# Symmetries and ∞-dim limits of algebro-statistical models

```
a_{11} \ a_{12} \ a_{13} \ \cdots \ a_{21} \ a_{31} \ \vdots
```



Jan Draisma

TU Eindhoven

# Part I: some infinite-dimensional commutative algebra

# What is an infinite-dimensional variety?

inductive limits of finite-dimensional varieties, projective limits, spectra of infinite-dimensional rings, etc. inductive limits of finite-dimensional varieties, projective limits, spectra of infinite-dimensional rings, etc.

#### This talk

V: countable-dimensional space over  $\mathbb{C}$  (or  $\mathbb{R}$ ) of *coordinates*  $V^*$ : dual space, topological space with Zariski topology Closed subsets  $X \subseteq V^*$  are called *infinite-dimensional varieties*.

## Example

 $V = \langle x_{ij} \mid i, j \in \mathbb{N} \rangle$ ,  $X \subseteq V^*$  defined by equations  $x_{ij}x_{kl} - x_{il}x_{kj}$ 

inductive limits of finite-dimensional varieties, projective limits, spectra of infinite-dimensional rings, etc.

#### This talk

V: countable-dimensional space over  $\mathbb{C}$  (or  $\mathbb{R}$ ) of *coordinates*  $V^*$ : dual space, topological space with Zariski topology Closed subsets  $X \subseteq V^*$  are called *infinite-dimensional varieties*.

#### Example

 $V = \langle x_{ij} \mid i, j \in \mathbb{N} \rangle$ ,  $X \subseteq V^*$  defined by equations  $x_{ij}x_{kl} - x_{il}x_{kj}$ 

# Sequence model

If  $V_1 \subseteq V_2 \subseteq ...$  finite-dimensional with  $V = \bigcup_i V_i$ , then  $V^* = \lim_{\leftarrow} V_i^*$  with  $V_1^* \longleftarrow V_2^* \longleftarrow \cdots$  (both as set and as topological space)

# Noetherianity modulo group actions

Assume a group G acts by linear transformations on  $V \rightsquigarrow G$  acts on SV by algebra auto and on  $V^*$  by homeo.

For  $X \subseteq V^*$  a closed set,  $\mathbb{C}[X] := SV/I(X)$ , where  $I(X) \subseteq SV$  is the ideal of polynomials vanishing on X.

For  $X \subseteq V^*$  a closed set,  $\mathbb{C}[X] := SV/I(X)$ , where  $I(X) \subseteq SV$  is the ideal of polynomials vanishing on X.

Assume I(X) is G-stable, so that G acts on  $\mathbb{C}[X]$ .

For  $X \subseteq V^*$  a closed set,  $\mathbb{C}[X] := SV/I(X)$ , where  $I(X) \subseteq SV$  is the ideal of polynomials vanishing on X.

Assume I(X) is G-stable, so that G acts on  $\mathbb{C}[X]$ .

#### **Definition**

 $\mathbb{C}[X]$  is *G-Noetherian* if every chain  $I_1 \subseteq I_2 \subseteq ...$  of *G*-stable ideals stabilises  $(\Leftrightarrow each G-stable ideal is G-finitely generated.)$ 

For  $X \subseteq V^*$  a closed set,  $\mathbb{C}[X] := SV/I(X)$ , where  $I(X) \subseteq SV$  is the ideal of polynomials vanishing on X.

Assume I(X) is G-stable, so that G acts on  $\mathbb{C}[X]$ .

#### **Definition**

 $\mathbb{C}[X]$  is *G-Noetherian* if every chain  $I_1 \subseteq I_2 \subseteq \ldots$  of *G*-stable ideals stabilises  $(\Leftrightarrow each G-stable ideal is G-finitely generated.)$ 

X is G-Noetherian if every chain  $X_1 \supseteq X_2 \supseteq \dots$  of G-stable closed subsets stabilises

 $(\Leftrightarrow each G-stable subvariety of X defined by fin many G-orbits of eqs.)$ 

For  $X \subseteq V^*$  a closed set,  $\mathbb{C}[X] := SV/I(X)$ , where  $I(X) \subseteq SV$  is the ideal of polynomials vanishing on X.

