

Classical theory of Lie algebras

Jan Draisma

DIAMANT Intercity Seminar Eindhoven 27 October 2006

Lie algebra

vector space L with bilinear bracket

$$[.,.]:L\times L\to L$$

subject to anti-commutativity

$$[x, x] = 0 \qquad (\rightsquigarrow [x, y] = -[y, x])$$

and Jacobi identity

$$[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0$$

First construction: linear maps

 $L:=\{ \mbox{linear maps on a vector space } V \} =: \mathrm{End}(V)$ $[A,B]:=AB-BA\ commutator$ anti-commutativity

$$[A, A] = AA - AA = 0$$

Jacobi identity

$$\begin{split} &[A,[B,C]]+[B,[C,A]]+[C,[A,B]]\\ =&ABC-ACB-BCA+CBA\\ +&BCA-CBA-CAB+BAC\\ +&CAB-BAC-ABC+ACB\\ =&0 \end{split}$$

Second construction: vector fields

X, Y vector fields on \mathbb{R}^n \leadsto so is [X, Y]

operation (derivation) on functions

$$X(f)(p) = (df)(X(p))$$

bracket ⟨⟨w⟩ commutator

$$[x\partial_y - y\partial_x, \partial_x + \partial_y] = \partial_x - \partial_y$$

Jacobi identity follows!

/ department of mathematics and computer science

Vector fields as infinitesimal symmetries

ODE

$$y^{(4)} - \frac{5(y^{(3)})^2}{3y^{(2)}} - (y^{(2)})^{5/3} = 0$$

infinitesimal rotational symmetry

$$x\partial_y - y\partial_x$$

Sophus Lie (\sim 1890): ODE \rightsquigarrow algebra of vector fields in \mathbb{R}^2 classified up to diffeomorphisms analogy with Galois theory?

→ helps solving (computer algebra)

Third construction: Lie algebras from groups

V finite-dimensional vector space

$$\operatorname{GL}(V) := \{ \operatorname{invertible} g \in \operatorname{End}(V) \}$$

G closed subgroup of $\mathrm{GL}(V)$

$$T_IG = \text{ tangent space at } I \in G \subseteq \text{End}(V)$$

fact: closed under commutator

$$\leadsto \mathfrak{g} := (T_I(G), [\ .\ ,\ .\])$$
 Lie algebra of G

properties of $G \leadsto \operatorname{properties}$ of $\mathfrak g$

e.g.
$$G$$
 Abelian $\Rightarrow [\mathfrak{g}, \mathfrak{g}] = 0$

Lie algebras from classical groups

B/D

non-degenerate symmetric bilinear form on V

$$G := \{ g \mid g^T g = I \} =: O(V)$$

$$\rightsquigarrow \mathfrak{g} = \{X \mid (I + \epsilon X)^T (I + \epsilon X) = I \mod \epsilon^2\} = \{X \mid X^T + X = 0\}$$

$$\leadsto \mathfrak{o}(V) = \mathfrak{so}(V)$$

$$\operatorname{note} (XY - YX)^T = Y^TX^T - X^TY^T = -(XY - YX)$$

Α

$$SL(V) := \{ determinant \ 1 \} \leadsto \mathfrak{sl}(V) := \{ trace \ 0 \}$$

C

 $\mathrm{Sp}(V),\mathfrak{sp}(V)$ like $\mathrm{O}(V),\mathfrak{o}(V)$ but skew form

Intermezzo: exponential map

Lie algebra elements are "infinitesimal group elements" often $x \in L \leadsto \exp(tx) = 1 + tx + \frac{t^2}{2!}x^2 + \dots$ "real group element" 1-parameter group: $\exp((s+t)x) = \exp(sx) \exp(tx)$ characteristic zero needed?

examples

$$L = \mathfrak{g} \subseteq \mathfrak{gl}(\mathbb{C}^n) \leadsto \exp(tx) = e^{tx}$$

 L of vector fields $\leadsto \exp(tx)$ is the flow

open problem

$$V = p(x, y, z)\partial_x + q(x, y, z)\partial_y + r(x, y, z)\partial_z$$

 p, q, r polynomials $\in \mathbb{Q}[x, y, z]$
decide algorithmically:

$$\exp(tV)x = x + tp + \frac{t^2}{2!}Vp + \dots$$
 polynomial in t ?

Theory

goal (this talk): classification

finite-dimensional simple Lie algebras certain Lie algebras of vector fields

tool: representation theory

 $L \to \operatorname{End}(V)$?

 $L \rightarrow \{\text{vector fields}\}$?

tool: structure theory

ideals subalgebras

simple Lie algebras

Structure theory: ideals and simple Lie algebras

 $I \subseteq L$ ideal if $[I, L] \subseteq I$ (\leadsto normal subgroups)

L simple if 0 and L are the only ideals (and L not 1-dimensional)

 $\mathfrak{sl}(V),\mathfrak{so}(V),\mathfrak{sp}(V)$ are (usually) simple

other finite-dimensional ones?

Representation theory: adjoint representation

Jacobi identity

$$[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0$$

 \Leftrightarrow

$$[[y, z], x] = [y, [z, x]] - [z, [y, x]]$$

 $\Leftrightarrow \operatorname{ad}: L \to \operatorname{End}(L), \ y \mapsto [y, \ . \]$ intertwines bracket and commutator

$$\operatorname{ad}([y, z]) = [\operatorname{ad}(y), \operatorname{ad}(z)]$$

ad is the adjoint representation of L (with kernel $\{x \in L \mid [x, L] = 0\}$, the center)

fundamental tool in structure theory and classification!

