Maximum likelihood duality for determinantal varieties

Jan Draisma TU Eindhoven

n-sided die, probabilities $P = (p_1, ..., p_n)$, thrown N times \leadsto prob of $U = (u_1, ..., u_n) \in \mathbb{N}^n$ with $u_1 + ... + u_n = N$ is multinomial $p_1^{u_1} \cdots p_n^{u_n}$

n-sided die, probabilities $P = (p_1, ..., p_n)$, thrown N times \rightsquigarrow prob of $U = (u_1, ..., u_n) \in \mathbb{N}^n$ with $u_1 + ... + u_n = N$ is

multinomial·
$$p_1^{u_1} \cdots p_n^{u_n}$$
 =: $\ell_U(P)$ likelihood of P given U

n-sided die, probabilities $P = (p_1, ..., p_n)$, thrown N times \rightsquigarrow prob of $U = (u_1, ..., u_n) \in \mathbb{N}^n$ with $u_1 + ... + u_n = N$ is

Basic statistical problem

Given U, maximise $\ell_U(P)$ subject to constraints on P.

n-sided die, probabilities $P = (p_1, ..., p_n)$, thrown N times \rightsquigarrow prob of $U = (u_1, ..., u_n) \in \mathbb{N}^n$ with $u_1 + ... + u_n = N$ is

Basic statistical problem

Given U, maximise $\ell_U(P)$ subject to constraints on P.

Example

If only constraints are $\sum_i p_i =: p_+ = 1$ and $p_i \ge 0$ \rightsquigarrow maximum attained by $p_i := u_i/N$.

 $P = (p_{ij})_{ij} \in \mathbb{R}^{m \times n}$ joint probabilities of two random variables $\rightsquigarrow independent$ if $p_{ij} = q_i t_j \Leftrightarrow \operatorname{rk}(P) = 1$

 $P = (p_{ij})_{ij} \in \mathbb{R}^{m \times n}$ joint probabilities of two random variables $\rightsquigarrow independent$ if $p_{ij} = q_i t_j \Leftrightarrow \operatorname{rk}(P) = 1$

$$U = (u_{ij})_{ij}$$
 data matrix, $\ell_U(P) = \prod_{ij} p_{ij}^{u_{ij}}$

 $P = (p_{ij})_{ij} \in \mathbb{R}^{m \times n}$ joint probabilities of two random variables $\rightsquigarrow independent$ if $p_{ij} = q_i t_j \Leftrightarrow \operatorname{rk}(P) = 1$

$$U = (u_{ij})_{ij}$$
 data matrix, $\ell_U(P) = \prod_{ij} p_{ij}^{u_{ij}}$

ML-problem for independence model

Maximise $\ell_U(P)$ subject to $p_{ij} \ge 0$, $p_{++} = 1$, $\operatorname{rk}(P) = 1$.

 $P = (p_{ij})_{ij} \in \mathbb{R}^{m \times n}$ joint probabilities of two random variables $\rightsquigarrow independent$ if $p_{ij} = q_i t_j \Leftrightarrow \operatorname{rk}(P) = 1$

$$U = (u_{ij})_{ij}$$
 data matrix, $\ell_U(P) = \prod_{ij} p_{ij}^{u_{ij}}$

ML-problem for independence model

Maximise $\ell_U(P)$ subject to $p_{ij} \ge 0$, $p_{++} = 1$, $\operatorname{rk}(P) = 1$.

Solution

$$p_{ij} = u_{i+} u_{+j} / (u_{++}^2)$$

 $P = (p_{ij})_{ij} \in \mathbb{R}^{m \times n}$ joint probabilities of two random variables $\rightsquigarrow independent$ if $p_{ij} = q_i t_j \Leftrightarrow \operatorname{rk}(P) = 1$

$$U = (u_{ij})_{ij}$$
 data matrix, $\ell_U(P) = \prod_{ij} p_{ij}^{u_{ij}}$

ML-problem for independence model

Maximise $\ell_U(P)$ subject to $p_{ij} \ge 0$, $p_{++} = 1$, $\operatorname{rk}(P) = 1$.

