Tropical aspects of algebraic matroids

Jan Draisma Universität Bern and TU Eindhoven (w/ Rudi Pendavingh and Guus Bollen TU/e)

SIAGA:

SIAM AG 19: 9–13 July 2019, Bern

K algebraically closed, $X \subseteq K^E$ irreducible

 \rightsquigarrow algebraic matroid M(X) on E:

 $I \subseteq E$ independent : $\Leftrightarrow X \to K^I$ dominant

Example (Fano and non-Fano): $K = \overline{\mathbb{F}_2}$,

$$X = \operatorname{im}[K^3 \to K^7, (x, y, z) \mapsto (x, y, z, y + z, x + z, x + y, x + y + z)]$$

$$yz \quad xz \quad xy \quad xyz$$

{algebraic matroids} is closed under deletion and contraction

BIG OPEN QUESTIONS:

- is algebraic realisability decidable?
- is the class closed under duality?
- how many algebraic matroids are there?

General observation: *I* independent \Leftrightarrow Trop(X) $\to \mathbb{R}^I$ surjective.

 $X_{m,n,r} = \{\text{matrices of rank} \le r\} \subseteq K^{m \times n}$ $I \subseteq [m] \times [n] \text{ independent} \Leftrightarrow \text{a general partial } I\text{-matrix }/K \text{ can be completed to a rank-} \le r\text{-matrix.}$

Open: can independence in $M(X_{m,n,r})$ be tested in poly time?

Theorem (Daniel Bernstein): For r = 2, I is independent iff I has an acyclic orientation without alternating cycles.

Proof uses $\text{Trop}(\text{Gr}_{2,m+n}) \subseteq \text{Trop}(\{\text{skew-symmetric matrices}\}).$

Lemma (Ingleton)

If char K = 0, then {matroids algebraic/K}={matroids linear/K}.

Proof: For general $v \in X$, $M(T_vX) = M(X)$.

→ answers in char 0: yes, yes, 0 percent (Nelson, 2017).

Does not work in char p > 0:

Example

 $X = \{(t, t^p) \mid t \in K\}, M(X) \text{ has bases } \{1\}, \{2\}$ but $T_v X = \langle (1, 0) \rangle$ so $M(T_v X)$ only has basis $\{1\}$.

Way out (Lindström): replace *X* by $\{(x_1^p, x_2) \mid x \in X\} = Y = \{(t, t) \mid t \in K\}$ and $T_v Y = \langle (1, 1) \rangle$ with $M(T_v Y) = M(Y) = M(X)$.

 $\rightsquigarrow M(X)$ is a nonlinear but algebraic matroid

 \rightsquigarrow cannot find a $Y \subseteq K^{10}$ with $v \in Y$ such that $M(T_v Y) = M(X)$

Way out: Frobenius flocks!

 $F: a \mapsto a^p$ the Frobenius automorphism

 \mathbb{Z}^E acts on K^E via $\alpha v := (F^{-\alpha_i} v_i)_{i \in E}$ by Zariski-homeomorphisms

For $X \subseteq K^E$ and $\alpha \in \mathbb{Z}^E$ have $M(X) = M(\alpha X)$.

Theorem (Bollen-Draisma-Pendavingh)

For general $v \in X$, the map $V : \mathbb{Z}^E \to Gr(d, K^E)$, $V(\alpha) = T_{\alpha v} \alpha X$ has the following properties:

(FF1)
$$V_{\alpha} \cap e_i^{\perp} = \operatorname{diag}(1, \dots, 1, 0, 1, \dots, 1) V_{\alpha + e_i}$$

(FF2) $V_{\alpha + 1} = \mathbf{1} V_{\alpha}$
and moreover $\operatorname{Bases}(M(X)) = \bigcup_{\alpha} \operatorname{Bases}(M(V(\alpha))).$

Definition

A map V satisfying (FF1), (FF2) is called a Frobenius flock.

(FF1)
$$V_{\alpha} \cap e_{i}^{\perp} = \text{diag}(1, \dots, 1, 0, 1, \dots, 1) V_{\alpha + e_{i}}$$
 (FF2) $V_{\alpha + 1} = \mathbf{1} V_{\alpha}$
 $(X =) V_{0} = \langle (1, a) \rangle, a \neq 0$

$$V_0 \cap e_1^{\perp} = \{(0,0)\} = \text{diag}(0,1)V_{e_1} \rightsquigarrow V_{e_1} = \langle (1,0) \rangle$$

$$X = \{(x, y, x + y, x + y^{(p^g)}) \mid (x, y) \in K^2\} \subseteq K^4, g > 1, M(X) = U_{2,4}$$

$$T_0X = \text{row space of} \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$
, so 1,4 parallel in $M(T_0X)$.

$$(-e_2 - e_3)X = \{(x, y, x^p + y, x + y^{(p^{g-1})}) \mid (x, y) \in K^2\}$$

$$T_0(-e_2 - e_3)X = \text{row space of } \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$
; also 2, 3 parallel.

$$(-ge_2 - ge_3)X = \{(x, y, x^{(p^g)} + y, x + y) \mid (x, y) \in K^2\}$$

$$T_0(-ge_2 - ge_3)X = \text{row space of} \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}$$
; 1,4 indep.

