Tensor varieties: uniformity for limits and singularities

Definition

closed

Tensor variety $Y: V \mapsto Y(V) \subseteq T(V)$ s.t. $\forall \text{ lin } \varphi: V \to W: T(\varphi)Y(V) \subseteq Y(W)$.

Definition

closed

Tensor variety
$$Y: V \mapsto Y(V) \subseteq T(V)$$
 s.t. $\forall \ln \varphi: V \to W: T(\varphi)Y(V) \subseteq Y(W)$. Set $Y(\varphi) := T(\varphi)|_{Y(V)}$.

Definition

closed

Tensor variety
$$Y: V \mapsto Y(V) \subseteq T(V)$$
 s.t. $\forall \ln \varphi: V \to W: T(\varphi)Y(V) \subseteq Y(W)$. Set $Y(\varphi) := T(\varphi)|_{Y(V)}$.

Example (border quadric rank \leq 3)

$$Y(V) = \overline{\{f_1g_1 + f_2g_2 + f_3g_3 \mid f_i, g_i \in S^2V\}} \subseteq S^4V.$$

Definition

closed

Tensor variety
$$Y: V \mapsto Y(V) \subseteq T(V)$$
 s.t. $\forall \ln \varphi: V \to W: T(\varphi)Y(V) \subseteq Y(W)$. Set $Y(\varphi) := T(\varphi)|_{Y(V)}$.

Example (border quadric rank \leq 3)

$$Y(V) = \overline{\{f_1g_1 + f_2g_2 + f_3g_3 \mid f_i, g_i \in S^2V\}} \subseteq S^4V.$$

Definition

Morphism
$$\alpha: X \to Y$$
:
 $V \mapsto \alpha_V : X(V) \to Y(V)$ s.t. $\forall \varphi$: $X(\varphi) \downarrow X(\varphi) \downarrow Y(\varphi)$
 $X(W) \xrightarrow{\alpha_W} Y(W)$

Image closure of morphisms

 $\alpha: X \to Y$ a morphism $\leadsto \overline{\text{im}(\alpha)}: V \mapsto \overline{\text{im}(\alpha_V)}$ is a tensor subvariety of Y.

Challenge: describe elements in $im(\alpha)$ uniformly.

 $\alpha: X \to Y$ a morphism $\leadsto \overline{\text{im}(\alpha)}: V \mapsto \overline{\text{im}(\alpha_V)}$ is a tensor subvariety of Y.

Challenge: describe elements in $im(\alpha)$ uniformly.

Example

[Ballico-Bik-Oneto-Ventura, 2022]

 $X(V) = (S^2V)^6$ (six quadrics), $Y(V) = S^4V$ (one quartic) $\alpha_V(g_1, h_1, g_2, h_2, g_3, h_3) := g_1h_1 + g_2h_2 + g_3h_3$.

 $\alpha: X \to Y$ a morphism $\leadsto \overline{\text{im}(\alpha)}: V \mapsto \overline{\text{im}(\alpha_V)}$ is a tensor subvariety of Y.

Challenge: describe elements in $im(\alpha)$ uniformly.

Example

[Ballico-Bik-Oneto-Ventura, 2022]

 $X(V) = (S^2V)^6$ (six quadrics), $Y(V) = S^4V$ (one quartic) $\alpha_V(g_1, h_1, g_2, h_2, g_3, h_3) := g_1h_1 + g_2h_2 + g_3h_3$.

But $\overline{\operatorname{im}(\alpha_V)}$ also contains $\lim_{\epsilon \to 0} \frac{1}{\epsilon} [(x^2 + \epsilon g)(y^2 + \epsilon f) - (u^2 - \epsilon q)(v^2 - \epsilon p) - (xy + uv)(xy - uv)] = x^2 f + y^2 g + u^2 p + v^2 q.$

 $\alpha: X \to Y$ a morphism $\leadsto \overline{\text{im}(\alpha)}: V \mapsto \overline{\text{im}(\alpha_V)}$ is a tensor subvariety of Y.

Challenge: describe elements in $im(\alpha)$ uniformly.