Solution

$$p_{ij} = u_{i+} u_{+j} / (u_{++}^2)$$

Mixture of *r* copies of independence

P convex combination of P_1, \ldots, P_r as above

$$\rightsquigarrow p_{++} = 1 \text{ and } \operatorname{rk}(P) \leq r$$

ML-problem much harder!

ML-problem for manifold $M \subseteq (\mathbb{R}_{>0})^n$ Maximise $\ell_U(P) = \prod_i p_i^{u_i}$ subject to $P \in M$.

ML-problem for manifold $M \subseteq (\mathbb{R}_{>0})^n$ Maximise $\ell_U(P) = \prod_i p_i^{u_i}$ subject to $P \in M$.

Derivative

$$(d_P \ell_U)(X) = \ell_U(P) \sum_i \frac{x_i}{p_i} u_i, X \in T_P M$$

ML-problem for manifold $M \subseteq (\mathbb{R}_{>0})^n$ Maximise $\ell_U(P) = \prod_i p_i^{u_i}$ subject to $P \in M$.

Derivative

$$(d_P\ell_U)(X) = \ell_U(P) \sum_i \frac{x_i}{p_i} u_i, X \in T_P M$$

Necessary condition

P critical: $d_P \ell_U$ vanishes identically on $T_P M$

$$\Leftrightarrow \sum_{i} \frac{x_i}{p_i} u_i = 0 \text{ for all } X \in T_P M \Leftrightarrow (p_1^{-1}, \dots, p_n^{-1}) T_P M \subseteq U^{\perp}$$

ML-problem for manifold $M \subseteq (\mathbb{R}_{>0})^n$ Maximise $\ell_U(P) = \prod_i p_i^{u_i}$ subject to $P \in M$.

Derivative

$$(d_P \ell_U)(X) = \ell_U(P) \sum_i \frac{x_i}{p_i} u_i, X \in T_P M$$

Necessary condition

P critical: $d_P \ell_U$ vanishes identically on $T_P M$ $\Leftrightarrow \sum_i \frac{x_i}{p_i} u_i = 0$ for all $X \in T_P M \Leftrightarrow (p_1^{-1}, \dots, p_n^{-1}) T_P M \subseteq U^{\perp}$

Measure of complexity(?)

Count number of critical points. . . easier over $\mathbb{C}!$

Setting

 $M \subseteq (\mathbb{C}^*)^n$ smooth subvariety (locally closed) \rightsquigarrow Crit(M):= $\{(P, U) \in M \times \mathbb{P}^{n-1} \mid P^{-1}T_PM \subseteq U^\perp\}$ variety of critical points

Setting

 $M \subseteq (\mathbb{C}^*)^n$ smooth subvariety (locally closed) \rightsquigarrow Crit(M):= $\{(P, U) \in M \times \mathbb{P}^{n-1} \mid P^{-1}T_PM \subseteq U^{\perp}\}$ variety of critical points

Fibre over $U \in \mathbb{N}^n$ is set of critical points for U. Reasonable assumptions \leadsto fibres finite of constant size for sufficiently general U.

Setting

 $M \subseteq (\mathbb{C}^*)^n$ smooth subvariety (locally closed) \rightsquigarrow Crit(M):= $\{(P, U) \in M \times \mathbb{P}^{n-1} \mid P^{-1}T_PM \subseteq U^{\perp}\}$ variety of critical points

Fibre over $U \in \mathbb{N}^n$ is set of critical points for U. Reasonable assumptions \leadsto fibres finite of constant size for sufficiently general U. ML-degree of M

Setting

 $M \subseteq (\mathbb{C}^*)^n$ smooth subvariety (locally closed) \leadsto Crit(M):= $\{(P, U) \in M \times \mathbb{P}^{n-1} \mid P^{-1}T_PM \subseteq U^\perp\}$ variety of critical points