Assume I(X) is G-stable, so that G acts on  $\mathbb{C}[X]$ .

#### **Definition**

 $\mathbb{C}[X]$  is *G-Noetherian* if every chain  $I_1 \subseteq I_2 \subseteq ...$  of *G*-stable ideals stabilises  $(\Leftrightarrow each G-stable ideal is G-finitely generated.)$ 

*X* is *G-Noetherian* if every chain  $X_1 \supseteq X_2 \supseteq \dots$  of *G*-stable closed subsets stabilises

 $(\Leftrightarrow each G-stable subvariety of X defined by fin many G-orbits of eqs.)$ 

# (Non-)Examples of G-Noetherianity

# Finite-by-infinite matrices

```
Fix k \in \mathbb{N};

Sym(\mathbb{N}) acts on V = \langle x_{ij} \mid i \in [k], j \in \mathbb{N} \rangle

by \pi(x_{ij}) = x_{i\pi(j)}.
```



# Finite-by-infinite matrices

Fix 
$$k \in \mathbb{N}$$
;  
Sym( $\mathbb{N}$ ) acts on  $V = \langle x_{ij} \mid i \in [k], j \in \mathbb{N} \rangle$   
by  $\pi(x_{ij}) = x_{i\pi(j)}$ .



#### **Theorem**

[Cohen 87, Hillar-Sullivant 09]

 $\mathbb{C}[x_{ij} \mid i \in [k], j \in \mathbb{N}] = \mathbb{C}[V^*]$  is Sym( $\mathbb{N}$ )-Noetherian.

# Finite-by-infinite matrices

```
Fix k \in \mathbb{N};

Sym(\mathbb{N}) acts on V = \langle x_{ij} \mid i \in [k], j \in \mathbb{N} \rangle

by \pi(x_{ij}) = x_{i\pi(j)}.
```



#### **Theorem**

[Cohen 87, Hillar-Sullivant 09]

 $\mathbb{C}[x_{ij} \mid i \in [k], j \in \mathbb{N}] = \mathbb{C}[V^*]$  is Sym( $\mathbb{N}$ )-Noetherian.

# Infinite-by-infinite matrices

Sym( $\mathbb{N}$ ) acts by  $\pi(x_{ij}) = x_{\pi(i),\pi(j)}$   $\rightsquigarrow \mathbb{C}[x_{ij} \mid i, j \in \mathbb{N}]$  is *not* Sym( $\mathbb{N}$ )-Noetherian; e.g. the Sym( $\mathbb{N}$ )-stable ideal generated by  $x_{12}x_{21}$ ,  $x_{12}x_{23}x_{31}$ ,  $x_{12}x_{23}x_{34}x_{41}$ , ... is not Sym( $\mathbb{N}$ )-finitely generated.  $x_{11}$   $x_{12}$   $\cdots$   $x_{21}$   $\vdots$ 

(neither  $Sym(\mathbb{N}) \times Sym(\mathbb{N})$ -Noetherian)

**Theorem** (*Matrices of bounded rank*)  $\mathbb{C}[x_{ij} | i, j \in \mathbb{N}]/(\text{all } (k+1) \times (k+1)\text{-subdeterminants})$  *is* Sym( $\mathbb{N}$ )-Noetherian.

(uses  $2k \times \mathbb{N}$ -matrices and the FFT, SFT for  $GL_k$ )

**Theorem** (*Matrices of bounded rank*)  $\mathbb{C}[x_{ij} | i, j \in \mathbb{N}]/(\text{all } (k+1) \times (k+1)\text{-subdeterminants})$  *is* Sym( $\mathbb{N}$ )-Noetherian. (*uses*  $2k \times \mathbb{N}$ -*matrices and the FFT, SFT for*  $GL_k$ )

# Larger groups

 $GL_{\mathbb{N}} := \{\text{invertible } \mathbb{N} \times \mathbb{N}\text{-matrices } g \text{ with almost all } g_{ii} = 1 \text{ and almost all } g_{ij} = 0 (i \neq j) \}.$ 

**Theorem** (*Matrices of bounded rank*)  $\mathbb{C}[x_{ij} | i, j \in \mathbb{N}]/(\text{all } (k+1) \times (k+1)\text{-subdeterminants})$ 

is  $Sym(\mathbb{N})$ -Noetherian.