Example

[Ballico-Bik-Oneto-Ventura, 2022]

$$X(V) = (S^2V)^6$$
 (six quadrics), $Y(V) = S^4V$ (one quartic) $\alpha_V(g_1, h_1, g_2, h_2, g_3, h_3) := g_1h_1 + g_2h_2 + g_3h_3$.

But $\overline{\operatorname{im}(\alpha_V)}$ also contains $\lim_{\epsilon \to 0} \frac{1}{\epsilon} [(x^2 + \epsilon g)(y^2 + \epsilon f) - (u^2 - \epsilon q)(v^2 - \epsilon p) - (xy + uv)(xy - uv)] = x^2 f + y^2 g + u^2 p + v^2 q.$

Theorem [BBOV]: $im(\alpha_V)$ is not closed for $dim(V) \gg 0$.

Uniformity for limits

Theorem 1

[Bik-D-Eggermont-Snowden, 2023]

 $\alpha: X \to Y$ a morphism, then $\exists N \in \mathbb{N}$ such that for all V and all $y \in \overline{\operatorname{im}(\alpha_V)}$ there is a formal curve $x(\varepsilon) \in X(V)(\mathbb{C}((\varepsilon)))$ with exponents $\geq -N$ such that $y = \lim_{\varepsilon \to 0} \alpha_V(x(\varepsilon))$.

[Bik-D-Eggermont-Snowden, 2023]

 $\alpha: X \to Y$ a morphism, then $\exists N \in \mathbb{N}$ such that for all V and all $y \in \overline{\operatorname{im}(\alpha_V)}$ there is a formal curve $x(\epsilon) \in X(V)(\mathbb{C}((\epsilon)))$ with exponents $\geq -N$ such that $y = \lim_{\epsilon \to 0} \alpha_V(x(\epsilon))$.

Application to de-bordering

 $\beta: T_1 \to T_2$ morphism between tensor spaces with $\operatorname{im}(\beta_V)$ a cone spanning $T_2(V)$. For $f \in T_2(V)$ define $R(f) := \min\{r \mid f = \sum_{i=1}^r \beta_V(h_i)\}$ (rank) and $\underline{R}(f) := \min\{r \mid f = \lim_{\epsilon \to 0} \sum_{i=1}^r \beta_V(h_i(\epsilon))\}$ (border rank).

[Bik-D-Eggermont-Snowden, 2023]

 $\alpha: X \to Y$ a morphism, then $\exists N \in \mathbb{N}$ such that for all V and all $y \in \overline{\operatorname{im}(\alpha_V)}$ there is a formal curve $x(\epsilon) \in X(V)(\mathbb{C}((\epsilon)))$ with exponents $\geq -N$ such that $y = \lim_{\epsilon \to 0} \alpha_V(x(\epsilon))$.

Application to de-bordering

 $\beta: T_1 \to T_2$ morphism between tensor spaces with $\operatorname{im}(\beta_V)$ a cone spanning $T_2(V)$. For $f \in T_2(V)$ define $R(f) := \min\{r \mid f = \sum_{i=1}^r \beta_V(h_i)\}$ (rank) and $\underline{R}(f) := \min\{r \mid f = \lim_{\epsilon \to 0} \sum_{i=1}^r \beta_V(h_i(\epsilon))\}$ (border rank).

Corollary

There is a function $F : \mathbb{N} \to \mathbb{N}$ such that for all V and $f \in T_2(V) : R(f) \leq F(\underline{R}(f))$.

$$T(V) = V \otimes V$$
, $X(V) = \{A \mid \text{rk}(A) \leq 3\} \rightsquigarrow$
Sing $(X(V)) = \{A \mid \text{rk}(A) \leq 2\}$, provided that dim $(V) \geq 3$.

$$T(V) = V \otimes V$$
, $X(V) = \{A \mid \text{rk}(A) \leq 3\} \rightsquigarrow$
Sing $(X(V)) = \{A \mid \text{rk}(A) \leq 2\}$, provided that dim $(V) \geq 3$.

