

Min-plus products of distance matrices

(or: The lossy gossip monoid)

Jan Draisma

April 2012 ICMS Edinburgh

joint work with Bart Frenk

Min-plus products of distance matrices

(or: The lossy gossip monoid)

Jan Draisma

April 2012 ICMS Edinburgh

joint work with Bart Frenk

The car-bike metric

Ehv-border A'dam-center A'dam

$$\begin{bmatrix} 0 & 2 & 3 \\ 2 & 0 & 1 \\ 3 & 1 & 0 \end{bmatrix} \odot \begin{bmatrix} 0 & 6.8 & 7 \\ 6.8 & 0 & 0.5 \\ 7 & 0.5 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 0 & 2 & 2.5 \\ 2 & 0 & 0.5 \\ 3 & 0.5 & 0 \end{bmatrix}$$

Structure theorem

$$D_n := \{(d_{ij})_{ij} \in (\mathbb{R} \cup \{\infty\})^{n \times n} \mid d_{ii} = 0, d_{ij} = d_{ji}, d_{ij} + d_{jk} \ge d_{ik}\}$$
cone of distance matrices

$$M_n := \{d_1 \odot \cdots \odot d_k \mid k \in \mathbb{N}, d_1, \dots, d_k \in D\}$$

monoid generated by D_n

Theorem

 M_n is the support of a finite polyhedral fan of dimension $\binom{n}{2}$. For n=2,3,4(?) it is pure and connected in codimension 1.

$$M_2 = D_2:$$

$$\begin{bmatrix} 0 & a \\ a & 0 \end{bmatrix} \odot \begin{bmatrix} 0 & b \\ b & 0 \end{bmatrix} = \begin{bmatrix} 0 & a \oplus b \\ a \oplus b & 0 \end{bmatrix}$$

The car-bike metric

Ehv-border A'dam-center A'dam

$$\begin{bmatrix} 0 & 2 & 3 \\ 2 & 0 & 1 \\ 3 & 1 & 0 \end{bmatrix} \odot \begin{bmatrix} 0 & 6.8 & 7 \\ 6.8 & 0 & 0.5 \\ 7 & 0.5 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 0 & 2 & 2.5 \\ 2 & 0 & 0.5 \\ 3 & 0.5 & 0 \end{bmatrix}$$

Structure theorem

$$D_n := \{ (d_{ij})_{ij} \in (\mathbb{R} \cup \{\infty\})^{n \times n} \mid d_{ii} = 0, d_{ij} = d_{ji}, d_{ij} + d_{jk} \ge d_{ik} \}$$
cone of distance matrices

$$M_n := \{d_1 \odot \cdots \odot d_k \mid k \in \mathbb{N}, d_1, \dots, d_k \in D\}$$

monoid generated by D_n

Theorem

 M_n is the support of a finite polyhedral fan of dimension $\binom{n}{2}$. For n = 2, 3, 4(?) it is pure and connected in codimension 1.

$$M_2 = D_2: \begin{bmatrix} 0 & a \\ a & 0 \end{bmatrix} \odot \begin{bmatrix} 0 & b \\ b & 0 \end{bmatrix} = \begin{bmatrix} 0 & a \oplus b \\ a \oplus b & 0 \end{bmatrix} \qquad {}^4 \downarrow \qquad {}^3 \downarrow \qquad {}^3$$

The gossip problem

n people with n secret gossips shared through phone calls

Classical question

minimal number of phone calls before everyone knows all gossips?

Answer

2n - 4 for n > 4(Baker-Shostak, Bumby, Hajnal-Milner-Szemerédi, Tijdeman)

Example for n=4

Uncertainty matrices

$$\begin{aligned}
\text{define } U &= (u_{ij})_{ij} \\
u_{ij} &:= \begin{cases} 0 & i \text{ knows gossip } j \\
\infty & \text{otherwise} \end{cases} \\
\begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} & \leadsto \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} & \leadsto \\
\begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} & \leadsto \\
\begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} & \leadsto \\
\begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} & \leadsto \\
\begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} & \leadsto \\
\begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} & \leadsto \\
\begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} & \leadsto \end{aligned}$$

The gossip problem

n people with n secret gossips shared through phone calls

Classical question

minimal number of phone calls before everyone knows all gossips?

