a unirational variety in \mathbb{R}^{Ω} . Denote by \widehat{M} the cone over this closure.

Equations

Monomial parameterisation of \widehat{M} : $P(x) = \prod_C \theta_C(x_C)$.

Here we forget that the P(x) must sum to 1 and must be positive. Hence the θ_C are unconstrained parameters. What polynomial relations among the P(x) hold independently of the parameters θ_C ?

Monomial parameterisation of \widehat{M} : $P(x) = \prod_C \theta_C(x_C)$.

Here we forget that the P(x) must sum to 1 and must be positive. Hence the θ_C are unconstrained parameters. What *polynomial relations* among the P(x) hold independently of the parameters θ_C ?

Example: Independence

 $P(x_1, x_2, x_3) = r_{x_1} s_{x_2} t_{x_3}$ satisfy the binomial equations $P(x_1, x_2, x_3) P(x'_1, x'_2, x_3) - P(x_1, x'_2, x_3) P(x'_1, x_2, x_3)$ and similar ones; these generate the ideal of all polynomial relations.

Monomial parameterisation of \widehat{M} : $P(x) = \prod_C \theta_C(x_C)$.

Here we forget that the P(x) must sum to 1 and must be positive. Hence the θ_C are unconstrained parameters. What polynomial relations among the P(x) hold independently of the parameters θ_C ?

Example: Independence

 $P(x_1, x_2, x_3) = r_{x_1} s_{x_2} t_{x_3}$ satisfy the binomial equations $P(x_1, x_2, x_3) P(x'_1, x'_2, x_3) - P(x_1, x'_2, x_3) P(x'_1, x_2, x_3)$ and similar ones; these generate the ideal of all polynomial relations.

Relevance for Fisher's exact test (Diaconis-Sturmfels, 1998)

These binomials give rise to a Markov chain that, starting from an Ω -contingency table $T \in \mathbb{Z}_{\geq 0}^{\Omega}$ samples such tables with the same *sufficient statistics*: counts of all patterns seen on cliques.

 $P(x_1, x_2, x_3) = r_{x_1} s_{x_2} t_{x_3}$ satisfy the binomial equations $P(x_1, x_2, x_3) P(x'_1, x'_2, x_3) - P(x_1, x'_2, x_3) P(x'_1, x_2, x_3)$ and similar ones; these generate the ideal of all polynomial relations—note that there are three orbits up to $\text{Sym}(\Omega_1) \times \text{Sym}(\Omega_2) \times \text{Sym}(\Omega_3)$.

 $P(x_1, x_2, x_3) = r_{x_1} s_{x_2} t_{x_3}$ satisfy the binomial equations $P(x_1, x_2, x_3) P(x'_1, x'_2, x_3) - P(x_1, x'_2, x_3) P(x'_1, x_2, x_3)$ and similar ones; these generate the ideal of all polynomial relations—note that there are three orbits up to $\text{Sym}(\Omega_1) \times \text{Sym}(\Omega_2) \times \text{Sym}(\Omega_3)$.

Much more generally:

 $P(x_1, x_2, x_3) = r_{x_1} s_{x_2} t_{x_3}$ satisfy the binomial equations $P(x_1, x_2, x_3) P(x'_1, x'_2, x_3) - P(x_1, x'_2, x_3) P(x'_1, x_2, x_3)$ and similar ones; these generate the ideal of all polynomial relations—note that there are three orbits up to $\text{Sym}(\Omega_1) \times \text{Sym}(\Omega_2) \times \text{Sym}(\Omega_3)$.

Much more generally:

Independent Set Theorem (Hillar-Sullivant, 2012)

If $A \subseteq V$ is an independent set in G, then the ideal of M is generated by boundedly many $\prod_{i \in A} \operatorname{Sym}(\Omega_i)$ -orbits of binomials as $|\Omega_i| \to \infty$ for all $i \in A$.

 $P(x_1, x_2, x_3) = r_{x_1} s_{x_2} t_{x_3}$ satisfy the binomial equations $P(x_1, x_2, x_3) P(x'_1, x'_2, x_3) - P(x_1, x'_2, x_3) P(x'_1, x_2, x_3)$ and similar ones; these generate the ideal of all polynomial relations—note that there are three orbits up to $\text{Sym}(\Omega_1) \times \text{Sym}(\Omega_2) \times \text{Sym}(\Omega_3)$.

Much more generally:

Independent Set Theorem (Hillar-Sullivant, 2012)

If $A \subseteq V$ is an independent set in G, then the ideal of M is generated by boundedly many $\prod_{i \in A} \operatorname{Sym}(\Omega_i)$ -orbits of binomials as $|\Omega_i| \to \infty$ for all $i \in A$.

