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Part I: some infinite-dimensional
commutative algebra
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inductive limits of finite-dimensional varieties,
projective limits, spectra of infinite-dimensional rings, etc.

This talk

V: countable-dimensional space over C (or R) of coordinates
V*: dual space, topological space with Zariski topology
Closed subsets X C V* are called infinite-dimensional varieties.

Example
V ={(xjj|i,] € N), X C V" defined by equations x;jxy — x;Xx;

Sequence model

If V1 C V, C...finite-dimensional with V = [ J; V;, then
Vi=limc Vi with V)< V) «e— -

(both as set and as topological space)
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ideals stabilises (& each G-stable ideal is G-finitely generated.)
—

X is G-Noetherian if every chain X; 2 X, 2 ... of G-stable

closed subsets stabilises
(& each G-stable subvariety of X defined by fin many G-orbits of egs.)
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Finite-by-infinite matrices X11 X12 -
Fixk € N; :
Sym(N) actson V =(x;; | i € [k], ] € N)
by 7t(xij) = Xin()-

Xkl X2 -

Theorem [Cohen 87, Hillar-Sullivant 09]
Clxi; | i € [k], j € N] = C[V"] is Sym(N)-Noetherian.

Infinite-by-infinite matrices X11 X1 -
Sym(N) acts by 7t(x;;) = Xng),n(j) X1
~ Clx;j | 1, ] € N] is not Sym(N)-Noetherian; :

e.g. the Sym(N)-stable ideal generated by

X12X21, X12X23X31, X12X23X34X41, - .-
is not Sym(N)-finitely generated.
(neither Sym(N) X Sym(N)-Noetherian)
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Theorem (Matrices of bounded rank)

Clxi; 11,7 € N]/(all (k + 1) X (k + 1)-subdeterminants)
1s Sym(N)-Noetherian.

(uses 2k x N-matrices and the FFT, SFT for GLy)

Larger groups
GLy := {invertible N X N-matrices ¢ with almost all g;; = 1
and almost all g;; = 0(i # j)}.

Theorem (symmetric matrices) [Snowden-Sam 2012]
C[xi]- | i,j e N, Xij = x]'i] is GLy-Noetherian via gox= gng.

Theorem [D-Eggermont 2014]
(C™™NY is GLy X GLy-Noetherian for each p, via

(g h)o(x,...,z):=(gxh™t,..., gzh™).
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Finitely generated symmetric Markov bases

Example second hypersimplex i
P,:={vij=e+ej|1<i#j<nj

Markov basis M,, [De Loera-Sturmfels-Thomas 1995]
vij = vj and v;; + vy = vy + vy for i, ], k, I distinct

~ 1f Zij Cij0Uij = Zij di]'vi]' with Cij, di]' c ZZO/

then the expressions are connected by such

moves without creating negative coefficients

Theorem [D-Eggermont-Krone-Leykin 2013]
For any family (P, C ZF x Z™"), F finite, if P,, = Sym(n)P,,
for n > ng, then dny: for n > n; has a Markov basis M,, with
M, = Sym(n)M,, .

Explicit results for width ny = 2: | Kahle-Krone-Leykin 2014]
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Constructing limits

Setting

Vi, V2,... fin-dim spaces; X; C V? subvariety

G; group acting linearly on V? preserving X;
GiCGipp&mapsn: Vi — Viand(: V- V!  both
G;-equivariant, mapping X;;; into X; and viv. & mo 1 =1id

V*«—V*«—V*«—"'

X1 X5 X3

Gi C_, G C_, Gy C_, ---

Definition

Sequence (X; C V?);
stabilises if forn > 0 :
p € V7 lies in X,

iff Yo, 1(gp) € X1

~ Vi oi=1lime V) Xoo = limc X,;; G 1= U,,Gy,
Lemma Stabilisation is “equivalent” to: X, C V, is defined
by finitely many G-orbits of equations.
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Fixed row and column sums
= dA = Ay, A1,..., Ax=B¢€ Z;”g” with
1 =1

Al _Al—l — [ -1 1

] ~» moves “independent” of m, n.

