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Lie algebra

vector space L with
bilinear bracket

[ . , . ] : L× L → L

subject to anti-commutativity

[x, x] = 0 ( [x, y] = −[y, x])

and Jacobi identity

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0
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First construction: linear maps

L := {linear maps on a vector space V } =: End(V )
[A, B] := AB −BA commutator
anti-commutativity

[A, A] = AA− AA = 0

Jacobi identity

[A, [B, C]] + [B, [C, A]] + [C, [A, B]]

=ABC−ACB−BCA+CBA

+BCA−CBA−CAB+BAC

+CAB−BAC − ABC+ACB

=0
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Second construction: vector fields

X, Y vector fields on Rn

 so is [X, Y ]

operation (derivation) on functions

X(f )(p) = (df)(X(p))

bracket! commutator

[x∂y − y∂x, ∂x + ∂y] = ∂x − ∂y

Jacobi identity follows!
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Vector fields as infinitesimal symmetries

ODE

y(4) − 5(y(3))2

3y(2)
− (y(2))5/3 = 0

infinitesimal rotational symmetry

x∂y − y∂x

Sophus Lie (∼ 1890): ODE
 algebra of vector fields in R2

classified up to diffeomorphisms
analogy with Galois theory?

 helps solving (computer algebra)
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Third construction: Lie algebras from groups

1

X
Y

[X,Y]

G
T1GV finite-dimensional vector space

GL(V ) := {invertible g ∈ End(V )}
G closed subgroup of GL(V )

TIG = tangent space at I ∈ G ⊆ End(V )

fact: closed under commutator
 g := (TI(G), [ . , . ]) Lie algebra of G

properties of G properties of g
e.g. G Abelian ⇒ [g, g] = 0
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Lie algebras from classical groups

B/D
non-degenerate symmetric bilinear form on V
G := {g | gTg = I} =: O(V )
 g = {X | (I + εX)T (I + εX) = I mod ε2} = {X | XT + X = 0}
 o(V ) = so(V )
note (XY − Y X)T = Y TXT −XTY T = −(XY − Y X)

A
SL(V ) := {determinant 1} sl(V ) := {trace 0}

C
Sp(V ), sp(V ) like O(V ), o(V ) but skew form
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Intermezzo: exponential map

Lie algebra elements are “infinitesimal group elements”
often x ∈ L exp(tx) = 1 + tx + t2

2!x
2 + . . . “real group element”

1-parameter group: exp((s + t)x) = exp(sx) exp(tx)
characteristic zero needed?

examples
L = g ⊆ gl(Cn) exp(tx) = etx

L of vector fields exp(tx) is the flow

open problem
V = p(x, y, z)∂x + q(x, y, z)∂y + r(x, y, z)∂z

p, q, r polynomials ∈ Q[x, y, z]
decide algorithmically:

exp(tV )x = x + tp +
t2

2!
V p + . . . polynomial in t?
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Theory

goal (this talk): classification
finite-dimensional simple Lie algebras
certain Lie algebras of vector fields

tool: representation theory
L → End(V )?
L → {vector fields}?

tool: structure theory
ideals
subalgebras
simple Lie algebras
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Structure theory: ideals and simple Lie algebras

I ⊆ L ideal if [I, L] ⊆ I
( normal subgroups)

L simple if 0 and L are the only ideals
(and L not 1-dimensional)

sl(V ), so(V ), sp(V ) are (usually) simple

other finite-dimensional ones?
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Representation theory: adjoint representation

Jacobi identity
[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0

⇔
[[y, z], x] = [y, [z, x]]− [z, [y, x]]

⇔ ad : L → End(L), y 7→ [y, . ] intertwines bracket and commutator

ad([y, z]) = [ad(y), ad(z)]

ad is the adjoint representation of L
(with kernel {x ∈ L | [x, L] = 0}, the center)

fundamental tool in structure theory and classification!
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Structure theory: Cartan subalgebras

L simple finite-dimensional over C
Cartan subalgebraH : maximal withH Abelian and all adL(h) diagonalisable
 adL(H) simultaneously diagonalisable