(uses  $2k \times \mathbb{N}$ -matrices and the FFT, SFT for  $GL_k$ )

# Larger groups

 $GL_{\mathbb{N}} := \{\text{invertible } \mathbb{N} \times \mathbb{N}\text{-matrices } g \text{ with almost all } g_{ii} = 1 \text{ and almost all } g_{ij} = 0 (i \neq j) \}.$ 

**Theorem** (*symmetric matrices*) [Snowden-Sam 2012]  $\mathbb{C}[x_{ij} \mid i, j \in \mathbb{N}, x_{ij} = x_{ji}]$  is  $GL_{\mathbb{N}}$ -Noetherian via  $g \circ x = gxg^T$ .

**Theorem** (*Matrices of bounded rank*)

 $\mathbb{C}[x_{ij} \mid i, j \in \mathbb{N}]/(\text{all } (k+1) \times (k+1)\text{-subdeterminants})$  *is* Sym( $\mathbb{N}$ )-Noetherian.

(uses  $2k \times \mathbb{N}$ -matrices and the FFT, SFT for  $GL_k$ )

# Larger groups

 $GL_{\mathbb{N}} := \{\text{invertible } \mathbb{N} \times \mathbb{N}\text{-matrices } g \text{ with almost all } g_{ii} = 1 \text{ and almost all } g_{ij} = 0 (i \neq j) \}.$ 

**Theorem** (*symmetric matrices*) [Snowden-Sam 2012]  $\mathbb{C}[x_{ij} \mid i, j \in \mathbb{N}, x_{ij} = x_{ji}]$  is  $GL_{\mathbb{N}}$ -Noetherian via  $g \circ x = gxg^T$ .

# **Theorem** [D-Eggermont 2014] $(\mathbb{C}^{\mathbb{N}\times\mathbb{N}})^p$ is $GL_{\mathbb{N}} \times GL_{\mathbb{N}}$ -Noetherian for each p, via $(g,h) \circ (x,\ldots,z) := (gxh^{-1},\ldots,gzh^{-1}).$

$$P_n := \{ v_{ij} = e_i + e_j \mid 1 \le i \ne j \le n \}$$





$$P_n := \{ v_{ij} = e_i + e_j \mid 1 \le i \ne j \le n \}$$





#### Markov basis $M_n$

[De Loera-Sturmfels-Thomas 1995]

 $v_{ij} = v_{ji}$  and  $v_{ij} + v_{kl} = v_{il} + v_{kj}$  for i, j, k, l distinct  $\rightsquigarrow$  if  $\sum_{ij} c_{ij} v_{ij} = \sum_{ij} d_{ij} v_{ij}$  with  $c_{ij}, d_{ij} \in \mathbb{Z}_{\geq 0}$ , then the expressions are connected by such *moves* without creating negative coefficients

$$P_n := \{ v_{ij} = e_i + e_j \mid 1 \le i \ne j \le n \}$$





#### Markov basis $M_n$

[De Loera-Sturmfels-Thomas 1995]

 $v_{ij} = v_{ji}$  and  $v_{ij} + v_{kl} = v_{il} + v_{kj}$  for i, j, k, l distinct  $\leadsto$  if  $\sum_{ij} c_{ij} v_{ij} = \sum_{ij} d_{ij} v_{ij}$  with  $c_{ij}, d_{ij} \in \mathbb{Z}_{\geq 0}$ , then the expressions are connected by such *moves* without creating negative coefficients

#### Theorem

[D-Eggermont-Krone-Leykin 2013]

For any family  $(P_n \subseteq \mathbb{Z}^F \times \mathbb{Z}^{k \times n})$ , F finite, if  $P_n = \operatorname{Sym}(n)P_{n_0}$  for  $n \ge n_0$ , then  $\exists n_1$ : for  $n \ge n_1$  has a Markov basis  $M_n$  with  $M_n = \operatorname{Sym}(n)M_{n_0}$ .

$$P_n := \{ v_{ij} = e_i + e_j \mid 1 \le i \ne j \le n \}$$





#### Markov basis $M_n$

[De Loera-Sturmfels-Thomas 1995]

