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'Definition closed \
Tensorvariety Y : V— Y(V)C T(V)st. Ving:V — W:
T(e)Y(V) € Y(W). Set Y(¢) := T(¢)ly(v)-

Example (border quadric rank < 3)
Y(V) = {figi + g2+ fg3 | fi,g; € S2V} C S*V.




Tensor varieties and their morphisms (over C) s

T: direct sum of Schur functors, e.g. T(V) = V®? or SV,

'Definition closed \
Tensorvariety Y : V— Y(V)C T(V)st. Ving:V — W:
T(e)Y(V) € Y(W). Set Y(¢) := T(¢)ly(v)-

Example (border quadric rank < 3)
Y(V) = {figi + g2+ fg3 | fi,g; € S2V} C S*V.

Definition \
Morphisma : X — Y- X(V) o> Y(V)
Vi ay: X(V) = Y(V)st Vo X(g) ) Y(o)

q W <




Image closure of morphisms

a: X — Y amorphism ~» im(a) : V — im(ay) is a tensor
subvariety of Y.

[Challenge: describe elements in im(a) uniformly.
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Image closure of morphisms 3.2

a: X — Y amorphism ~» im(a) : V — im(ay) is a tensor
subvariety of Y.

[Challenge: describe elements in im(a) uniformly. ]

Example [Ballico-Bik-Oneto-Ventura, 2022]
X(V) = (5°V)® (six quadrics), Y (V) = S*V (one quartic)
xy (g1, M1, g2, M2, g3, h3) := g1hy + goho + g3 h3.
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Image closure of morphisms 34

a: X — Y amorphism ~» im(a) : V — im(ay) is a tensor
subvariety of Y.

[Challenge: describe elements in im(a) uniformly. ]

Example [Ballico-Bik-Oneto-Ventura, 2022]
X(V) = (5°V)® (six quadrics), Y (V) = S*V (one quartic)
xy (g1, M1, g2, M2, g3, h3) := g1hy + goho + g3 h3.

But im(« /) also contains |Im€_>o
H[(x® +eg)(y? tef) - (u? —€q) (V2 —ep) — (xy +uv)(xy — uv)] =
xX°f 4+ y2g + u?p + v2q.

(Theorem [BBOV]: im(ay) is not closed for dim(V) > 0. |




Uniformity for limits
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‘Theorem 1 [Bik-D-Eggermont-Snowden, 2023]\
« : X — Y a morphism, then 4N € IN such that for all V and

all y € im(ay) there is a formal curve x(e) € X(V)(C((e)))

‘with exponents > —N such that y = lim._,q xy (X(€)).
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Application to de-bordering

B : Ty — T morphism between tensor spaces with im(Sy)
a cone spanning To(V). For f € To(V) define

R(f) :=min{r | f=Y/_; Bv(h;)} (rank) and

R(f) :=min{r | f =lim.0Y]_{ Bv(hi(€))} (border rank).



Uniformity for limits ‘.

‘Theorem 1 [Bik-D-Eggermont-Snowden, 2023]\
« : X — Y a morphism, then 4N € IN such that for all V and
all y € im(ay) there is a formal curve x(e) € X(V)(C((¢)))
‘with exponents > —N such that y = lim._,q xy (X(€)).

J

Application to de-bordering

B : Ty — T morphism between tensor spaces with im(Sy)
a cone spanning To(V). For f € To(V) define

R(f) :=min{r | f=Y/_; Bv(h;)} (rank) and

R(f) :=min{r | f =lim.0Y]_{ Bv(hi(€))} (border rank).

‘Corollary
There is a function F : N — IN such that for all V and
e To(V): R(f) < F(R(F)).




Uniformity for singular loci

Example (determinantal variety)
T(V)=VV, X(V)={A]|rk(A) <3} ~

Sing(X(V)) = {A| rk(A) < 2}, provided that dim(V) > 3.
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Example (determinantal variety)
T(V)=VV, X(V)={A]|rk(A) <3} ~
Sing(X(V)) ={A | rk(A) < 2}, provided that dim(V) > 8.

Theorem [Han, 2018]
For most d, V, Sing({vd + v§ + vi}) = {vd+ vi} C S9V.
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Uniformity for singular loci 5.

Example (determinantal variety)
T(V)=VV, X(V)={A]|rk(A) <3} ~
Sing(X(V)) ={A | rk(A) < 2}, provided that dim(V) > 8.

Theorem [Han, 2018]
For most d, V, Sing({vd + v§ + vi}) = {vd+ vi} C S9V.

‘Theorem [Galgano-Staffolani, 2023]\
For k > 3 and dim V > 2k, in AX V we have

Sing(02(Grk(V))) = {wy + wy | codimy(UN V) = 2}.

The singular locus is again a tensor variety.
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‘Theorem 2 [Chiu-Danelon-D, 2024]

X atensor variety, then J closed tensor subvariety Xsng C X
s.t. X3"9(V) = Sing(X(V)) for all V with dim(V) > 0.
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Y := Ngpvou T(e) 1 (X(U)) satisfies Y™ = X(V) and Y
is reduced at all p € X(V) \ X3"9(V).
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‘"Theorem 2 [Chiu-Danelon-D, 2024]\
X atensor variety, then J closed tensor subvariety X*"9 C X
s.t. X*M3(V) = Sing(X(V)) for all V with dim(V) > 0.

Moreover, if X C T, then JU s.t. for all V the scheme
Y := Ngpvou T(e) 1 (X(U)) satisfies Y™ = X(V) and Y
is reduced at all p € X(V) \ X3"9(V).

J

In English: the equations for X(U) pull back to equations

that define X( V) as a set, and that define a reduced scheme
outside Sing(X(V)).
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‘Theorem 1
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e Easy if dim(X(C")) is linear in n; have a weak resolution.

e Theorem 1: show that in lim._,im(acn) a closed Gle-
stable subvariety Z can be connected to Z¢ by a curve.

e Theorem 2: suppose X C T = T' @ R, f an equation for
X(U). If (of /ar)(p) # 0, thenembed X nearpin T" < T.

Thank you!
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