Theorem [Diaconis-Sturmfels 1998]
basis of Markov moves = generating set of toric ideal

(e.g. ker[y;; > x;z;] generated by {y;jyy i — yiyyii})

Conjecture [Hosten-Sullivant 2007]
Similar stabilisation conjecture for Markov basis for
sampling higher-dimensional contingency tables.
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Hierarchichal models
F family of subsets of [m]
Y(i1,...,1n) and x(S, (i5)ses) for S € F variables

I:= ker[y(ilr R HAGS x(S, (is)ses)]
Example 1 ® 4
m=4,F =1{124,13,23}

variables y(abcd), x(abd), z(ac), u(bc)
I = ker[y(abcd) — x(abd)z(ac)u(be)] S ® 2
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Hierarchichal models

F family of subsets of [m]

Y(i1,...,1n) and x(S, (i5)ses) for S € F variables
I:= ker[y(ilr R HAGS x(S, (is)ses)]
Example 1
m=4,F ={124,13,23}

variables y(abcd), x(abd), z(ac), u(bc)

I = ker[y(abed) — x(abd)z(ac)u(bc)] (@
Theorem [Hillar-Sullivant 2012]
It T C [m] independent set (T NS| <1for S € F);

it,t € T run through N and i;,t ¢ T through [7]
~ [ generated by finitely many Inc(N)-orbits

(@4

(now this also follows from D-Eggermont-Krone-Leykin)
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II: Cloning sinks in a Gaussian Bayesian model

G: directed acyclic graph on [n]

Xi,1 € [n]: jointly Gaussian

Xj = Yiepa(j 1ijXi + ajej where the €; ~ N(0, 1) independent
~ L= (I-A)""diag(s,...,a;)I - A~

H C [m] hidden ~~ X,1-p principal submatrix
model: Zariski closure of {X,1-g|A, a}

Cloning sinks

1 J2 oo 2 I
Theorem [“D 2010”]
Model stabilises under cloning sinks (via permuting clones).
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Stabilisation for parameterised graphical models i

undirected

DAG with hidden vars

M(G) = {(pi,,...i, =
[1c 6y )it € CF

(2 .
Hje[n] 9ij|(ik)ke a(j))} cC

prod over all cliques C Vi € Rpa(j) : 2, 055 = 1 | discrete
¢ € CRe hide variables in H R=1] ilrgl
I: stabilises under increasing r;|[11: stabilises under cloning
for j in independent set sinks?? Yes for trees.
L=
(I—=A)""DUI-A)"
Aij=0if1 =~ j Gaussian
M(G) ¢ CUr=Exn=H) 1 35001

[1: stabilises under
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Stabilisation for parameterised graphical models i

undirected DAG with hidden vars

M(G) := {(pa,..i, = {(pir,...in =

I1c Gi(';)il,...,in} c Ck L Lietng Oiilioepan )} € CK

prod over all cliques C Vi € Rpa(j) : 2, 055 = 1 | discrete

¢ e CKc hide variables in H R=1] ]-[r]-]

I: stabilises under increasing r;|[11: stabilises under cloning

for j in independent set sinks?? Yes for trees.

M(G) := {T = K1) (X =

Kij = 0if ij ¢ E(G) (I— A)TD({I - A)™1)

M(G) c C™* Aij =0if i = j Gaussian
M(G) ¢ CUr=Exn=H) 1 35001

stabilisation?? [I: stabilises under

cloning sinks
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Definition
C € RIJ" ~ rk5oC := min{r | (A, B) € RI7" x RTY" : C = ABJ

Very ill-behaved [Moitra 2012]
For all n > 3 there are n X n-matrices of nonnegative rank
> 3 with all proper submatrices of nonnegative rank 3.

M= {A € RUT" | rk>oA < 7}
(positive cone over) mixture of r copies of independence
IM"":=topological boundary

Observation/Theorem [Kubjas, Robeva, Sturmfels 2013]
EM-algorithm for M*" often converges to boundary!
Explicit, quantifier-free expression for r = 2.
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Algebraic boundary

M. Zariski closure C C™<"

hypersurface in the variety of rank-r matrices

Theorem [Kubjas-Robeva-Sturmfels 2013]

Apart from coordinate hyperplanes, for m,n > 4, &Mg‘lx” has
2 Sym(m) X Sym(n)-orbits of irreducible components,
parameterised by the following and its transpose:

¥ X O
¥ O ¥
S

|¥ * *l

|¥ X Ol

|>.<>s>sc>|
¥ X O %

* Ok x
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Algebraic boundary

M. Zariski closure C C™<"

hypersurface in the variety of rank-r matrices

Theorem [Kubjas-Robeva-Sturmfels 2013]

Apart from coordinate hyperplanes, for m,n > 4, &Mg‘lx” has
2 Sym(m) X Sym(n)-orbits of irreducible components,

parameterised by the following and its transpose:

0+ x| [00 » = | Conjecture

« 0 = v % 0 % # This component has a GB of
D LA 4 x 4 minors plus (m) sextics.
EEEEa 3

Now a Theorem due to Eggermont-Horobef-Kubjas.
But what about higher nonnegative rank??
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e There is an ever growing body of commutative algebra
for dealing with these limits up to symmetry.

e Do discrete Bayesian models stabilise under cloning
sinks?
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Dékuji!
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