Theorem [Han, 2018] For most d, V, Sing $(\{v_1^d + v_2^d + v_3^d\}) = \{v_1^d + v_2^d\} \subseteq S^d V$.

$$T(V) = V \otimes V$$
, $X(V) = \{A \mid \text{rk}(A) \leq 3\} \rightsquigarrow$
Sing $(X(V)) = \{A \mid \text{rk}(A) \leq 2\}$, provided that dim $(V) \geq 3$.

Theorem [Han, 2018] For most d, V, Sing $(\{v_1^d + v_2^d + v_3^d\}) = \{v_1^d + v_2^d\} \subseteq S^d V$.

Theorem

[Galgano-Staffolani, 2023]

For
$$k \ge 3$$
 and dim $V \ge 2k$, in $\bigwedge^k V$ we have $Sing(\sigma_2(\widehat{Gr}_k(V))) = \{\omega_U + \omega_V \mid \operatorname{codim}_U(U \cap V) = 2\}$.

$$T(V) = V \otimes V$$
, $X(V) = \{A \mid \text{rk}(A) \leq 3\} \rightsquigarrow$
Sing $(X(V)) = \{A \mid \text{rk}(A) \leq 2\}$, provided that dim $(V) \geq 3$.

Theorem [Han, 2018] For most
$$d$$
, V , Sing $(\{v_1^d + v_2^d + v_3^d\}) = \{v_1^d + v_2^d\} \subseteq S^d V$.

Theorem [Galgano-Staffolani, 2023]

For $k \ge 3$ and dim $V \ge 2k$, in $\bigwedge^k V$ we have $Sing(\sigma_2(\widehat{Gr}_k(V))) = \{\omega_U + \omega_V \mid \operatorname{codim}_U(U \cap V) = 2\}$.

The singular locus is again a tensor variety.

[Chiu-Danelon-D, 2024]

X a tensor variety, then \exists closed tensor subvariety $X^{\text{sing}} \subseteq X$ s.t. $X^{\text{sing}}(V) = \text{Sing}(X(V))$ for all V with $\dim(V) \gg 0$.

[Chiu-Danelon-D, 2024]

X a tensor variety, then \exists closed tensor subvariety $X^{\text{sing}} \subseteq X$ s.t. $X^{\text{sing}}(V) = \text{Sing}(X(V))$ for all V with $\dim(V) \gg 0$.

Moreover, if $X \subseteq T$, then $\exists U$ s.t. for all V the scheme $Y := \bigcap_{\varphi:V \to U} T(\varphi)^{-1}(X(U))$ satisfies $Y^{\text{red}} = X(V)$ and Y is reduced at all $p \in X(V) \setminus X^{\text{sing}}(V)$.

[Chiu-Danelon-D, 2024]

X a tensor variety, then \exists closed tensor subvariety $X^{\text{sing}} \subseteq X$ s.t. $X^{\text{sing}}(V) = \text{Sing}(X(V))$ for all V with $\dim(V) \gg 0$.

Moreover, if $X \subseteq T$, then $\exists U$ s.t. for all V the scheme $Y := \bigcap_{\varphi:V \to U} T(\varphi)^{-1}(X(U))$ satisfies $Y^{\text{red}} = X(V)$ and Y is reduced at all $p \in X(V) \setminus X^{\text{sing}}(V)$.

In English: the equations for X(U) pull back to equations that define X(V) as a set, and that define a reduced scheme outside Sing(X(V)).

Remarks

Theorem 1

 $\alpha: X \to Y$ a morphism, then $\exists N \in \mathbb{N}$ such that for all V and all $y \in \overline{\operatorname{im}(\alpha_V)}$ there is a formal curve $x(\epsilon) \in X(V)(\mathbb{C}((\epsilon)))$ with exponents $\geq -N$ such that $y = \lim_{\epsilon \to 0} \alpha_V(x(\epsilon))$.

Theorem 2

X a tensor variety, then \exists closed tensor subvariety $X^{\text{sing}} \subseteq X$ s.t. $X^{\text{sing}}(V) = \text{Sing}(X(V))$ for all V with $\dim(V) \gg 0$.