Structure theory: Cartan subalgebras

L simple finite-dimensional over $\mathbb C$ Cartan subalgebra H: maximal with H Abelian and all $\mathrm{ad}_L(h)$ diagonalisable $\leadsto ad_L(H)$ simultaneously diagonalisable

 ${\cal H}$ unique up to (inner) automorphisms of ${\cal L}$

$$L = \mathfrak{sl}_3 = \mathfrak{sl}(\mathbb{C}^3)$$

$$H = \left\{ \begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & -a - b \end{pmatrix} \right\} \text{ ad-diagonalisable, e.g.}$$

$$\left[\begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & -a - b \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \right] = (a - b) \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Structure theory: root systems

H Cartan subalgebra in L $\leadsto L$ direct sum of common eigenspaces $L_{\alpha}, \ \alpha \in H^*$ $\Phi(L) := \{\text{all such } \alpha\} \setminus \{0\} \text{ root system } (L_0 = H)$

$$L = \mathfrak{sl}_3 \leadsto |\Phi| = 6$$
:

eigenspaces

root system Φ

fact: every root space L_{α} , $\alpha \in \Phi$ 1-dimensional

Classification

abstract root system:

finite set in Euclidean space, with certain axioms

```
Cartan (1894): L\mapsto \Phi(L) \text{ is bijection} \\ \{ \text{ finite-dimensional complex simple Lie algebras } \} \to \{ \text{ root systems } \} \\ \text{root systems classified}
```

root systems classified combinatorially through *Dynkin diagrams*:

Classification: root systems

all are Lie algebras of groups

$$A_n \leftrightsquigarrow \mathfrak{sl}_{n+1}$$

$$B_n \leftrightsquigarrow \mathfrak{so}_{2n+1}$$

$$C_n \leftrightsquigarrow \mathfrak{sp}_{2n}$$

$$D_n \leftrightsquigarrow \mathfrak{so}_{2n}$$

Representation theory: vector fields

 $L \supseteq M$ Lie algebras $m := \operatorname{codim}_L M < \infty$

Guillemin/Sternberg/Blattner (1960s): $L \rightarrow \{ \text{ (formal) vector fields in } m \text{ variables } \}$ s.t. M stabiliser of 0

$$L = \mathfrak{sl}_3 = \left\{ \begin{pmatrix} * & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \right\}, M = \left\{ \begin{pmatrix} * & * & * \\ 0 & * & * \\ 0 & * & * \end{pmatrix} \right\}$$

$$\sim \partial_1, \partial_2,$$

$$x_1 \partial_2, 2x_1 \partial_1 + x_2 \partial_2, -x_1 \partial_1 + x_2 \partial_2, \underbrace{x_2 \partial_1}_{-x_1^2 \partial_1 - x_1 x_2 \partial_2}, -x_1 x_2 \partial_1 - x_2^2 \partial_2$$

(L,M) primitive if $\not\exists N:L\supsetneq N\supsetneq M$

Classification: infinite-dimensional primitive Lie algebras

Cartan (Guillemin, Sternberg,...) classified infinite-dimensional primitive pseudo-groups: $L \text{ complex infinite-dimensional, } \operatorname{codim}_L M = m < \infty$ (L, M) primitive (+technical conditions)

→ six possibilities:

 $L \cong W((m)) :=$ all formal vector fields

 $L \cong (C)S((m)) :=$ those fixing a volume form (up to a constant)

 $L \cong (C)H((2r)) :=$ those fixing a symplectic form (up to a constant)

 $L \cong K((2r+1)) :=$ those leaving a contact structure

e.g.
$$S((m)) = \{X = \sum_{i=1}^{m} f_i \partial_i \mid \text{div } X := \sum_i \partial_i (f_i) = 0\}$$

Characteristic p and divided powers

 $\operatorname{codim}_{L} M = m$ over \mathbb{C} :

$$L \to \{\text{derivations of } \mathbb{C}[[x_1, \dots, x_m]]\}$$

characteristic p:

$$L \to \{\text{derivations of } \mathcal{O}((m))\}$$

$$\mathcal{O}((m)) := \{ \sum_{r \in \mathbb{N}^m} c_r x^{(r)} \} \quad x^{(r)} x^{(s)} := \frac{(r+s)!}{r!s!} x^{(r+s)}$$

(think of $x^{(r)}$ as $\frac{x^r}{r!}$)

 $\mathcal{O}((m))$ has nice finite-dimensional subalgebras

e.g.
$$r_i < p, \ s_i < p, \ r_i + s_i \ge p \Rightarrow x^{(r)}x^{(\bar{s})} = 0$$

 \rightsquigarrow finite-dimensional versions of W, (C)S, (C)H, K in char p these are simple; are these + the classical ones all?

Wrapping up

take away:

- I. finite-dimensional simple Lie algebras $/\mathbb{C}$ classified (combinatorially): 4 infinite series A_n, B_n, C_n, D_n , 5 exceptional Lie algebras E_6, E_7, E_8, F_4, G_2
- 2. infinite-dimensional primitive Lie algebras of vector fields $/\mathbb{C}$ classified; finite-dimensional analogues in char p
- 3. Lie algebra elements are "infinitesimal group elements"; exponential map "integrates" them

many subjects not touched upon: geometry, physics, Lie super-algebras, algorithms . . .