Crucial fact: maps $f_i: \Omega_i \to \Omega'_i, i \in A$ together yield a linear map $\mathbb{R}^{\Omega'} \to \mathbb{R}^{\Omega}$ sending \widehat{M}' into \widehat{M} ; use this to pull back equations.

Example (Rauh-Sullivant, 2014)

If G is $K_{3,N}$, and all state spaces are $\{0,1\}$, then the ideal of M is generated by binomials of degree ≤ 12 , independently of N.

Example (Rauh-Sullivant, 2014)

If G is $K_{3,N}$, and all state spaces are $\{0,1\}$, then the ideal of M is generated by binomials of degree ≤ 12 , independently of N.

Construction: G_1, \ldots, G_k finite graphs with a common induced subgraph $H \rightsquigarrow s_1G_1 +_H \cdots +_H s_kG_k$ obtained from disjoint copies of the G_i by identifying their instances of H.

Example (Rauh-Sullivant, 2014)

If G is $K_{3,N}$, and all state spaces are $\{0,1\}$, then the ideal of M is generated by binomials of degree ≤ 12 , independently of N.

Construction: G_1, \ldots, G_k finite graphs with a common induced subgraph $H \rightsquigarrow s_1G_1 +_H \cdots +_H s_kG_k$ obtained from disjoint copies of the G_j by identifying their instances of H.

Theorem (D-Oosterhof, 2016)

Fixing state spaces for the vertices of each G_j , compatible with H, the ideal of $\widehat{M}(s_1G_1 +_H \cdots +_H s_kG_k)$ is generated in bounded degree uniformly in the s_j .

Growing graphs

Crucial fact: Suppose that G has vertex set $A \sqcup B$, where A is the vertex set of H; so G has state space $\Omega_A \times \Omega_B$.

Growing graphs

Crucial fact: Suppose that G has vertex set $A \sqcup B$, where A is the vertex set of H; so G has state space $\Omega_A \times \Omega_B$.

Then sG has the vertex set $A \sqcup ([s] \times B)$ and state space $\Omega(s) := \Omega_A \times \Omega_B^s$. Any map $f : [s] \to [r]$ yields a map $\Omega(r) \to \Omega(s)$ and a linear map $\mathbb{R}^{\Omega(s)} \to \mathbb{R}^{\Omega(r)}$, which turns out to map $\widehat{M}(s)$ in the former space into $\widehat{M}(r)$ in the latter space.

Crucial fact: Suppose that G has vertex set $A \sqcup B$, where A is the vertex set of H; so G has state space $\Omega_A \times \Omega_B$.

Then sG has the vertex set $A \sqcup ([s] \times B)$ and state space $\Omega(s) := \Omega_A \times \Omega_B^s$. Any map $f : [s] \to [r]$ yields a map $\Omega(r) \to \Omega(s)$ and a linear map $\mathbb{R}^{\Omega(s)} \to \mathbb{R}^{\Omega(r)}$, which turns out to map $\widehat{M}(s)$ in the former space into $\widehat{M}(r)$ in the latter space.

Thus \widehat{M} is a variety over the category **Fin** of finite sets. We show that its ambient space is a Noetherian **Fin**-variety.

(The Independent Set Theorem concerns a **Fin**^{op}-variety!)

Open: What happens if both state spaces and graphs grow?

Mixtures

Definition

Given two models M_1 and M_2 in R^{Ω} , their *mixture* is the set $\{\lambda P + (1 - \lambda)Q \mid P \in M_1, Q \in M_2, \lambda \in [0, 1]\}$.

Mixtures

Definition

Given two models M_1 and M_2 in R^{Ω} , their *mixture* is the set $\{\lambda P + (1 - \lambda)Q \mid P \in M_1, Q \in M_2, \lambda \in [0, 1]\}$.

Example (Independence)

The mixture of two copies of independence is the set of all $|\Omega_1| \times |\Omega_2| \times |\Omega_3|$ -tensors of *nonnegative rank* at most two whose entries add up to one.

Mixtures

Definition

Given two models M_1 and M_2 in R^{Ω} , their *mixture* is the set $\{\lambda P + (1 - \lambda)Q \mid P \in M_1, Q \in M_2, \lambda \in [0, 1]\}$.

Example (Independence)

The mixture of two copies of independence is the set of all $|\Omega_1| \times |\Omega_2| \times |\Omega_3|$ -tensors of *nonnegative rank* at most two whose entries add up to one.

