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Part I: some infinite-dimensional
commutative algebra
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3What is an infinite-dimensional variety?

inductive limits of finite-dimensional varieties,
projective limits, spectra of infinite-dimensional rings, etc.

This talk
V: countable-dimensional space over C (or R) of coordinates
V∗: dual space, topological space with Zariski topology
Closed subsets X ⊆ V∗ are called infinite-dimensional varieties.

Example
V = 〈xi j | i, j ∈ N〉, X ⊆ V∗ defined by equations xi jxkl − xilxkj

Sequence model
If V1 ⊆ V2 ⊆ . . . finite-dimensional with V =

⋃
i Vi, then

V∗ = lim← V∗i with
(both as set and as topological space)

V∗1 V∗2 · · ·
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For X ⊆ V∗ a closed set, C[X] := SV/I(X), where I(X) ⊆ SV is
the ideal of polynomials vanishing on X.

Assume I(X) is G-stable, so that G acts on C[X].

Definition
C[X] is G-Noetherian if every chain I1 ⊆ I2 ⊆ . . . of G-stable
ideals stabilises (⇔ each G-stable ideal is G-finitely generated.)

X is G-Noetherian if every chain X1 ⊇ X2 ⊇ . . . of G-stable
closed subsets stabilises

(⇔ each G-stable subvariety of X defined by fin many G-orbits of eqs.)

⇒
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Finite-by-infinite matrices
Fix k ∈ N;
Sym(N) acts on V = 〈xi j | i ∈ [k], j ∈ N〉
by π(xi j) = xiπ( j).

x11

xk1

x12

xk2

· · ·

· · ·

...

Theorem [Cohen 87, Hillar-Sullivant 09]
C[xi j | i ∈ [k], j ∈ N] = C[V∗] is Sym(N)-Noetherian.

Infinite-by-infinite matrices
Sym(N) acts by π(xi j) = xπ(i),π( j)
 C[xi j | i, j ∈ N] is not Sym(N)-Noetherian;
e.g. the Sym(N)-stable ideal generated by
x12x21, x12x23x31, x12x23x34x41, . . .
is not Sym(N)-finitely generated.

(neither Sym(N) × Sym(N)-Noetherian)

x11 x12
x21

· · ·

...
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Theorem (Matrices of bounded rank)
C[xi j | i, j ∈ N]/(all (k + 1) × (k + 1)-subdeterminants)
is Sym(N)-Noetherian.
(uses 2k × N-matrices and the FFT, SFT for GLk)

Larger groups
GLN := {invertible N × N-matrices g with almost all gii = 1
and almost all gi j = 0(i , j)}.

Theorem (symmetric matrices) [Snowden-Sam 2012]
C[xi j | i, j ∈ N, xi j = x ji] is GLN-Noetherian via g ◦ x = gxgT.

Theorem [D-Eggermont 2014]
(CN×N)p is GLN ×GLN-Noetherian for each p, via
(g, h) ◦ (x, . . . , z) := (gxh−1, . . . , gzh−1).
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Example: second hypersimplex
Pn := {vi j = ei + e j | 1 ≤ i , j ≤ n}

Markov basis Mn [De Loera-Sturmfels-Thomas 1995]
vi j = v ji and vi j + vkl = vil + vkj for i, j, k, l distinct
 if

∑
i j ci jvi j =

∑
i j di jvi j with ci j, di j ∈ Z≥0,

then the expressions are connected by such
moves without creating negative coefficients

Theorem [D-Eggermont-Krone-Leykin 2013]
For any family (Pn ⊆ ZF

× Zk×n), F finite, if Pn = Sym(n)Pn0

for n ≥ n0, then ∃n1: for n ≥ n1 has a Markov basis Mn with
Mn = Sym(n)Mn0 .

Explicit results for width n0 = 2: [Kahle-Krone-Leykin 2014]
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Part II: Applications to
algebro-statistical models
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V∗1 V∗2 V∗3

X1 X2 X3

· · ·

· · ·

Setting
V∗1,V

∗

2, . . . fin-dim spaces; Xi ⊆ V∗i subvariety
Gi group acting linearly on V∗i preserving Xi
Gi ⊆ Gi+1 & maps π : V∗i+1 → V∗i and ι : V∗i → V∗i+1 both
Gi-equivariant, mapping Xi+1 into Xi and v.v. & π ◦ ι = id

 V∗∞ := lim← Vn; X∞ := lim← Xn; G∞ := ∪nGn

G1 G2 G3 · · ·

Definition
Sequence (Xi ⊆ V∗i )i
stabilises if for n� 0 :
p ∈ V∗n lies in Xn
iff ∀g∈Gnπ(gp) ∈ Xn−1.

Lemma Stabilisation is “equivalent” to: X∞ ⊆ V∗∞ is defined
by finitely many G∞-orbits of equations.
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Fixed row and column sums
A,B ∈ Zm×n

≥0 with ai+ = bi+ and a+ j = b+ j
⇒ ∃A = A0,A1, . . . ,Ak = B ∈ Zm×n

≥0 with

Al − Al−1 =

[
1 −1
−1 1

]
 moves “independent” of m,n.