 $v_{ij} = v_{ji}$  and  $v_{ij} + v_{kl} = v_{il} + v_{kj}$  for i, j, k, l distinct  $\rightsquigarrow$  if  $\sum_{ij} c_{ij} v_{ij} = \sum_{ij} d_{ij} v_{ij}$  with  $c_{ij}, d_{ij} \in \mathbb{Z}_{\geq 0}$ , then the expressions are connected by such *moves* without creating negative coefficients

#### **Theorem**

[D-Eggermont-Krone-Leykin 2013]

For any family  $(P_n \subseteq \mathbb{Z}^F \times \mathbb{Z}^{k \times n})$ , F finite, if  $P_n = \operatorname{Sym}(n)P_{n_0}$  for  $n \ge n_0$ , then  $\exists n_1$ : for  $n \ge n_1$  has a Markov basis  $M_n$  with  $M_n = \operatorname{Sym}(n)M_{n_0}$ .

Explicit results for width  $n_0 = 2$ :

[Kahle-Krone-Leykin 2014]

# Part II: Applications to algebro-statistical models

## Setting

 $V_1^*, V_2^*, \ldots$  fin-dim spaces;  $X_i \subseteq V_i^*$  subvariety  $G_i$  group acting linearly on  $V_i^*$  preserving  $X_i$   $G_i \subseteq G_{i+1}$  & maps  $\pi: V_{i+1}^* \to V_i^*$  and  $\iota: V_i^* \to V_{i+1}^*$  both  $G_i$ -equivariant, mapping  $X_{i+1}$  into  $X_i$  and v.v. &  $\pi \circ \iota = \mathrm{id}$ 

$$V_1^*$$
 $V_2^*$ 
 $V_3^*$ 
 $V_3^*$ 
 $V_3^*$ 
 $V_4^*$ 
 $V_3^*$ 
 $V_4^*$ 
 $V_5^*$ 
 $V_5^*$ 
 $V_5^*$ 
 $V_5^*$ 
 $V_5^*$ 
 $V_5^*$ 
 $V_5^*$ 
 $V_5^*$ 
 $V_7^*$ 
 $V_7^$ 

#### Setting

 $V_1^*, V_2^*, \ldots$  fin-dim spaces;  $X_i \subseteq V_i^*$  subvariety  $G_i$  group acting linearly on  $V_i^*$  preserving  $X_i$   $G_i \subseteq G_{i+1}$  & maps  $\pi: V_{i+1}^* \to V_i^*$  and  $\iota: V_i^* \to V_{i+1}^*$  both  $G_i$ -equivariant, mapping  $X_{i+1}$  into  $X_i$  and v.v. &  $\pi \circ \iota = \mathrm{id}$ 



## Setting

 $V_1^*, V_2^*, \ldots$  fin-dim spaces;  $X_i \subseteq V_i^*$  subvariety  $G_i$  group acting linearly on  $V_i^*$  preserving  $X_i$   $G_i \subseteq G_{i+1}$  & maps  $\pi: V_{i+1}^* \to V_i^*$  and  $\iota: V_i^* \to V_{i+1}^*$  both  $G_i$ -equivariant, mapping  $X_{i+1}$  into  $X_i$  and v.v. &  $\pi \circ \iota = \mathrm{id}$ 

$$V_1^* \longrightarrow V_2^* \longrightarrow V_3^* \longrightarrow \cdots$$

$$Sequence (X_i \subseteq V_i^*)_i$$

$$X_1 \longrightarrow X_2 \longrightarrow X_3 \longrightarrow \cdots$$

$$Stabilises \text{ if for } n \gg 0:$$

$$p \in V_n^* \text{ lies in } X_n$$

$$G_1 \longrightarrow G_2 \longrightarrow G_3 \longrightarrow \cdots$$

$$iff \forall_{g \in G_n} \pi(gp) \in X_{n-1}.$$

 $\rightsquigarrow V_{\infty}^* := \lim_{\leftarrow} V_n; X_{\infty} := \lim_{\leftarrow} X_n; G_{\infty} := \cup_n G_n$ 

**Lemma** Stabilisation is "equivalent" to:  $X_{\infty} \subseteq V_{\infty}^*$  is defined by finitely many  $G_{\infty}$ -orbits of equations.

