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3Algebraic matroids

K algebraically closed, X ⊆ KE irreducible

 algebraic matroid M(X) on E:
I ⊆ E independent :⇔ X → K I dominant

Example (Fano and non-Fano): K = F2,
X = im[K3 → K7, (x, y, z) 7→ (x, y, z, y + z, x + z, x + y, x + y + z)]
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x + z y + z

{algebraic matroids} is closed under deletion and contraction

BIG OPEN QUESTIONS:
• is algebraic realisability decidable?
• is the class closed under duality?
• how many algebraic matroids are there?
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4Application: matrix completion

Xm,n,r = {matrices of rank ≤ r} ⊆ Km×n

I ⊆ [m] × [n] independent⇔ a general partial I-matrix /K can be
completed to a rank-≤ r-matrix.

r = 1 :

Open: can independence in M(Xm,n,r) be tested in poly time?

General observation: I independent⇔ Trop(X)→ RI surjective.

Theorem (Daniel Bernstein): For r = 2, I is independent iff I has
an acyclic orientation without alternating cycles.

t1l1t1l2
t2l2t2l3

t3l1 t3l3

t1l1t1l2
t2l2t2l3

t3l3t3l4

Proof uses Trop(Gr2,m+n) ⊆ Trop({skew-symmetric matrices}).



5Characteristic zero vs nonzero

Lemma (Ingleton)
If charK = 0, then {matroids algebraic/K}={matroids linear/K}.

Proof: For general v ∈ X, M(TvX) = M(X).

 answers in char 0: yes, yes, 0 percent (Nelson, 2017).

Does not work in char p > 0:

Example
X = {(t, tp) | t ∈ K}, M(X) has bases {1}, {2}
but TvX = 〈(1, 0)〉 so M(TvX) only has basis {1}.

Way out (Lindström): replace X by {(xp
1 , x2) | x ∈ X} = Y =

{(t, t) | t ∈ K} and TvY = 〈(1, 1)〉 with M(TvY) = M(Y) = M(X).



6An algebraic but nonlinear matroid

x y

z

x + z y + z

x + yxy

yzxz

only linear in char 2 not linear in char 2

 M(X) is a nonlinear but algebraic matroid

 cannot find a Y ⊆ K10 with v ∈ Y such that M(TvY) = M(X)

Way out: Frobenius flocks!



7Frobenius flocks

F : a 7→ ap the Frobenius automorphism
ZE acts on KE via αv := (F−αi vi)i∈E by Zariski-homeomorphisms

For X ⊆ KE and α ∈ ZE have M(X) = M(αX).

Theorem (Bollen–Draisma–Pendavingh)
For general v ∈ X, the map V : ZE → Gr(d,KE),V(α) = TαvαX
has the following properties:
(FF1) Vα ∩ e⊥i = diag(1, . . . , 1, 0, 1, . . . , 1)Vα+ei

(FF2) Vα+1 = 1Vα

and moreover Bases(M(X)) =
⋃
α Bases(M(V(α))).

Definition
A map V satisfying (FF1), (FF2) is called a Frobenius flock.



8Example 1

〈(1, a)〉

〈(0, 1)〉

〈(1, 0)〉

FF2 yields:

〈(1, 0)〉 〈(1, 0)〉

〈(1, a−p2
)〉

(FF1) Vα ∩ e⊥i = diag(1, . . . , 1, 0, 1, . . . , 1)Vα+ei (FF2) Vα+1 = 1Vα

(X =)V0 = 〈(1, a)〉, a , 0

V0 ∩ e⊥1 = {(0, 0)} = diag(0, 1)Ve1  Ve1 = 〈(1, 0)〉



9Example 2

X = {(x, y, x + y, x + y(pg)) | (x, y) ∈ K2} ⊆ K4, g > 1,M(X) = U2,4

T0X = row space of
[

1 0 1 1
0 1 1 0

]
, so 1, 4 parallel in M(T0X).

(−e2 − e3)X = {(x, y, xp + y, x + y(pg−1)) | (x, y) ∈ K2}

T0(−e2 − e3)X = row space of
[

1 0 0 1
0 1 1 0

]
; also 2, 3 parallel.

T0(−ge2 − ge3)X = row space of
[

1 0 0 1
0 1 1 1

]
; 1, 4 indep.

(−ge2 − ge3)X = {(x, y, x(pg) + y, x + y) | (x, y) ∈ K2}



10Example 2, continued

Cells where M(Tαx(αX)) is constant:

These cells are alcoved polytopes: max-plus and min-plus closed.



11Matroid flocks from valuations and vice versa

Definition (Dress-Wenzel)
A matroid valuation is a map ν : {d-sets in E} → R ∪ {∞} such
that ν(B) , ∞ for some B and ∀B, B′, i ∈ B \ B′ ∃ j ∈ B′ \ B :
ν(B) + ν(B′) ≥ ν(B − i + j) + ν(B′ + i − j).

(ν then lies in the Dressian and defines a tropical linear space)

Observations
ν two matroids: Mν := {B | ν(B) < ∞} and {B | ν(B) minimal};
and ν′(B) := ν(B) − α · eB is a valuation for each α ∈ RE .

Theorem (Bollen-Draisma-Pendavingh)
Given a Z ∪ {∞}-valued ν, set Mν

α := {B | ν(B) − α · eB minimal}
for each α ∈ ZE . This satisfies matroid analogues of FF1,FF2.
Conversely, each such matroid flock arises in this manner.



12Overview

{algebraic varieties X ⊆ KE} {Frobenius flocks V : α 7→ Vα}

{Matroid flocks M : α 7→ Mα}

{Z ∪ {∞}-valued matroid valuations}

{Matroids on E}

Murota–thanks to Yu!

X 7→ M(X)

(X, v) 7→ (α 7→ TαvαX)

V 7→ (α 7→ M(Vα))

M 7→
⋃
α{bases of Mα}

ν 7→ Mν

So to a d-dimensional algebraic variety X ⊆ KE in char p we
associate the Lindstrom valuation νX : {d-subsets of E} → Z∪{∞}.
Cartwright found a direct construction of νX .



13Monomial parameterisations

ϕ : (K∗)d → (K∗)n monomial map, ϕ(t) = (tAe1 , tAe2 , . . . , tAen ),
where A ∈ Zd×n. Set X := imϕ.

Theorem:
νX sends B ⊆ [n], |B| = d to the p-adic valuation of det A[B].

Generalises? G a 1-dimensional algebraic group defined over Fp.
E := End(G) has F ∈ E.
A ∈ Ed×n  a d-dimensional subgroup X ⊆ Gn

Theorem (I think):
νX(B) = number of factors F in the Smith normal form of A.



14Rigidity

Definition (Dress-Wenzel)
A matroid M is rigid if every valuation ν with Mν = M is of the
form M → R, B 7→ α · eB for some α ∈ RE .

Theorem
A rigid matroid is algebraically representable over an algebraically
closed field K of positive characteristic if and only if it is linearly
representable over K.

Proof
If X is an algebraic representation, then the Lindström valuation
νX : M(X) → Z sends B 7→ α · eB for some α ∈ ZE . Then
Mν
α = Mν. Now M(X) = M(TαxαX) for x ∈ X general. �

Applies to projective planes over finite fields!



15Properties of Frobenius flocks

Frobenius flocks . . .

• have deletion/contraction

• are almost preserved under duality (replace F by F−1)
• allow for circuit hyperplane relaxations
• so Vamos is Frobenius flock realisable (and many more!):

arXiv:1701.06384 (Adv. Math. 323, 2018) Thank you!
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