Theorem (Allman-Rhodes-Sturmfels-Zwiernik, 2013)

An $m_1 \times m_2 \times m_3$ -tensor P with entries in $\mathbb{R}_{\geq 0}$ has nonnegative rank at most two if and only if P has rank at most two and is moreover (log-)supermodular: $P(x_1, x_2, x_3)P(y_1, y_2, y_3) \leq P(u_1, u_2, u_3)P(z_1, z_2, z_3)$ if $\{x_r, y_r\} = \{u_r, z_r\}$ and $u_r \leq z_r$ for all r, or in the $\mathrm{Sym}(\Omega_1) \times \mathrm{Sym}(\Omega_2) \times \mathrm{Sym}(\Omega_3)$ -orbit of such a tensor.

Forget again about inequalities and summing up to 1.

Easy fact:

If G is a disjoint union of cliques, then \widehat{M} is not only stable under $\prod_{i \in V} \operatorname{Sym}(\Omega_i)$, but even under $\prod_{i \in V} \operatorname{GL}_{\Omega_i}$. Hence the same holds for mixtures $\widehat{M}_1 + \widehat{M}_2 = \{P + Q \mid P \in \widehat{M}_1, Q \in \widehat{M}_2\}$ coming from graphs G_1, G_2 that are unions of cliques.

Forget again about inequalities and summing up to 1.

Easy fact:

If G is a disjoint union of cliques, then \widehat{M} is not only stable under $\prod_{i \in V} \operatorname{Sym}(\Omega_i)$, but even under $\prod_{i \in V} \operatorname{GL}_{\Omega_i}$. Hence the same holds for mixtures $\widehat{M}_1 + \widehat{M}_2 = \{P + Q \mid P \in \widehat{M}_1, Q \in \widehat{M}_2\}$ coming from graphs G_1, G_2 that are unions of cliques.

Theorem (D, 2017)

For any fixed k, a closed subvariety in a tensor product $W_1 \otimes \cdots \otimes W_k$ of vector spaces that depends functorially on W_1, \ldots, W_k is defined by finitely many equations up to $\prod_i GL(W_i)$, independently of the dimensions of the W_i .

A mixture challenge

A mixture challenge

$$M = \{ P(x_1, x_2, x_3) = \lambda \frac{1}{Z(c,d)} c_{x_1, x_2} d_{x_3} + (1 - \lambda) \frac{1}{Z'(e,f)} e_{x_1, x_3} f_{x_2} \}$$

Here:
$$\lambda \in [0, 1], c \in \mathbb{R}_{>0}^{\Omega_1 \times \Omega_2}, d \in \mathbb{R}_{>0}^{\Omega_3}, e \in \mathbb{R}_{>0}^{\Omega_1 \times \Omega_3}, f \in \mathbb{R}_{>0}^{\Omega_2}$$

A mixture challenge

$$M = \{ P(x_1, x_2, x_3) = \lambda \frac{1}{Z(c,d)} c_{x_1, x_2} d_{x_3} + (1 - \lambda) \frac{1}{Z'(e,f)} e_{x_1, x_3} f_{x_2} \}$$

Here:
$$\lambda \in [0, 1], c \in \mathbb{R}_{>0}^{\Omega_1 \times \Omega_2}, d \in \mathbb{R}_{>0}^{\Omega_3}, e \in \mathbb{R}_{>0}^{\Omega_1 \times \Omega_3}, f \in \mathbb{R}_{>0}^{\Omega_2}$$

Challenge: Find a quantifier-free description of *M*!

Oosterhof found polynomial equations cutting out \widehat{M} of degrees 3 and 6: certain 2 × 2-determinants of 3 × 3-determinants.

There's a beautiful relation with matrix spaces of rank two!

- equations for phylogenetic tree models (Casanellas et al, Allman-Rhodes, Sturmfels-Sullivant, Michałek et al, ...)
- determinantal equations for Gaussian graphical models (Sullivant-Talaska-D)
- identifiability of Gaussian graphical models (Foygel-Drton-D)
- (non-)singularity of hypersurfaces defined by conditional independence statements for Gaussian graphical models (Lin-Uhler-Sturmfels-Bühlmann)
- twisted commutative algebras (Sam-Snowden)

•

- equations for phylogenetic tree models (Casanellas et al, Allman-Rhodes, Sturmfels-Sullivant, Michałek et al, ...)
- determinantal equations for Gaussian graphical models (Sullivant-Talaska-D)
- identifiability of Gaussian graphical models (Foygel-Drton-D)
- (non-)singularity of hypersurfaces defined by conditional independence statements for Gaussian graphical models (Lin-Uhler-Sturmfels-Bühlmann)
- twisted commutative algebras (Sam-Snowden)

•

Thank you!