Fibre over $U \in \mathbb{N}^n$ is set of critical points for U. Reasonable assumptions \leadsto fibres finite of constant size for sufficiently general U. ML-degree of M

Theorem (Huh, 2012)

M closed in addition to smooth (very affine)

 \rightsquigarrow ML-degree is signed Euler characteristic of M.

$$M_r := \{ P \in (\mathbb{C}^*)^{m \times n} \mid p_{++} = 1, \text{rk}(P) = r \}, m \le n$$

$$M_r := \{ P \in (\mathbb{C}^*)^{m \times n} \mid p_{++} = 1, \text{rk}(P) = r \}, m \le n$$

Theorem (Hauenstein-Rodriguez-Sturmfels, 2012) For small $r \le m \le n$ ML-degree of M is as follows:

$$M_r := \{ P \in (\mathbb{C}^*)^{m \times n} \mid p_{++} = 1, \mathrm{rk}(P) = r \}, m \le n$$

Theorem (Hauenstein-Rodriguez-Sturmfels, 2012)

For small $r \le m \le n$ ML-degree of M is as follows:

		(m,n)							
	(3	3,3)	(3,4)	(3,5)	(4, 4)	(4,5)	(4, 6)	(5,5)	
1		1	1 _	1	1	1	1	1	
	2 1	0	26	58	191	843	3119	6776	
r = 3	3	1	1	1	191	843	3119	61326	
4	1			_	1	1	1	6776	Bertini
5	5						•	1	

$$M_r := \{ P \in (\mathbb{C}^*)^{m \times n} \mid p_{++} = 1, \text{rk}(P) = r \}, m \le n$$

Theorem (Hauenstein-Rodriguez-Sturmfels, 2012)

For small $r \le m \le n$ ML-degree of M is as follows:

		(m,n)								
		(3,3)	(3,4)	(3,5)	(4, 4)	(4,5)	(4,6)	(5,5)	_	
	1	1	1 _	1	1	1	1	1		
	2	10	26	58	191	843	3119	6776		
r	3	1	1	1	191	843	3119	61326		
•	4				1	1	1	6776	Bertini	
,	5						_	1		

Conjecture (HRS)

ML-degree $(M_r) = ML$ -degree (M_{m-r+1})

$$M_r := \{ P \in (\mathbb{C}^*)^{m \times n} \mid p_{++} = 1, \text{rk}(P) = r \}, m \le n$$

$$M_r := \{ P \in (\mathbb{C}^*)^{m \times n} \mid p_{++} = 1, \text{rk}(P) = r \}, m \le n$$

Theorem (D-Rodriguez, 2012)

 $U \in \mathbb{N}^{m \times n}$ sufficiently general \leadsto the map $P \mapsto Q'$ defined by $p_{ij}q'_{ij} = u_{i+}u_{ij}u_{+j}/(u_{++}^3)$ is a bijection between critical points of ℓ_U on M_r and those on M_{m-r+1} .

$$M_r := \{ P \in (\mathbb{C}^*)^{m \times n} \mid p_{++} = 1, \text{rk}(P) = r \}, m \le n$$

Theorem (D-Rodriguez, 2012)

 $U \in \mathbb{N}^{m \times n}$ sufficiently general \leadsto the map $P \mapsto Q'$ defined by $p_{ij}q'_{ij} = u_{i+}u_{ij}u_{+j}/(u_{++}^3)$ is a bijection between critical points of ℓ_U on M_r and those on M_{m-r+1} .

Remark

- $\ell_U(P)\ell_U(Q')$ independent of P
- P positive real \Leftrightarrow so is Q'
- $\ell_U(Q')$ decreases with increasing $\ell_U(P)$

$$M_r := \{ P \in (\mathbb{C}^*)^{m \times n} \mid p_{++} = 1, \text{rk}(P) = r \}, m \le n$$

Theorem (D-Rodriguez, 2012)

 $U \in \mathbb{N}^{m \times n}$ sufficiently general \leadsto the map $P \mapsto Q'$ defined by $p_{ij}q'_{ij} = u_{i+}u_{ij}u_{+j}/(u_{++}^3)$ is a bijection between critical points of ℓ_U on M_r and those on M_{m-r+1} .

