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2Undirected graphical models

Setting
G = (V, E) finite, simple undirected graph
Ωi, i ∈ V finite sets
P a probability distribution on the state space Ω :=

∏
i∈V Ωi

Xi : Ω→ Ωi the ith coordinate function
A ⊆ V probability vector XA taking values in ΩA.
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XA ⊥⊥ XB | XC means: for each xC ∈ ΩC with P(XC = xC) > 0,
P(XA = xA ∧ xB = xB | XC = xC) =

P(XA = xA | XC = xC) · P(XB = xB | XC = xC).

Pairwise Markov properties from G
Xi ⊥⊥ X j | XV\{i, j} for i , j with {i, j} < E.
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Hammersley-Clifford Theorem
Assume P > 0 on all of Ω. Then P satisfies all the pairwise Markov
properties ⇔ ∃ interaction parameters θC ∈ R

ΩC
>0 , where C runs

through the maximal cliques of G, such that P(x) =
∏

C θC(xC).
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• Ising: maximal cliques are edges {i, k}, and c = θik(−1,−1) =

θik(1, 1) and d = θik(1,−1) = θik(−1, 1) (up to normalisation).

Working Definition
The graphical model M associated to (G,Ω) is the set
of all positive probability distributions P on Ω as above—a semi-
algebraic set in RΩ whose Zariski closure is a unirational variety
in RΩ. Denote by M̂ the cone over this closure.



5Equations

Monomial parameterisation of M̂: P(x) =
∏

C θC(xC).
Here we forget that the P(x) must sum to 1 and must be positive.
Hence the θC are unconstrained parameters. What polynomial re-
lations among the P(x) hold independently of the parameters θC?
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Example: Independence
P(x1, x2, x3) = rx1 sx2 tx3 satisfy the binomial equations
P(x1, x2, x3)P(x′1, x

′
2, x3) − P(x1, x′2, x3)P(x′1, x2, x3) and similar

ones; these generate the ideal of all polynomial relations.

Relevance for Fisher’s exact test (Diaconis-Sturmfels, 1998)
These binomials give rise to a Markov chain that, starting from an
Ω-contingency table T ∈ ZΩ

≥0 samples such tables with the same
sufficient statistics: counts of all patterns seen on cliques.
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ones; these generate the ideal of all polynomial relations—note
that there are three orbits up to Sym(Ω1) × Sym(Ω2) × Sym(Ω3).

Much more generally:

Independent Set Theorem (Hillar-Sullivant, 2012)
If A ⊆ V is an independent set in G, then the ideal of M̂ is gen-
erated by boundedly many

∏
i∈A Sym(Ωi)-orbits of binomials as

|Ωi| → ∞ for all i ∈ A.

Crucial fact: maps fi : Ωi → Ω′i , i ∈ A together yield a linear map
RΩ′ → RΩ sending M̂′ into M̂; use this to pull back equations.
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Example (Rauh-Sullivant, 2014)
If G is K3,N , and all state spaces are {0, 1}, then the ideal of M̂ is
generated by binomials of degree ≤ 12, independently of N.

. . .
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Example (Rauh-Sullivant, 2014)
If G is K3,N , and all state spaces are {0, 1}, then the ideal of M̂ is
generated by binomials of degree ≤ 12, independently of N.

. . .

Construction: G1, . . . ,Gk finite graphs with a common induced
subgraph H s1G1 +H · · · +H skGk obtained from disjoint copies
of the G j by identifying their instances of H.

= N

H

Theorem (D-Oosterhof, 2016)
Fixing state spaces for the vertices of each G j, compatible with H,
the ideal of M̂(s1G1 +H · · ·+H skGk) is generated in bounded degree
uniformly in the s j.
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Crucial fact: Suppose that G has vertex set A t B, where A is the
vertex set of H; so G has state space ΩA ×ΩB.

Then sG has the vertex set A t ([s] × B) and state space Ω(s) :=
ΩA × Ωs

B. Any map f : [s] → [r] yields a map Ω(r) → Ω(s) and
a linear map RΩ(s) → RΩ(r), which turns out to map M̂(s) in the
former space into M̂(r) in the latter space.

Thus M̂ is a variety over the category Fin of finite sets. We show
that its ambient space is a Noetherian Fin-variety.

(The Independent Set Theorem concerns a Finop-variety!)

Open: What happens if both state spaces and graphs grow?
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Definition
Given two models M1 and M2 in RΩ, their mixture is the set {λP +

(1 − λ)Q | P ∈ M1,Q ∈ M2, λ ∈ [0, 1]}.

Example (Independence)
The mixture of two copies of independence is the set of all |Ω1| ×

|Ω2| × |Ω3|-tensors of nonnegative rank at most two whose entries
add up to one.

Theorem (Allman-Rhodes-Sturmfels-Zwiernik, 2013)
An m1 × m2 × m3-tensor P with entries in R≥0 has nonnega-
tive rank at most two if and only if P has rank at most two
and is moreover (log-)supermodular: P(x1, x2, x3)P(y1, y2, y3) ≤
P(u1, u2, u3)P(z1, z2, z3) if {xr, yr} = {ur, zr} and ur ≤ zr for all r, or
in the Sym(Ω1) × Sym(Ω2) × Sym(Ω3)-orbit of such a tensor.



10Boundedness of equations of some mixtures

Easy fact:
If G is a disjoint union of cliques, then M̂ is not only stable under∏

i∈V Sym(Ωi), but even under
∏

i∈V GLΩi . Hence the same holds

for mixtures M̂1 + M̂2 = {P + Q | P ∈ M̂1,Q ∈ M̂2} coming from
graphs G1,G2 that are unions of cliques.

Forget again about inequalities and summing up to 1.
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Forget again about inequalities and summing up to 1.

Theorem (D, 2017)
For any fixed k, a closed subvariety in a tensor product W1⊗· · ·⊗Wk

of vector spaces that depends functorially on W1, . . . ,Wk is defined
by finitely many equations up to

∏
i GL(Wi), independently of the

dimensions of the Wi.
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M = {P(x1, x2, x3) = λ 1
Z(c,d) cx1,x2 dx3 + (1 − λ) 1

Z′(e, f ) ex1,x3 fx2 }

Here: λ ∈ [0, 1], c ∈ RΩ1×Ω2
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>0 , f ∈ RΩ2

>0

Challenge: Find a quantifier-free description of M!

Oosterhof found polynomial equations cutting out M̂ of degrees 3
and 6: certain 2 × 2-determinants of 3 × 3-determinants.

There’s a beautiful relation with matrix spaces of rank two!
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12Many other topics

• equations for phylogenetic tree models (Casanellas et al,
Allman-Rhodes, Sturmfels-Sullivant, Michałek et al, . . . )
• determinantal equations for Gaussian graphical models
(Sullivant-Talaska-D)
• identifiability of Gaussian graphical models (Foygel-Drton-D)
• (non-)singularity of hypersurfaces defined by conditional
independence statements for Gaussian graphical models
(Lin-Uhler-Sturmfels-Bühlmann)
• twisted commutative algebras (Sam-Snowden)
...
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Thank you!
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