# I: The independent set theorem

#### Fixed row and column sums

$$A, B \in \mathbb{Z}_{\geq 0}^{m \times n}$$
 with  $a_{i+} = b_{i+}$  and  $a_{+j} = b_{+j}$   
 $\Rightarrow \exists A = A_0, A_1, \dots, A_k = B \in \mathbb{Z}_{\geq 0}^{m \times n}$  with
$$A_l - A_{l-1} = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \rightsquigarrow \text{moves "independent" of } m, n.$$

# I: The independent set theorem

#### Fixed row and column sums

#### **Theorem**

[Diaconis-Sturmfels 1998]

basis of Markov moves = generating set of toric ideal (e.g.  $\ker[y_{ij} \mapsto x_i z_j]$  generated by  $\{y_{ij} y_{i'j'} - y_{ij'} y_{i'j}\}$ )

# I: The independent set theorem

#### Fixed row and column sums

#### **Theorem**

[Diaconis-Sturmfels 1998]

basis of Markov moves = generating set of toric ideal (e.g.  $\ker[y_{ij} \mapsto x_i z_j]$  generated by  $\{y_{ij} y_{i'j'} - y_{ij'} y_{i'j}\}$ )

#### Conjecture

[Hoşten-Sullivant 2007]

Similar stabilisation conjecture for Markov basis for sampling higher-dimensional contingency tables.

#### Hierarchichal models

*F* family of subsets of [m]  $y(i_1,...,i_m)$  and  $x(S,(i_s)_{s\in S})$  for  $S\in F$  variables  $I:=\ker[y(i_1,...,i_m)\mapsto \prod_{A\in S}x(S,(i_s)_{s\in S})]$ 

#### Example

m = 4,  $F = \{124, 13, 23\}$ variables y(abcd), x(abd), z(ac), u(bc) $I = \text{ker}[y(abcd) \mapsto x(abd)z(ac)u(bc)]$ 



#### Hierarchichal models

*F* family of subsets of [m]  $y(i_1,...,i_m)$  and  $x(S,(i_s)_{s\in S})$  for  $S\in F$  variables  $I:=\ker[y(i_1,...,i_m)\mapsto \prod_{A\in S}x(S,(i_s)_{s\in S})]$ 

#### Example

m = 4,  $F = \{124, 13, 23\}$ variables y(abcd), x(abd), z(ac), u(bc) $I = \text{ker}[y(abcd) \mapsto x(abd)z(ac)u(bc)]$ 



#### **Theorem**

[Hillar-Sullivant 2012]

If  $T \subseteq [m]$  independent set  $(|T \cap S| \le 1 \text{ for } S \in F)$ ;  $i_t, t \in T$  run through  $\mathbb{N}$  and  $i_t, t \notin T$  through  $[r_t]$   $\rightsquigarrow I$  generated by finitely many  $Inc(\mathbb{N})$ -orbits

(now this also follows from D-Eggermont-Krone-Leykin)

 $X_i$ ,  $i \in [n]$ : jointly Gaussian

 $X_j = \sum_{i \in pa(j)} \lambda_{ij} X_i + a_j \epsilon_j$  where the  $\epsilon_j \sim N(0, 1)$  independent

$$\rightsquigarrow \Sigma = (I - \Lambda)^{-T} \operatorname{diag}(a_1^2, \dots, a_n^2)(I - \Lambda)^{-1}$$

 $X_i$ ,  $i \in [n]$ : jointly Gaussian

 $X_j = \sum_{i \in pa(j)} \lambda_{ij} X_i + a_j \epsilon_j$  where the  $\epsilon_j \sim N(0, 1)$  independent

 $\rightsquigarrow \Sigma = (I - \Lambda)^{-T} \operatorname{diag}(a_1^2, \dots, a_n^2)(I - \Lambda)^{-1}$ 

 $H \subseteq [m]$  hidden  $\leadsto \Sigma_{[n]-H}$  principal submatrix model: Zariski closure of  $\{\Sigma_{[n]-H} | \Lambda, a\}$ 