Remark

- $\ell_U(P)\ell_U(Q')$ independent of P
- P positive real \Leftrightarrow so is Q'
- $\ell_U(Q')$ decreases with increasing $\ell_U(P)$

[&]quot; M_r and M_{m-r+1} are ML-dual"

 $M_r := \{P \in (\mathbb{C}^*)^{m \times n} \mid p_{++} = 1, \operatorname{rk}(P) = r\}, m \leq n$ U sufficiently general, P critical point for $\ell_U(P) = \prod_{ij} p_{ij}^{u_{ij}}$

Tangent space

$$T_P M_r = \{X \in \mathbb{C}^{m \times n} \mid x_{++} = 0, X \ker P \subseteq \operatorname{im} P\}$$

 $M_r := \{P \in (\mathbb{C}^*)^{m \times n} \mid p_{++} = 1, \operatorname{rk}(P) = r\}, m \leq n$ U sufficiently general, P critical point for $\ell_U(P) = \prod_{ij} p_{ij}^{u_{ij}}$

Tangent space

$$T_P M_r = \{X \in \mathbb{C}^{m \times n} \mid x_{++} = 0, X \ker P \subseteq \operatorname{im} P\}$$

$$\mathbf{1} := (1, \dots, 1) \in \mathbb{C}^m \text{ or } \mathbb{C}^n$$

$$M_r := \{P \in (\mathbb{C}^*)^{m \times n} \mid p_{++} = 1, \operatorname{rk}(P) = r\}, m \leq n$$

 U sufficiently general, P critical point for $\ell_U(P) = \prod_{ij} p_{ij}^{u_{ij}}$

Tangent space

$$T_P M_r = \{X \in \mathbb{C}^{m \times n} \mid x_{++} = 0, X \ker P \subseteq \operatorname{im} P\}$$

$$\mathbf{1} := (1, \dots, 1) \in \mathbb{C}^m \text{ or } \mathbb{C}^n$$

Lemma

P1 is proportional to U1

$$M_r := \{P \in (\mathbb{C}^*)^{m \times n} \mid p_{++} = 1, \operatorname{rk}(P) = r\}, m \leq n$$

 U sufficiently general, P critical point for $\ell_U(P) = \prod_{ij} p_{ij}^{u_{ij}}$

Tangent space

$$T_P M_r = \{X \in \mathbb{C}^{m \times n} \mid x_{++} = 0, X \ker P \subseteq \operatorname{im} P\}$$

$$\mathbf{1} := (1, \dots, 1) \in \mathbb{C}^m \text{ or } \mathbb{C}^n$$

Lemma

P1 is proportional to U1

$$X = \begin{bmatrix} p_{2+} \cdot p_{11} & \cdots & p_{2+} \cdot p_{1n} \\ -p_{1+} \cdot p_{21} & \cdots -p_{1+} \cdot p_{2n} \\ 0 & 0 \\ \vdots & \vdots & \vdots \\ 0 & \cdots & 0 \end{bmatrix} \in T_P M_r \leadsto 0 = \sum_{ij} \frac{x_{ij}}{p_{ij}} u_{ij}$$

$$M_r := \{P \in (\mathbb{C}^*)^{m \times n} \mid p_{++} = 1, \operatorname{rk}(P) = r\}, m \leq n$$

 U sufficiently general, P critical point for $\ell_U(P) = \prod_{ij} p_{ij}^{u_{ij}}$