Answer

2n-4 for $n \ge 4$ (Baker-Shostak, Bumby, Hajnal-Milner-Szemerédi, Tijdeman)

Example for n=4

Uncertainty matrices

define
$$U = (u_{ij})_{ij}$$

$$u_{ij} := \begin{cases} 0 & i \text{ knows gossip } j \\ \infty & \text{otherwise} \end{cases}$$

$$\begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \rightsquigarrow$$

$$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \sim 0$$

The gossip monoid

(2,4) call = left multiplication with

$$C_{24} := \begin{bmatrix} 0 & \infty & \infty & \infty \\ \infty & 0 & \infty & 0 \\ \infty & \infty & 0 & \infty \\ \infty & 0 & \infty & 0 \end{bmatrix}$$

Definition

 $G_n := \text{monoid generated by}$ $C_{ij}, 1 \leq i < j \leq n$ the gossip monoid

Open questions

- -maximal *length* of an element?
- -cardinality of G_n ?
- -efficient membership test?

Observation

 C_{ik} distance matrix $\leadsto G_n \subseteq M_n$

Some numbers

Jochem Berndsen (TU/e):

n	$ G_n $	max length
Ι	I	0
2	2	I
3	II	3
4	189	4
5	9152	6
6	1,092,473	10
7	293,656,554	13
8	166,244,338,221	17

The gossip monoid

(2,4) call = *left multiplication* with

$$C_{24} := \begin{bmatrix} 0 & \infty & \infty & \infty \\ \infty & 0 & \infty & 0 \\ \infty & \infty & 0 & \infty \\ \infty & 0 & \infty & 0 \end{bmatrix}$$

Definition

 $G_n := \text{monoid generated by}$ $C_{ij}, 1 \leq i < j \leq n$ the gossip monoid

Open questions

- -maximal *length* of an element?
- -cardinality of G_n ?
- -efficient membership test?

Observation

 C_{ik} distance matrix

$$\leadsto G_n \subseteq M_n$$

Some numbers

Jochem Berndsen (TU/e):

n	$ G_n $	max length
Ι	I	0
2	2	I
3	II	3
4	189	4
5	9152	6
6	1,092,473	IO
7	293,656,554	13
8	166,244,338,221	17

Lossy gossip

i knows fraction p_{ij} of gossip j

(i, k) lossy phone calls:

- -fraction *q* transmitted correctly
- -fraction qp_{ij} of gossip j received correctly by k
- -accepted if $qp_{ij} > p_{kj}$
- -and vice versa

The lossy gossip monoid

define $u_{ij} := -\log p_{ij} \in [0, \infty]$ $U = (u_{ij})_{ij}$ uncertainty matrix $a := -\log q$ channel unreliability

Example

(2,4) lossy phone call = left multiplication with

$$C_{24}(a) := \begin{bmatrix} 0 & \infty & \infty & \infty \\ \infty & 0 & \infty & a \\ \infty & \infty & 0 & \infty \\ \infty & a & \infty & 0 \end{bmatrix}$$

Lemma

 M_n is the monoid generated by all lossy phone calls $C_{ij}(a), 1 \leq i < j \leq n, a \in [0, \infty]$.

(
$$\subseteq: D = \underbrace{\bigcirc}_{i < j} C_{ij}(d_{ij}) \text{ for } D \in D_n$$
)

Lossy gossip

i knows fraction p_{ij} of gossip *j*

(i, k) lossy phone calls:

- -fraction q transmitted correctly
- -fraction qp_{ij} of gossip j received correctly by k
- -accepted if $qp_{ij} > p_{kj}$
- -and vice versa

The lossy gossip monoid

define $u_{ij} := -\log p_{ij} \in [0, \infty]$ $U = (u_{ij})_{ij}$ uncertainty matrix $a := -\log q$ channel unreliability