Cells where $M(T_{\alpha x}(\alpha X))$ is constant:

These cells are *alcoved polytopes*: max-plus and min-plus closed.

Definition (Dress-Wenzel)

A matroid valuation is a map $\nu : \{d\text{-sets in } E\} \to \mathbb{R} \cup \{\infty\}$ such that $\nu(B) \neq \infty$ for some B and $\forall B, B', i \in B \setminus B' \exists j \in B' \setminus B : \nu(B) + \nu(B') \geq \nu(B - i + j) + \nu(B' + i - j)$.

(ν then lies in the *Dressian* and defines a tropical linear space)

Observations

 $\nu \rightsquigarrow$ two matroids: $M^{\nu} := \{B \mid \nu(B) < \infty\}$ and $\{B \mid \nu(B) \text{ minimal}\}$; and $\nu'(B) := \nu(B) - \alpha \cdot e_B$ is a valuation for each $\alpha \in \mathbb{R}^E$.

Theorem (Bollen-Draisma-Pendavingh)

Given a $\mathbb{Z} \cup \{\infty\}$ -valued ν , set $M_{\alpha}^{\nu} := \{B \mid \nu(B) - \alpha \cdot e_B \text{ minimal}\}$ for each $\alpha \in \mathbb{Z}^E$. This satisfies matroid analogues of FF1,FF2. Conversely, each such *matroid flock* arises in this manner.

$$(X, v) \mapsto (\alpha \mapsto T_{\alpha v} \alpha X)$$
{algebraic varieties $X \subseteq K^E$ } \longrightarrow {Frobenius flocks $V : \alpha \mapsto V_{\alpha}$ }
$$X \mapsto M(X) \qquad V \mapsto (\alpha \mapsto M(V_{\alpha}))$$

$$M \mapsto \bigcup_{\alpha} \{\text{bases of } M_{\alpha}\}$$

{Matroids on E} \longrightarrow {Matroid flocks $M: \alpha \mapsto M_{\alpha}$ } $\vee \mapsto M^{\vee}$ $\vee \mapsto M^{\vee}$ $\vee \mapsto M^{\vee}$ { $\mathbb{Z} \cup \{\infty\}$ -valued matroid valuations}

So to a d-dimensional algebraic variety $X \subseteq K^E$ in char p we associate the $Lindstrom\ valuation\ v^X: \{d\text{-subsets of}\ E\} \to \mathbb{Z} \cup \{\infty\}.$ Cartwright found a direct construction of v^X .

 $\varphi: (K^*)^d \to (K^*)^n \text{ monomial map, } \varphi(t) = (t^{Ae_1}, t^{Ae_2}, \dots, t^{Ae_n}),$ where $A \in \mathbb{Z}^{d \times n}$. Set $X := \overline{\text{im}\varphi}$.

Theorem:

 v^X sends $B \subseteq [n], |B| = d$ to the p-adic valuation of det A[B].

Generalises? G a 1-dimensional algebraic group defined over \mathbb{F}_p . $E := \operatorname{End}(G)$ has $F \in E$.

 $A \in E^{d \times n} \leadsto$ a *d*-dimensional subgroup $X \subseteq G^n$

Theorem (I think):

 $\nu_X(B)$ = number of factors F in the Smith normal form of A.

Definition (Dress-Wenzel)

A matroid M is *rigid* if every valuation ν with $M^{\nu} = M$ is of the form $M \to \mathbb{R}$, $B \mapsto \alpha \cdot e_B$ for some $\alpha \in \mathbb{R}^E$.

Theorem

A rigid matroid is algebraically representable over an algebraically closed field K of positive characteristic if and only if it is linearly representable over K.

Proof

If X is an algebraic representation, then the Lindström valuation $v^X: M(X) \to \mathbb{Z}$ sends $B \mapsto \alpha \cdot e_B$ for some $\alpha \in \mathbb{Z}^E$. Then $M_{\alpha}^{\nu} = M^{\nu}$. Now $M(X) = M(T_{\alpha x} \alpha X)$ for $x \in X$ general. \square

Applies to projective planes over finite fields!

Frobenius flocks ...

- have deletion/contraction
- are *almost* preserved under duality (replace F by F^{-1})
- allow for circuit hyperplane relaxations
- so Vamos is Frobenius flock realisable (and many more!):

arXiv:1701.06384 (Adv. Math. 323, 2018)

Thank you!