Tangent space

$$T_P M_r = \{X \in \mathbb{C}^{m \times n} \mid x_{++} = 0, X \ker P \subseteq \operatorname{im} P\}$$

$$\mathbf{1} := (1, \dots, 1) \in \mathbb{C}^m \text{ or } \mathbb{C}^n$$

Lemma

P1 is proportional to U1

$$X = \begin{bmatrix} p_{2+} \cdot p_{11} & \cdots & p_{2+} \cdot p_{1n} \\ -p_{1+} \cdot p_{21} & \cdots -p_{1+} \cdot p_{2n} \\ 0 & 0 \\ \vdots & \vdots & \vdots \\ 0 & \cdots & 0 \end{bmatrix} \in T_P M_r \leadsto 0 = \sum_{ij} \frac{x_{ij}}{p_{ij}} u_{ij}$$

$$= p_{2+} \cdot u_{1+} - p_{1+} \cdot u_{2+}$$

 $M_r := \{P \in (\mathbb{C}^*)^{m \times n} \mid p_{++} = 1, \operatorname{rk}(P) = r\}, m \leq n$ U sufficiently general, P critical point for $\ell_U(P) = \prod_{ij} p_{ij}^{u_{ij}}$ P**1**, U**1** proportional (and so are $\mathbf{1}^T P$, $\mathbf{1}^T U$)

 $M_r := \{P \in (\mathbb{C}^*)^{m \times n} \mid p_{++} = 1, \operatorname{rk}(P) = r\}, m \leq n$ U sufficiently general, P critical point for $\ell_U(P) = \prod_{ij} p_{ij}^{u_{ij}}$ P**1**, U**1** proportional (and so are $\mathbf{1}^T P$, $\mathbf{1}^T U$)

Dual critical point

$$q_{ij} := u_{i+} \frac{u_{ij}}{p_{ij}} u_{+j}, q'_{ij} := q_{ij}/(u_{++}^3)$$

 $M_r := \{P \in (\mathbb{C}^*)^{m \times n} \mid p_{++} = 1, \operatorname{rk}(P) = r\}, m \leq n$ U sufficiently general, P critical point for $\ell_U(P) = \prod_{ij} p_{ij}^{u_{ij}}$ P**1**, U**1** proportional (and so are $\mathbf{1}^T P$, $\mathbf{1}^T U$)

Dual critical point

$$q_{ij} := u_{i+} \frac{u_{ij}}{p_{ij}} u_{+j}, q'_{ij} := q_{ij}/(u_{++}^3)$$

Proposition

$$q_{++} = u_{++}^3$$

 $M_r := \{P \in (\mathbb{C}^*)^{m \times n} \mid p_{++} = 1, \operatorname{rk}(P) = r\}, m \leq n$ U sufficiently general, P critical point for $\ell_U(P) = \prod_{ij} p_{ij}^{u_{ij}}$ P**1**, U**1** proportional (and so are $\mathbf{1}^T P$, $\mathbf{1}^T U$)

Dual critical point

$$q_{ij} := u_{i+} \frac{u_{ij}}{p_{ij}} u_{+j}, q'_{ij} := q_{ij}/(u_{++}^3)$$

Proposition

$$q_{++} = u_{++}^3$$

 $Y := (u_{i+} \cdot u_{+j})_{ij}$ satisfies $Y \ker P \subseteq \operatorname{im} P$ P satisfies $P \ker P \subseteq \operatorname{im} P$

 $M_r := \{P \in (\mathbb{C}^*)^{m \times n} \mid p_{++} = 1, \operatorname{rk}(P) = r\}, m \leq n$ U sufficiently general, P critical point for $\ell_U(P) = \prod_{ij} p_{ij}^{u_{ij}}$ P**1**, U**1** proportional (and so are $\mathbf{1}^T P$, $\mathbf{1}^T U$)

Dual critical point

$$q_{ij} := u_{i+} \frac{u_{ij}}{p_{ij}} u_{+j}, q'_{ij} := q_{ij}/(u_{++}^3)$$

Proposition

$$q_{++} = u_{++}^3$$

$$Y := (u_{i+} \cdot u_{+j})_{ij}$$
 satisfies $Y \ker P \subseteq \operatorname{im} P$ $\longrightarrow Y - cP \in T_P M_r$
 $P \text{ satisfies } P \ker P \subseteq \operatorname{im} P$ $c = y_{++}/p_{++} = u_{++}^2$