Theorem [Diaconis-Sturmfels 1998]
basis of Markov moves = generating set of toric ideal
(e.g. ker[yi j 7→ xiz j] generated by {yi jyi′ j′ − yi j′yi′ j})

Conjecture [Hoşten-Sullivant 2007]
Similar stabilisation conjecture for Markov basis for
sampling higher-dimensional contingency tables.
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Hierarchichal models
F family of subsets of [m]
y(i1, . . . , im) and x(S, (is)s∈S) for S ∈ F variables
I := ker[y(i1, . . . , im) 7→

∏
A∈S x(S, (is)s∈S)]

Example
m = 4, F = {124, 13, 23}
variables y(abcd), x(abd), z(ac),u(bc)
I = ker[y(abcd) 7→ x(abd)z(ac)u(bc)]
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Hierarchichal models
F family of subsets of [m]
y(i1, . . . , im) and x(S, (is)s∈S) for S ∈ F variables
I := ker[y(i1, . . . , im) 7→

∏
A∈S x(S, (is)s∈S)]

Example
m = 4, F = {124, 13, 23}
variables y(abcd), x(abd), z(ac),u(bc)
I = ker[y(abcd) 7→ x(abd)z(ac)u(bc)]

Theorem [Hillar-Sullivant 2012]
If T ⊆ [m] independent set (|T ∩ S| ≤ 1 for S ∈ F);
it, t ∈ T run through N and it, t < T through [rt]
 I generated by finitely many Inc(N)-orbits

1 4

23

(now this also follows from D-Eggermont-Krone-Leykin)
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12II: Cloning sinks in a Gaussian Bayesian model

G: directed acyclic graph on [n]
Xi, i ∈ [n]: jointly Gaussian
X j =

∑
i∈pa( j) λi jXi + a jε j where the ε j ∼ N(0, 1) independent

 Σ = (I −Λ)−Tdiag(a2
1, . . . , a

2
n)(I −Λ)−1

H ⊆ [m] hidden Σ[n]−H principal submatrix
model: Zariski closure of {Σ[n]−H |Λ, a}

Cloning sinks

j1 j2 j1 j2j′1 j′2
Theorem [“D 2010”]
Model stabilises under cloning sinks (via permuting clones).



13Stabilisation for parameterised graphical models

discrete

Gaussian

undirected DAG with hidden vars

M(G) := {(pi1,...,in =∏
C θ

C
iC

)i1,...,in } ⊆ CR

prod over all cliques C
R =

∏
j[r j]

mean 0

θC
∈ CRC

I: stabilises under increasing r j
for j in independent set
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discrete

Gaussian

undirected DAG with hidden vars

M(G) := {Σ = K−1
} {Σ =

Ki j = 0 if i j < E(G) (I −Λ)−TD(I −Λ)−1
}

M(G) ⊆ Cn×n

M(G) ⊆ C([n]−H)×([n]−H)
Λi j = 0 if i 9 j

M(G) := {(pi1,...,in =∏
C θ
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∏
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for j in independent set

II: stabilises under
cloning sinks

{(pi1,...,in =∏
j∈[n] θi j |(ik)k∈pa( j) )} ⊆ CR

∀i ∈ Rpa( j) :
∑

i j
θi j |i = 1

III: stabilises under cloning
sinks?? Yes for trees.

stabilisation??

hide variables in H
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Definition
C ∈ Rm×n

≥0  rk≥0C := min{r | ∃(A,B) ∈ Rm×r
≥0 × Rr×n

≥0 : C = AB}

Very ill-behaved [Moitra 2012]
For all n > 3 there are n × n-matrices of nonnegative rank
> 3 with all proper submatrices of nonnegative rank 3.

Mm×n
r := {A ∈ Rm×n

≥0 | rk≥0A ≤ r}
(positive cone over) mixture of r copies of independence
∂Mm×n

r :=topological boundary

Observation/Theorem [Kubjas, Robeva, Sturmfels 2013]
EM-algorithm for Mm×n

r often converges to boundary!
Explicit, quantifier-free expression for r = 2.
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Algebraic boundary
∂Mm×n

r : Zariski closure ⊆ Cm×n

hypersurface in the variety of rank-r matrices

Theorem [Kubjas-Robeva-Sturmfels 2013]

Apart from coordinate hyperplanes, for m,n ≥ 4, ∂Mm×n
3 has

2 Sym(m) × Sym(n)-orbits of irreducible components,
parameterised by the following and its transpose:

0 ∗ ∗
∗ 0 ∗
∗ ∗

∗ ∗ ∗

0

0 0
0

0
∗ ∗

∗ ∗ ∗

∗ ∗

∗

∗

∗

∗

Conjecture
This component has a GB of

4 × 4 minors plus
(
m
3

)
sextics.

Now a Theorem due to Eggermont-Horobeţ-Kubjas.
But what about higher nonnegative rank??



16Conclusions and questions

• Many algebro-statistical models fit into families with a
meaningful limit.

• There is an ever growing body of commutative algebra
for dealing with these limits up to symmetry.

• Do discrete Bayesian models stabilise under cloning
sinks?

• Do undirected Gaussian graphical models exhibit any
kind of stabilisation?

• If you have other families of models where you expect
stabilisation, come talk to me!
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• There is an ever growing body of commutative algebra
for dealing with these limits up to symmetry.

• Do discrete Bayesian models stabilise under cloning
sinks?

• Do undirected Gaussian graphical models exhibit any
kind of stabilisation?

• If you have other families of models where you expect
stabilisation, come talk to me!

Děkuji!
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