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Algebraic matroids 3

K algebraically closed, X € K* irreducible

X7 <
~»> algebraic matroid M(X) on E: e e
I C E independent :< X — K! dominant S

AY

Example (Fano and non-Fano): K = F,,

X =im[K> = K/, (x,y,2) & (X, 7, 2, }—=2, ¥, ¥, ¥~+3—+=)]
yZ Xz XYy Xyz

lalgebraic matroids} is closed under deletion and contraction

BIG OPEN QUESTIONS:

e 1s algebraic realisability decidable?

e is the class closed under duality?

e how many algebraic matroids are there?



Application: matrix completion

General observation: / independent & Trop(X) — R! surjective.

Xonnr = {matrices of rank < r} € K™*"
[ C [m] X [n] independent < a general partial /-matrix /K can be

completed to a rank-< r-matrix.
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Open: can independence in M(X,,, ) be tested in poly time?

Theorem (Daniel Bernstein): For r = 2, [ is independent iff 7 has
an acyclic orientation without alternating cycles.

Proof uses Trop(Gry ;,+,) € Trop({skew-symmetric matrices}).



Characteristic zero vs nonzero 5

Lemma (Ingleton)
If charK = 0O, then {matroids algebraic/K }={matroids linear/K}.

Proof: For general v € X, M(T,X) = M(X).
~» answers 1n char 0: yes, yes, 0 percent (Nelson, 2017).

Does not work in char p > 0:

Example
X ={(@1t")|t e K}, M(X) has bases {1}, {2}
but 7, X = ((1,0)) so M(T,X) only has basis {1}.

Way out (Lindstrom): replace X by {(x’l’ X)) | x € X} =Y =
{(t,) |t e K}and T,Y = ((1,1)) with M(T,Y) = M(Y) = M(X).



An algebraic but nonlinear matroid

4

only linear in char 2 not linear 1n char 2

yZ

X Xy X+y y

~» M(X) 1s a nonlinear but algebraic matroid

~» cannot find a Y € K'Y with v € Y such that M(T,Y) = M(X)

Way out: Frobenius flocks!



F : a — a? the Frobenius automorphism
ZF acts on K- via av := (F~%v,),cg by Zariski-homeomorphisms

For X € K* and a € Z* have M(X) = M(aX).

Theorem (Bollen—Draisma—Pendavingh)

For general v € X, the map V : Z¥ — Gr(d, K*), V(@) = ToaX
has the following properties:

(FF1) Vo, Ne =diag(l,...,1,0,1,...,1)Vyq,

(FF2) Vo1 =1V,

and moreover Bases(M(X)) = |, Bases(M(V(a))).

Definition
A map V satistying (FF1), (FF2) 1s called a Frobenius flock.



Example 1 :

(FF1) V, Ne; = diag(l,...,1,0,1,..., 1)Vyy,, (FF2) Vo =1V,
(X =)Vo =((1,a)),a#0
Vo Ney =1{(0,0)} = diag(0, Ve, ~> V,, =((1,0))

. (1,a))

FF2 yields: (0, 1))

o 0

(La))  1,0)) 1,0y  ((1,0))




X ={(6y,x+y,x+y")) [ (x,y) € K*} S K* g > 1, M(X) = Upy

1 0 1 1

01 1 0 ], so 1,4 parallel in M(TyX).

ToX = row space of [

(—ez — e3)X = {(x,y, X" + y, x + Y7 ) | (x,y) € K?}
0O 0 1
1 1 O

To(—ey — e3)X = row space of (1)

]; also 2, 3 parallel.

(—gex — ge3)X = {(x, v, xP) +y,x +y) | (x,y) € K?}

1 0 0 1

0 1 1 1];1,41ndep.

To(—ger — ge3)X = row space of [



Example 2, continued 10

Cells where M(T,.(aX)) 1s constant:

These cells are alcoved polytopes: max-plus and min-plus closed.



Matroid flocks from valuations and vice versa 11

Definition (Dress-Wenzel)

A matroid valuation 1s a map v : {d-sets in E} — R U {oo} such
that v(B) # oo for some B and VB,B’, i € B\ B" dj € B'\ B :
v(iB)+v(B")>v(B—i+ j)+v(B +i—)).

(v then lies in the Dressian and defines a tropical linear space)

Observations
v ~» two matroids: MY := {B | v(B) < oo} and {B | v(B) minimal};
and v'(B) := v(B) — « - e is a valuation for each @ € R”.

Theorem (Bollen-Draisma-Pendavingh)

Given a Z U {oo}-valued v, set M} := {B | v(B) — a - ep minimal}
for each @ € ZE. This satisfies matroid analogues of FF1,FF2.
Conversely, each such matroid flock arises in this manner.



Overview

(X, v) > (a— T,aX)

12

{algebraic varieties X C K¥}—— {Frobenius flocks V : @ — V,}

X — M(X)

| M — | ], {bases of M}

Vi (@ M(V,))

v

{Matroids on E} = \ {Matroid flocks M : a — M}

N

Murota—thanks to Yu! H

{Z U {oo}-valued matroid valuations}

So to a d-dimensional algebraic variety X C K% in char p we
associate the Lindstrom valuation v* : {d-subsets of E} — ZU{co}.
Cartwright found a direct construction of v*.



Monomial parameterisations 13

¢ : (K*)* — (K*)" monomial map, ¢(r) = (¢4, 142, ..., 1),
where A € Z4". Set X := ime.

Theorem:
vX sends B C [n], |B| = d to the p-adic valuation of det A[B].

Generalises? G a 1-dimensional algebraic group defined over F,.
E :=End(G)has F € E.
A € E®" s a d-dimensional subgroup X € G”

Theorem (I think):
vx(B) = number of factors F' in the Smith normal form of A.
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Definition (Dress-Wenzel)
A matroid M 1s rigid if every valuation v with MY = M 1s of the
form M — R, B — « - eg for some a € RE.

Theorem

A rigid matroid 1s algebraically representable over an algebraically
closed field K of positive characteristic if and only if 1t is linearly
representable over K.

Proof

If X 1s an algebraic representation, then the Lindstrom valuation
vX + M(X) —» Z sends B — «a - eg for some @ € ZE. Then
M} = M”. Now M(X) = M(T,aX) for x € X general. O

Applies to projective planes over finite fields!
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Frobenius flocks ...

e have deletion/contraction
e are almost preserved under duality (replace F by F~ 1)
e allow for circuit hyperplane relaxations

e so Vamos is Frobenius flock realisable (and many more!):

b
\ < 4

arXiv:1701.06384 (Adv. Math. 323, 2018) Thank you!
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