Normalisation of Q

 $M_r := \{P \in (\mathbb{C}^*)^{m \times n} \mid p_{++} = 1, \operatorname{rk}(P) = r\}, m \leq n$ U sufficiently general, P critical point for $\ell_U(P) = \prod_{ij} p_{ij}^{u_{ij}}$ P**1**, U**1** proportional (and so are $\mathbf{1}^T P$, $\mathbf{1}^T U$)

Dual critical point

$$q_{ij} := u_{i+} \frac{u_{ij}}{p_{ij}} u_{+j}, q'_{ij} := q_{ij}/(u_{++}^3)$$

Proposition

$$q_{++} = u_{++}^3$$

$$Y := (u_{i+} \cdot u_{+j})_{ij}$$
 satisfies $Y \ker P \subseteq \operatorname{im} P$ $\longrightarrow Y - cP \in T_P M_r$
 $P \text{ satisfies } P \ker P \subseteq \operatorname{im} P$ $c = y_{++}/p_{++} = u_{++}^2$

$$\sum_{ij} q_{ij} = \sum_{ij} y_{ij} \frac{u_{ij}}{p_{ij}} = \sum_{ij} c p_{ij} \frac{u_{ij}}{p_{ij}} = (u_{++})^3$$

$$M_r := \{ P \in (\mathbb{C}^*)^{m \times n} \mid p_{++} = 1, \text{rk}(P) = r \}, m \le n$$

$$Q = R \cdot (\frac{U}{P}) \cdot K, R = \text{diag}(U\mathbf{1}), K = \text{diag}(\mathbf{1}^T U)$$

$$M_r := \{ P \in (\mathbb{C}^*)^{m \times n} \mid p_{++} = 1, \operatorname{rk}(P) = r \}, m \le n$$

$$Q = R \cdot (\frac{U}{P}) \cdot K, R = \operatorname{diag}(U\mathbf{1}), K = \operatorname{diag}(\mathbf{1}^T U)$$

Lemma

 $T_P M_r$ is spanned by rank-one matrices vw^T with $(v \in \text{im} P \text{ or } w \perp \text{ker } P)$ and $(v \perp \mathbf{1} \text{ or } w \perp \mathbf{1})$.

$$M_r := \{ P \in (\mathbb{C}^*)^{m \times n} \mid p_{++} = 1, \operatorname{rk}(P) = r \}, m \le n$$

$$Q = R \cdot (\frac{U}{P}) \cdot K, R = \operatorname{diag}(U\mathbf{1}), K = \operatorname{diag}(\mathbf{1}^T U)$$

Lemma

 $T_P M_r$ is spanned by rank-one matrices vw^T with $(v \in \text{im} P \text{ or } w \perp \text{ker } P)$ and $(v \perp \mathbf{1} \text{ or } w \perp \mathbf{1})$.

Derivative

$$(d_P \ell_U)(vw^T) = \sum_{ij} v_i \frac{u_{ij}}{p_{ij}} w_j = v^t R^{-1} Q K^{-1} w$$

$$M_r := \{ P \in (\mathbb{C}^*)^{m \times n} \mid p_{++} = 1, \text{rk}(P) = r \}, m \le n$$

$$Q = R \cdot (\frac{U}{P}) \cdot K, R = \text{diag}(U\mathbf{1}), K = \text{diag}(\mathbf{1}^T U)$$

Lemma

 $T_P M_r$ is spanned by rank-one matrices vw^T with $(v \in \text{im} P \text{ or } w \perp \text{ker } P)$ and $(v \perp \mathbf{1} \text{ or } w \perp \mathbf{1})$.

