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Undirected graphical models

Setting

G = (V, E) finite, stmple undirected graph

Q);,1 € V finite sets

P a probability distribution on the state space € := [ ];cy €2;
X; : Q — Q; the ith coordinate function

A C V ~» probability vector X4 taking values 1n €24.
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Pairwise Markov properties from G
X; I Xj | XV\{i,j} fori # ]Wlth {i, ]} ¢ E.
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Example: Independence

G= 9 % 03 P((x1, X2, X3)) = qx, Tx, Sx,

Example: Ising model

Q, ={-1,1}foralli
interaction parameters c¢,d > 0

P(X) — % : (Hi~k,x,-:xk C) ) (Hi~k,xiixk d)

C2 C3
P(XuX) = (LD |- = oot = PXi=1]--)-PX;=1]--)

~» P satisfies all the pairwise Markov properties for G.
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Hammersley-Clifford Theorem

Assume P > O on all of Q. Then P satisfies all the pairwise Markov
properties & 1 interaction parameters 0¢c € Rgg, where C runs
through the maximal cliques of G, such that P(x) = [ |- 6c(xc¢).
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Working Definition

The graphical model M associated to (G, Q) 1s the set |
of all positive probability distributions P on {2 as above—a semi-
algebraic set in R whose Zariski closure is a unirational variety
in R*. Denote by M the cone over this closure.
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Here we forget that the P(x) must sum to 1 and must be positive.
Hence the - are unconstrained parameters. What polynomial re-
lations among the P(x) hold independently of the parameters 6.7
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Relevance for Fisher’s exact test (Diaconis-Sturmfels, 1998)
These binomials give rise to a Markov chain that, starting from an
Q)-contingency table T' € ZSO samples such tables with the same
sufficient statistics: counts of all patterns seen on cliques.
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Much more generally:

Independent Set Theorem (Hillar-Sullivant, 2012)
It A C V is an independent set in G, then the i1deal of M 1s gen-

erated by boundedly many |[];c4 Sym(£2;)-orbits of binomials as
1€2;| —» oo forall i € A.

Crucial fact: maps f; : ; — QF,i € A together yield a linear map
RY — R? sending M’ into M:; use this to pull back equations.
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Example (Rauh-Sullivant, 2014) N
If G 1s K3y, and all state spaces are {0, 1}, then the 1deal of M 1s
generated by binomials of degree < 12, independently of N.

2.

Construction: Gy, ..., Gy finite graphs with a common induced
subgraph H ~» s1G| +p - - - +5 5:G obtained from disjoint copies
of the G; by 1dentifying their instances of H.

Theorem (D-Oosterhof, 2016)
Fixing state spaces for the vertices of each G ;, compatible with H,

the ideal of M (51G1+g- - -+55:Gy) 1s generated in bounded degree
uniformly in the s;.
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Crucial fact: Suppose that G has vertex set A LI B, where A 1s the
vertex set of H; so G has state space Q4 X Qp.

Then sG has the vertex set A LI ([s] X B) and state space €(s) :=
Qu X Qp. Any map f : [s] — [r] yields a map Q(r) — €2(s) and
a linear map R — R which turns out to map M(s) in the
former space 1nto M (r) in the latter space.

Thus M is a variety over the category Fin of finite sets. We show
that 1ts ambient space 1s a Noetherian Fin-variety.

(The Independent Set Theorem concerns a FinP-variety!)

Open: What happens if both state spaces and graphs grow?
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Example (Independence)

The mixture of two copies of independence is the set of all [€2;] X
1€, | X |Q23|-tensors of nonnegative rank at most two whose entries
add up to one.

Theorem (Allman-Rhodes-Sturmfels-Zwiernik, 2013)

An m; X my X ms-tensor P with entries in R,y has nonnega-
tive rank at most two 1f and only if P has rank at most two
and 1s moreover (log-)supermodular: P(xy, x2, x3)P(y1,y2,V3) <
P(uy,ur,u3)P(z1,20,23) tH {x,,v,} = {u,,z} and u, < z, for all r, or
in the Sym(€;) X Sym(£2,) X Sym(£23)-orbit of such a tensor.



Boundedness of equations of some mixtures 10

Forget again about inequalities and summing up to 1.

Easy fact: _
If G 1s a disjoint union of cliques, then M 1s not only stable under
[ l;ev Sym(£2;), but even under | ],cy GLg,. Hence the same holds

for mixtures 1\71 + 1\72 ={P+Q|Pc€ 1\71, QO e ]\72} coming from
graphs G, G, that are unions of cliques.
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Forget again about inequalities and summing up to 1.

Easy fact: _
If G 1s a disjoint union of cliques, then M 1s not only stable under
[ l;ev Sym(£2;), but even under | ],cy GLg,. Hence the same holds

for mixtures 1\71 + 1\72 ={P+Q|Pc€ 1\71, QO e ]\72} coming from
graphs G, G, that are unions of cliques.

Theorem (D, 2017)
For any fixed k, a closed subvariety in a tensor product W ®- - -@W;
of vector spaces that depends functorially on Wy, ..., Wy 1s defined

by finitely many equations up to [ |[; GL(W;), independently of the
dimensions of the W;.



A mixture challenge

11



A mixture challenge

- {P(x19x29x3) — /lZ( d)CX1,XQdX3 + (1 _ /l)

1
Z' (e.f)

exl »X3 fo }

Here: 1 € [0, 1], c € RQIXQZ d e RQ?’ € Rf(l)x%, /€ R?S
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A mixture challenge 1

— {P(Xl, X2 XS) — /lZ( d)cxl,xde3 + (1 _ A)Z/(i,f)exl,)@fxz}
Q; xQ 0 Q;xQ 0
Here: 1€ [0,1],c e R;)?, de R, e e R, f e RY]
Challenge: Find a quantifier-free description of M'!

Oosterhof found polynomial equations cutting out M of degrees 3
and 6: certain 2 X 2-determinants of 3 X 3-determinants.

There’s a beautiful relation with matrix spaces of rank two!
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e cquations for phylogenetic tree models (Casanellas et al,
Allman-Rhodes, Sturmfels-Sullivant, Michatek et al, .. .)

e determinantal equations for Gaussian graphical models
(Sullivant-Talaska-D)

e 1dentifiability of Gaussian graphical models (Foygel-Drton-D)
e (non-)singularity of hypersurfaces defined by conditional
independence statements for Gaussian graphical models
(Lin-Uhler-Sturmfels-Biihlmann)

e twisted commutative algebras (Sam-Snowden)
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Thank you!
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