Example

(2,4) lossy phone call = left multiplication with

$$C_{24}(a) := \begin{bmatrix} 0 & \infty & \infty & \infty \\ \infty & 0 & \infty & a \\ \infty & \infty & 0 & \infty \\ \infty & a & \infty & 0 \end{bmatrix}$$

Lemma

 M_n is the monoid generated by all lossy phone calls $C_{ij}(a), 1 \leq i < j \leq n, a \in [0, \infty]$.

$$(\subseteq: D = \underbrace{\bigcirc}_{i < j} C_{ij}(d_{ij}) \text{ for } D \in D_n)$$

Three persons

$$\begin{bmatrix} 0 & 2 & 2.5 \\ 2 & 0 & 0.5 \\ 3 & 0.5 & 0 \end{bmatrix}$$
$$= C_{12}(2) \odot C_{23}(.5) \odot C_{13}(3)$$

six 3-dimensional cones of type

$$\left\{ \begin{bmatrix} 0 & a & a+b \\ a & 0 & b \\ c & b & 0 \end{bmatrix} \mid c \ge a+b \right\}$$

Three persons, continued

Three persons

$$\begin{bmatrix} 0 & 2 & 2.5 \\ 2 & 0 & 0.5 \\ 3 & 0.5 & 0 \end{bmatrix}$$
$$= C_{12}(2) \odot C_{23}(.5) \odot C_{13}(3)$$

six 3-dimensional cones of type

$$\left\{ \begin{bmatrix} 0 & a & a+b \\ a & 0 & b \\ c & b & 0 \end{bmatrix} \mid c \ge a+b \right\}$$

Three persons, continued

Maps

gossip to lossy gossip

 $G_n \to M_n$ monoid embedding

lossy gossip to gossip

 $M_n \to G_n$ monoid surjection

 $\mathbb{R} \mapsto 0, \ \infty \mapsto \infty$

distance to lossy gossip

 $D_n \to M_n$ subset

lossy gossip to distance

 $M_n \to D_n, \ A \mapsto A^{\odot n}$ underlying metric

Visualising

- -draw underlying metric
- -draw arrows for *detours*

Four-person intermezzo

Four-person intermezzo, continued

Four-person intermezzo, continued

- -16 orbits of 6-dimensional cones (?)
- -maximal length 6 (?)
- -pure (?)

Four-person intermezzo, one parameter

Lossy gossip problems

- -Combinatorial proof of $\dim M_n = \binom{n}{2}$?
- -Description of cones?
- -Tight spans?
- -Is M_n pure?
- -Maximal length of an element?
- -Efficient membership test?

Maps

gossip to lossy gossip

 $G_n \to M_n$ monoid embedding

lossy gossip to gossip

 $M_n \to G_n$ monoid surjection

$$\mathbb{R} \mapsto 0, \ \infty \mapsto \infty$$

distance to lossy gossip

 $D_n \to M_n$ subset

lossy gossip to distance

 $M_n \to D_n, \ A \mapsto A^{\odot n}$ underlying metric

Visualising

- -draw underlying metric
- -draw arrows for *detours*

Lossy gossip problems

- -Combinatorial proof of $\dim M_n = \binom{n}{2}$?
- -Description of cones?
- -Tight spans?
- -Is M_n pure?
- -Maximal length of an element?
- -Efficient membership test?

Proof of structure theorem

 M_n is the support of a finite polyhedral fan of dimension $\binom{n}{2}$.

$$C_{24}(a) = \begin{bmatrix} 0 & \infty & \infty & \infty \\ \infty & 0 & \infty & a \\ \infty & \infty & 0 & \infty \\ \infty & a & \infty & 0 \end{bmatrix}$$

$$= \text{Trop} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & \cos(t^{a}) & 0 & -\sin(t^{a}) \\ 0 & 0 & 1 & 0 \\ 0 & \sin(t^{a}) & 0 & \cos(t^{a}) \end{bmatrix}$$

$$\in O_{4}(\mathbb{C}\{\{t\}\})$$

$$\leadsto M_n \subseteq \operatorname{Trop}(O_n)$$

$$\dim O_n = \binom{n}{2}$$
 apply Bieri-Groves