Derivative

$$(d_P \ell_U)(vw^T) = \sum_{ij} v_i \frac{u_{ij}}{p_{ij}} w_j = v^t R^{-1} Q K^{-1} w$$

Proposition

 $\ker Q \supseteq K^{-1}(\ker P + \mathbb{C}\mathbf{1})^{\perp} \text{ and } \operatorname{im} Q \subseteq (R^{-1}(\operatorname{im} P \cap \mathbf{1}^{\perp}))^{\perp}$

$$M_r := \{ P \in (\mathbb{C}^*)^{m \times n} \mid p_{++} = 1, \text{rk}(P) = r \}, m \le n$$

$$Q = R \cdot (\frac{U}{P}) \cdot K, R = \text{diag}(U\mathbf{1}), K = \text{diag}(\mathbf{1}^T U)$$

Lemma

 $T_P M_r$ is spanned by rank-one matrices vw^T with $(v \in \text{im} P \text{ or } w \perp \text{ker } P)$ and $(v \perp \mathbf{1} \text{ or } w \perp \mathbf{1})$.

Derivative

$$(d_P \ell_U)(vw^T) = \sum_{ij} v_i \frac{u_{ij}}{p_{ij}} w_j = v^t R^{-1} Q K^{-1} w$$

Proposition

 $\ker Q \supseteq K^{-1}(\ker P + \mathbb{C}\mathbf{1})^{\perp} \text{ and } \operatorname{im} Q \subseteq (R^{-1}(\operatorname{im} P \cap \mathbf{1}^{\perp}))^{\perp}$

$$\rightsquigarrow$$
 rk $Q =: s \le m - r + 1$

 $P\mathbf{1}, U\mathbf{1} = R\mathbf{1}$ proportional (and so are $\mathbf{1}^T P, \mathbf{1}^T U = \mathbf{1}^T K$) $Q = R \cdot (\frac{U}{P}) \cdot K$, $\operatorname{rk} Q = s \leq m - r + 1$, $\ker Q \supseteq K^{-1}(\ker P + \mathbb{C}\mathbf{1})^{\perp} =: W$ $\operatorname{im} Q \subseteq (R^{-1}(\operatorname{im} P \cap \mathbf{1}^{\perp}))^{\perp} =: V$

 $P\mathbf{1}, U\mathbf{1} = R\mathbf{1}$ proportional (and so are $\mathbf{1}^T P, \mathbf{1}^T U = \mathbf{1}^T K$) $Q = R \cdot (\frac{U}{P}) \cdot K$, $\operatorname{rk} Q = s \leq m - r + 1$, $\ker Q \supseteq K^{-1}(\ker P + \mathbb{C}\mathbf{1})^{\perp} =: W$ $\operatorname{im} Q \subseteq (R^{-1}(\operatorname{im} P \cap \mathbf{1}^{\perp}))^{\perp} =: V$

Proposition

For all $x \in \mathbb{C}^m$, $y \in \mathbb{C}^n$ with $(x \in V \text{ or } y \perp W)$ and $(x \perp \mathbf{1} \text{ or } y \perp \mathbf{1})$ we have $x^T R^{-1} P K^{-1} y = 0$.

 $P\mathbf{1}, U\mathbf{1} = R\mathbf{1}$ proportional (and so are $\mathbf{1}^T P, \mathbf{1}^T U = \mathbf{1}^T K$) $Q = R \cdot (\frac{U}{P}) \cdot K$, $\operatorname{rk} Q = s \leq m - r + 1$, $\ker Q \supseteq K^{-1}(\ker P + \mathbb{C}\mathbf{1})^{\perp} =: W$ $\operatorname{im} Q \subseteq (R^{-1}(\operatorname{im} P \cap \mathbf{1}^{\perp}))^{\perp} =: V$

Proposition

For all $x \in \mathbb{C}^m$, $y \in \mathbb{C}^n$ with $(x \in V \text{ or } y \perp W)$ and $(x \perp \mathbf{1} \text{ or } y \perp \mathbf{1})$ we have $x^T R^{-1} P K^{-1} y = 0$.