H unique up to (inner) automorphisms of L

L = sl3 = sl(C3)

H =


a 0 0

0 b 0
0 0 −a− b

 ad-diagonalisable, e.g.a 0 0
0 b 0
0 0 −a− b

 ,

0 1 0
0 0 0
0 0 0

 = (a− b)

0 1 0
0 0 0
0 0 0


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Structure theory: root systems

H Cartan subalgebra in L
 L direct sum of common eigenspaces Lα, α ∈ H∗

Φ(L) := {all such α} \ {0} root system (L0 = H)

L = sl3  |Φ| = 6:

∗ ∗ ∗∗ ∗ ∗
∗ ∗ ∗


eigenspaces

H *
R

root system Φ
fact: every root space Lα, α ∈ Φ 1-dimensional
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Classification

abstract root system:
finite set in Euclidean space, with certain axioms

Cartan (1894):
L 7→ Φ(L) is bijection
{ finite-dimensional complex simple Lie algebras } → { root systems }
root systems classified

root systems classified combinatorially through Dynkin diagrams:

L = sl3 

H *
R
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Classification: root systems

21 n−1 n 1

2

3 4 5 n=6,7,8

21 n−2

n−1

n

21 n−1 n

21 n−1 n

1

An

Bn

Cn

Dn

En

F4

G2

2 3 4

1 2

all are Lie algebras of groups
An ! sln+1
Bn ! so2n+1
Cn ! sp2n

Dn ! so2n
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Representation theory: vector fields

L ⊇ M Lie algebras
m := codimL M < ∞
Guillemin/Sternberg/Blattner (1960s):
L → { (formal) vector fields in m variables }
s.t. M stabiliser of 0

L = sl3 =


∗ ∗ ∗∗ ∗ ∗
∗ ∗ ∗

, M =


∗ ∗ ∗0 ∗ ∗

0 ∗ ∗


 ∂1, ∂2,
x1∂2, 2x1∂1 + x2∂2,−x1∂1 + x2∂2, x2∂1
−x2

1∂1 − x1x2∂2,−x1x2∂1 − x2
2∂2

(L, M) primitive if 6 ∃N : L ) N ) M
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Classification: infinite-dimensional primitive Lie
algebras

Cartan (Guillemin,Sternberg,. . .) classified
infinite-dimensional primitive pseudo-groups:
L complex infinite-dimensional, codimL M = m < ∞
(L, M) primitive (+technical conditions)

 six possibilities:
L ∼= W ((m)) := all formal vector fields
L ∼= (C)S((m)) := those fixing a volume form (up to a constant)
L ∼= (C)H((2r)) := those fixing a symplectic form (up to a constant)
L ∼= K((2r + 1)) := those leaving a contact structure

e.g. S((m)) = {X =
∑m

i=1 fi∂i | div X :=
∑

i ∂i(fi) = 0}
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Characteristic p and divided powers

codimL M = m
over C:

L → {derivations of C[[x1, . . . , xm]]}
characteristic p:

L → {derivations ofO((m))}

O((m)) := {
∑
r∈Nm

crx
(r)} x(r)x(s) :=

(r + s)!

r!s!
x(r+s)

(think of x(r) as xr

r! )
O((m)) has nice finite-dimensional subalgebras
e.g. ri < p, si < p, ri + si ≥ p ⇒ x(r)x(s) = 0

 finite-dimensional versions of W, (C)S, (C)H, K in char p
these are simple; are these + the classical ones all?
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Wrapping up

take away:

1. finite-dimensional simple Lie algebras /C classified (combinatori-
ally): 4 infinite series An, Bn, Cn, Dn, 5 exceptional Lie algebras
E6, E7, E8, F4, G2

2. infinite-dimensional primitive Lie algebras of vector fields /C classified;
finite-dimensional analogues in char p

3. Lie algebra elements are “infinitesimal group elements”; exponential
map “integrates” them

many subjects not touched upon: geometry, physics, Lie super-algebras, al-
gorithms . . .