 $X_i$ ,  $i \in [n]$ : jointly Gaussian

 $X_j = \sum_{i \in pa(j)} \lambda_{ij} X_i + a_j \epsilon_j$  where the  $\epsilon_j \sim N(0, 1)$  independent

$$\rightsquigarrow \Sigma = (I - \Lambda)^{-T} \operatorname{diag}(a_1^2, \dots, a_n^2)(I - \Lambda)^{-1}$$

 $H \subseteq [m]$  hidden  $\leadsto \Sigma_{[n]-H}$  principal submatrix model: Zariski closure of  $\{\Sigma_{[n]-H} | \Lambda, a\}$ 

# Cloning sinks



 $X_i$ ,  $i \in [n]$ : jointly Gaussian

 $X_j = \sum_{i \in pa(j)} \lambda_{ij} X_i + a_j \epsilon_j$  where the  $\epsilon_j \sim N(0, 1)$  independent

$$\rightsquigarrow \Sigma = (I - \Lambda)^{-T} \operatorname{diag}(a_1^2, \dots, a_n^2)(I - \Lambda)^{-1}$$

 $H \subseteq [m]$  hidden  $\leadsto \Sigma_{[n]-H}$  principal submatrix model: Zariski closure of  $\{\Sigma_{[n]-H} | \Lambda, a\}$ 

# Cloning sinks



 $X_i$ ,  $i \in [n]$ : jointly Gaussian

 $X_j = \sum_{i \in \text{pa}(j)} \lambda_{ij} X_i + a_j \epsilon_j$  where the  $\epsilon_j \sim N(0, 1)$  independent

 $\rightsquigarrow \Sigma = (I - \Lambda)^{-T} \operatorname{diag}(a_1^2, \dots, a_n^2)(I - \Lambda)^{-1}$ 

 $H \subseteq [m]$  hidden  $\leadsto \Sigma_{[n]-H}$  principal submatrix model: Zariski closure of  $\{\Sigma_{[n]-H} | \Lambda, a\}$ 

# Cloning sinks



#### **Theorem**

Model stabilises under cloning sinks (via permuting clones).

| undirected                                                                                                                                        | DAG with hidden vars |                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------------|
| $M(G) := \{(p_{i_1,,i_n} = \prod_C \theta_{i_C}^C)_{i_1,,i_n}\} \subseteq \mathbb{C}^R$ prod over all cliques $C$ $\theta^C \in \mathbb{C}^{R_C}$ |                      | $discrete \\ R = \prod_{j} [r_j]$ |
| I: stabilises under increasing $r_j$ for $j$ in independent set                                                                                   |                      |                                   |
|                                                                                                                                                   |                      | Gaussian<br>mean 0                |

| undirected                                                                                                                                                  | DAG with hidden vars                                                                                                                                                                           |                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| $M(G) := \{(p_{i_1,,i_n} = \prod_{C} \theta_{i_C}^C)_{i_1,,i_n}\} \subseteq \mathbb{C}^R$ $\text{prod over all cliques } C$ $\theta^C \in \mathbb{C}^{R_C}$ |                                                                                                                                                                                                | $discrete \\ R = \prod_{j} [r_j]$ |
| I: stabilises under increasing $r_j$ for $j$ in independent set                                                                                             |                                                                                                                                                                                                |                                   |
|                                                                                                                                                             | $\{\Sigma = (I - \Lambda)^{-T}D(I - \Lambda)^{-1}\}$ $\Lambda_{ij} = 0 \text{ if } i \nrightarrow j$ $M(G) \subseteq \mathbb{C}^{([n]-H)\times([n]-H)}$ $II: stabilises under$ $cloning sinks$ | Gaussian<br>mean 0                |