 $\alpha: X \to Y$ a morphism, then $\exists N \in \mathbb{N}$ such that for all V and all $y \in \overline{\operatorname{im}(\alpha_V)}$ there is a formal curve $x(\epsilon) \in X(V)(\mathbb{C}((\epsilon)))$ with exponents $\geq -N$ such that $y = \lim_{\epsilon \to 0} \alpha_V(x(\epsilon))$.

Theorem 2

X a tensor variety, then \exists closed tensor subvariety $X^{\text{sing}} \subseteq X$ s.t. $X^{\text{sing}}(V) = \text{Sing}(X(V))$ for all V with $\dim(V) \gg 0$.

• Easy if $\dim(X(\mathbb{C}^n))$ is linear in n; have a weak resolution.

 $\alpha: X \to Y$ a morphism, then $\exists N \in \mathbb{N}$ such that for all V and all $y \in \overline{\operatorname{im}(\alpha_V)}$ there is a formal curve $x(\epsilon) \in X(V)(\mathbb{C}((\epsilon)))$ with exponents $\geq -N$ such that $y = \lim_{\epsilon \to 0} \alpha_V(x(\epsilon))$.

Theorem 2

X a tensor variety, then \exists closed tensor subvariety $X^{\text{sing}} \subseteq X$ s.t. $X^{\text{sing}}(V) = \text{Sing}(X(V))$ for all V with $\dim(V) \gg 0$.

- Easy if $\dim(X(\mathbb{C}^n))$ is linear in n; have a weak resolution.
- Theorem 1: show that in $\lim_{\leftarrow n} \operatorname{im}(\alpha_{\mathbb{C}^n})$ a closed $\operatorname{GL}_{\infty}$ -stable subvariety Z can be connected to Z^c by a curve.

 $\alpha: X \to Y$ a morphism, then $\exists N \in \mathbb{N}$ such that for all V and all $y \in \overline{\operatorname{im}(\alpha_V)}$ there is a formal curve $x(\epsilon) \in X(V)(\mathbb{C}((\epsilon)))$ with exponents $\geq -N$ such that $y = \lim_{\epsilon \to 0} \alpha_V(x(\epsilon))$.

Theorem 2

X a tensor variety, then \exists closed tensor subvariety $X^{\text{sing}} \subseteq X$ s.t. $X^{\text{sing}}(V) = \text{Sing}(X(V))$ for all V with $\dim(V) \gg 0$.

- Easy if $\dim(X(\mathbb{C}^n))$ is linear in n; have a weak resolution.
- Theorem 1: show that in $\lim_{\leftarrow n} \operatorname{im}(\alpha_{\mathbb{C}^n})$ a closed $\operatorname{GL}_{\infty}$ -stable subvariety Z can be connected to Z^c by a curve.
- Theorem 2: suppose $X \subseteq T = T' \oplus R$, f an equation for X(U). If $(\partial f/\partial r)(p) \neq 0$, then embed X near p in $T'' \prec T$.

 $\alpha: X \to Y$ a morphism, then $\exists N \in \mathbb{N}$ such that for all V and all $y \in \overline{\operatorname{im}(\alpha_V)}$ there is a formal curve $x(\epsilon) \in X(V)(\mathbb{C}((\epsilon)))$ with exponents $\geq -N$ such that $y = \lim_{\epsilon \to 0} \alpha_V(x(\epsilon))$.

Theorem 2

X a tensor variety, then \exists closed tensor subvariety $X^{\text{sing}} \subseteq X$ s.t. $X^{\text{sing}}(V) = \text{Sing}(X(V))$ for all V with $\dim(V) \gg 0$.

- Easy if $\dim(X(\mathbb{C}^n))$ is linear in n; have a weak resolution.
- Theorem 1: show that in $\lim_{\leftarrow n} \operatorname{im}(\alpha_{\mathbb{C}^n})$ a closed $\operatorname{GL}_{\infty}$ -stable subvariety Z can be connected to Z^c by a curve.
- Theorem 2: suppose $X \subseteq T = T' \oplus R$, f an equation for X(U). If $(\partial f/\partial r)(p) \neq 0$, then embed X near p in $T'' \prec T$.

Thank you!