E.g.,
$$x \in V$$
 and $x \perp \mathbf{1} \leadsto PK^{-1}y = cR\mathbf{1} + v$ with $v \in \text{im}P \cap \mathbf{1}^{\perp}$ $\leadsto x^{T}R^{-1}PK^{-1}y = cx^{T}\mathbf{1} + x^{T}R^{-1}v = 0 + 0 = 0$

 $P\mathbf{1}, U\mathbf{1} = R\mathbf{1}$ proportional (and so are $\mathbf{1}^T P, \mathbf{1}^T U = \mathbf{1}^T K$) $Q = R \cdot (\frac{U}{P}) \cdot K$, $\operatorname{rk} Q = s \leq m - r + 1$, $\ker Q \supseteq K^{-1}(\ker P + \mathbb{C}\mathbf{1})^{\perp} =: W$ $\operatorname{im} Q \subseteq (R^{-1}(\operatorname{im} P \cap \mathbf{1}^{\perp}))^{\perp} =: V$

Proposition

For all $x \in \mathbb{C}^m$, $y \in \mathbb{C}^n$ with $(x \in V \text{ or } y \perp W)$ and $(x \perp \mathbf{1} \text{ or } y \perp \mathbf{1})$ we have $x^T R^{-1} P K^{-1} y = 0$.

E.g.,
$$x \in V$$
 and $x \perp \mathbf{1} \leadsto PK^{-1}y = cR\mathbf{1} + v$ with $v \in \text{im}P \cap \mathbf{1}^{\perp}$ $\leadsto x^TR^{-1}PK^{-1}y = cx^T\mathbf{1} + x^TR^{-1}v = 0 + 0 = 0$

In particular for $x \in \text{im}Q$ or $y \perp \text{ker} Q \rightsquigarrow Q'$ critical in M_s !

Crit(
$$M_r$$
) \longrightarrow Crit($M_{f(r)}$), $f(r) = s \le m - r + 1$
(P, U) \longrightarrow (($R \cdot \frac{U}{P} \cdot K$)/(u_{++}^3), U)

Crit(
$$M_r$$
) \cdots Crit($M_{f(r)}$), $f(r) = s \le m - r + 1$
(P, U) \cdots ($(R \cdot \frac{U}{P} \cdot K)/(u_{++}^3), U$)

Observation

- ψ_r injective
- ψ_r dominant (both spaces have dimension mn-1)

Crit(
$$M_r$$
) \longrightarrow Crit($M_{f(r)}$), $f(r) = s \le m - r + 1$
(P, U) \longrightarrow ($(R \cdot \frac{U}{P} \cdot K)/(u_{++}^3), U$)

Observation

- ψ_r injective
- ψ_r dominant (both spaces have dimension mn-1)
- $\rightsquigarrow \psi_r$ birational, $f: \{1, \ldots, m\} \rightarrow \{1, \ldots, m\}$ bijection
- $\rightsquigarrow f(r) = m r + 1$

Crit(
$$M_r$$
) \longrightarrow Crit($M_{f(r)}$), $f(r) = s \le m - r + 1$
(P, U) \longrightarrow ($(R \cdot \frac{U}{P} \cdot K)/(u_{++}^3), U$)

Observation

- ψ_r injective
- ψ_r dominant (both spaces have dimension mn-1)

$$\rightsquigarrow \psi_r$$
 birational, $f: \{1, \ldots, m\} \rightarrow \{1, \ldots, m\}$ bijection

$$\rightsquigarrow f(r) = m - r + 1$$

Theorem (D-Rodriguez, 2012)

 M_r and M_{m-r+1} are ML-dual.

Crit(
$$M_r$$
) \longrightarrow Crit($M_{f(r)}$), $f(r) = s \le m - r + 1$
(P, U) \longrightarrow ($(R \cdot \frac{U}{P} \cdot K)/(u_{++}^3), U$)

Observation

- ψ_r injective
- ψ_r dominant (both spaces have dimension mn-1)

$$\rightsquigarrow \psi_r$$
 birational, $f: \{1, \ldots, m\} \rightarrow \{1, \ldots, m\}$ bijection

$$\rightsquigarrow f(r) = m - r + 1$$

Theorem (D-Rodriguez, 2012)

 M_r and M_{m-r+1} are ML-dual.

Further work

symmetric/alternating matrices! tensors? other ML-dual pairs of varieties?