| undirected                                                                                                                                                | DAG with hidden vars                                                                                                                                                                                   |                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| $M(G) := \{(p_{i_1,,i_n} = \prod_C \theta_{i_C}^C)_{i_1,,i_n}\} \subseteq \mathbb{C}^R$ $\text{prod over all cliques } C$ $\theta^C \in \mathbb{C}^{R_C}$ | $\{(p_{i_1,,i_n} = \prod_{j \in [n]} \theta_{i_j   (i_k)_{k \in pa(j)}})\} \subseteq \mathbb{C}^R$ $\forall \mathbf{i} \in R_{pa(j)} : \sum_{i_j} \theta_{i_j   \mathbf{i}} = 1$ hide variables in $H$ | $discrete \\ R = \prod_{j} [r_j]$ |
| I: stabilises under increasing $r_j$ for $j$ in independent set                                                                                           | III: stabilises under cloning sinks?? Yes for trees.                                                                                                                                                   |                                   |
|                                                                                                                                                           | $\{\Sigma = (I - \Lambda)^{-T}D(I - \Lambda)^{-1}\}$ $\Lambda_{ij} = 0 \text{ if } i \nrightarrow j$ $M(G) \subseteq \mathbb{C}^{([n]-H)\times([n]-H)}$ $II: stabilises under$ $cloning sinks$         | Gaussian<br>mean 0                |

| undirected                                                                                                                                                | DAG with hidden vars                                                                                                                                                                                   |                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| $M(G) := \{(p_{i_1,,i_n} = \prod_C \theta_{i_C}^C)_{i_1,,i_n}\} \subseteq \mathbb{C}^R$ $\text{prod over all cliques } C$ $\theta^C \in \mathbb{C}^{R_C}$ | $\{(p_{i_1,,i_n} = \prod_{j \in [n]} \theta_{i_j   (i_k)_{k \in pa(j)}})\} \subseteq \mathbb{C}^R$ $\forall \mathbf{i} \in R_{pa(j)} : \sum_{i_j} \theta_{i_j   \mathbf{i}} = 1$ hide variables in $H$ | $discrete \\ R = \prod_{j} [r_j]$ |
| I: stabilises under increasing $r_j$ for $j$ in independent set                                                                                           | III: stabilises under cloning sinks?? Yes for trees.                                                                                                                                                   |                                   |
| $M(G) := \{ \Sigma = K^{-1} \}$ $K_{ij} = 0 \text{ if } ij \notin E(G)$ $M(G) \subseteq \mathbb{C}^{n \times n}$                                          | $ \begin{cases} \Sigma = \\ (I - \Lambda)^{-T} D(I - \Lambda)^{-1} \\ \Lambda_{ij} = 0 \text{ if } i \nrightarrow j \\ M(G) \subseteq \mathbb{C}^{([n] - H) \times ([n] - H)} \end{cases} $            | Gaussian<br>mean 0                |
| stabilisation??                                                                                                                                           | II: stabilises under<br>cloning sinks                                                                                                                                                                  |                                   |

$$C \in \mathbb{R}_{\geq 0}^{m \times n} \leadsto \operatorname{rk}_{\geq 0} C := \min\{r \mid \exists (A, B) \in \mathbb{R}_{\geq 0}^{m \times r} \times \mathbb{R}_{\geq 0}^{r \times n} : C = AB\}$$

$$C \in \mathbb{R}_{\geq 0}^{m \times n} \leadsto \operatorname{rk}_{\geq 0} C := \min\{r \mid \exists (A, B) \in \mathbb{R}_{\geq 0}^{m \times r} \times \mathbb{R}_{\geq 0}^{r \times n} : C = AB\}$$

## Very ill-behaved

[Moitra 2012]

For all n > 3 there are  $n \times n$ -matrices of nonnegative rank > 3 with all proper submatrices of nonnegative rank 3.

$$C \in \mathbb{R}_{\geq 0}^{m \times n} \leadsto \operatorname{rk}_{\geq 0} C := \min\{r \mid \exists (A, B) \in \mathbb{R}_{\geq 0}^{m \times r} \times \mathbb{R}_{\geq 0}^{r \times n} : C = AB\}$$

## Very ill-behaved

[Moitra 2012]

For all n > 3 there are  $n \times n$ -matrices of nonnegative rank > 3 with all proper submatrices of nonnegative rank 3.

 $M_r^{m \times n} := \{A \in \mathbb{R}_{\geq 0}^{m \times n} \mid \text{rk}_{\geq 0} A \leq r\}$  (positive cone over) mixture of r copies of independence  $\partial M_r^{m \times n} := \text{topological boundary}$ 

$$C \in \mathbb{R}_{\geq 0}^{m \times n} \leadsto \operatorname{rk}_{\geq 0} C := \min\{r \mid \exists (A, B) \in \mathbb{R}_{\geq 0}^{m \times r} \times \mathbb{R}_{\geq 0}^{r \times n} : C = AB\}$$

## Very ill-behaved

[Moitra 2012]

For all n > 3 there are  $n \times n$ -matrices of nonnegative rank > 3 with all proper submatrices of nonnegative rank 3.

 $M_r^{m \times n} := \{ A \in \mathbb{R}_{>0}^{m \times n} \mid r\mathbf{k}_{\geq 0} A \leq r \}$ (positive cone over) mixture of r copies of independence  $\partial M_r^{m \times n}$ :=topological boundary

**Observation/Theorem** [Kubjas, Robeva, Sturmfels 2013]

EM-algorithm for  $M_r^{m \times n}$  often converges to boundary! Explicit, quantifier-free expression for r = 2.

 $\partial M_r^{m \times n}$ : Zariski closure  $\subseteq \mathbb{C}^{m \times n}$ 

hypersurface in the variety of rank-*r* matrices

 $\partial M_r^{m \times n}$ : Zariski closure  $\subseteq \mathbb{C}^{m \times n}$ 

hypersurface in the variety of rank-*r* matrices

### **Theorem**

[Kubjas-Robeva-Sturmfels 2013]

Apart from coordinate hyperplanes, for  $m, n \ge 4$ ,  $\partial M_3^{m \times n}$  has  $2 \operatorname{Sym}(m) \times \operatorname{Sym}(n)$ -orbits of irreducible components, parameterised by the following and its transpose:

 $\overline{\partial M_r^{m \times n}}$ : Zariski closure  $\subseteq \mathbb{C}^{m \times n}$ 

hypersurface in the variety of rank-*r* matrices

### Theorem

[Kubjas-Robeva-Sturmfels 2013]

Apart from coordinate hyperplanes, for  $m, n \ge 4$ ,  $\partial M_3^{m \times n}$  has  $2 \operatorname{Sym}(m) \times \operatorname{Sym}(n)$ -orbits of irreducible components, parameterised by the following and its transpose:

$$\begin{bmatrix}
0 & * & * \\
* & 0 & * \\
* & * & 0 \\
* & * & *
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & * & * & * \\
* & * & 0 & * & * \\
* & * & * & 0 & *
\end{bmatrix}$$
This component has a GB of  $4 \times 4$  minors plus  $\binom{m}{3}$  sextics.

 $\overline{\partial M_r^{m \times n}}$ : Zariski closure  $\subseteq \mathbb{C}^{m \times n}$ 

hypersurface in the variety of rank-*r* matrices

### **Theorem**

[Kubjas-Robeva-Sturmfels 2013]

Apart from coordinate hyperplanes, for  $m, n \ge 4$ ,  $\partial M_3^{m \times n}$  has  $2 \operatorname{Sym}(m) \times \operatorname{Sym}(n)$ -orbits of irreducible components, parameterised by the following and its transpose:

$$\begin{bmatrix}
0 & * & * \\
* & 0 & * \\
* & * & 0 \\
* & * & *
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & * & * \\
* & * & 0 & * \\
* & * & * & 0 & *
\end{bmatrix}$$
This component has a GB of  $4 \times 4$  minors plus  $\binom{m}{3}$  sextics.

Now a **Theorem** due to Eggermont-Horobeţ-Kubjas. But what about higher nonnegative rank??

# Conclusions and questions

- Many algebro-statistical models fit into families with a meaningful limit.
- There is an ever growing body of commutative algebra for dealing with these limits up to symmetry.
- Do discrete Bayesian models stabilise under cloning sinks?
- Do undirected Gaussian graphical models exhibit any kind of stabilisation?
- If you have other families of models where you expect stabilisation, come talk to me!

# Conclusions and questions

- Many algebro-statistical models fit into families with a meaningful limit.
- There is an ever growing body of commutative algebra for dealing with these limits up to symmetry.
- Do discrete Bayesian models stabilise under cloning sinks?
- Do undirected Gaussian graphical models exhibit any kind of stabilisation?
- If you have other families of models where you expect stabilisation, come talk to me!

# Děkuji!