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If m = n and A 18 symmetric, one can take u; = v;, SOA = ), u;u; .

If m = n and A 1s skew, then k£ = 2¢€ and one can take v; = u;,, for
i <{andv; = —u;_pfori > €;then A = Zﬁzl(uiv; — v,-ul.T).

Question. Which fensors admit orthogonal decompositions?
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T=3f e -evg= Z

e I =

For d = 2 this 1s matrix rank, for d > 2 it 1s NP-hard ... but for
orthogonally decomposable tensors it can be efficiently computed.
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written as 7 = Zle Vi1 ® -+ ®v;; where foreach j =1,...,d the
vectors vy, ..., Vg, are nonzero and pairwise perpendicular.

Definition. A symmetric tensor T' € Symd(V) C V¥ is sym-
metrically odeco/udeco 1f 1t can be written as T = Zle iv‘?d for
nonzero, pairwise perpendicular v;.

Example. With V = R? and d = 3 the tensor
T =egReyRey+eg®e; Qe +e1ReyRe; +e1 Qe Ve
is symmetrically odeco: T = (eg + €1)%°/2 + (eg — €1)%°/2
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Definition. An alternating tensor 7 € Alt?V C V®¢ is alterna-
tingly odecofudeco if T = Zle Vit A -+ A vy for k - d nonzero,

pairwise perpendicular vectors vyq, ..., Vi4.

(superpositions of points on the Grassmannian representing pair-

wise perpendicular d-subspaces of V; in particular k < thg 1)

Main theorem. For d > 3 odeco/udeco tensors form a real-
algebraic variety defined by polynomials of the following degrees:

odeco (R) udeco (C)
symmetric | 2 (associativity) 3 (semi-associativity)
ordinary 2 (partial associativity) 3 (partial semi-asso.)
alternating | 2 (Jacobi), 4 (cross) 3 (Casimir), 4 (cross)
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topic: latent variable taking
value j € {1, ..., k} with prob w;

words: conditional on 4 = j, drawn independently from a distribu-
tion u; € R%on{l,...,d)

Challenge: Observing /-word documents, estimate the w; and u;.

Think of the x, as random vectors in R?: x, = e; iff t-th word is i.

Result: E(x; ® --- ® x,) = le-:l Wil ®---®u;, and 1f k < d,
this can be transformed into a symmetrically odeco tensor. Using
p = 2,3 only, one can efliciently estimate the parameters. O
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Proposition. For d > 3 the orthogonal decomposition is unique.

Proof (ordinary case). Contracting T = Zle Vi1 ® -+ ®v;y with a
general tensorin V3 ® - - - ® V; yields a two-tensor A with distinct
nonzero singular values. O

(This yields an algorithm for orthogonal decomposition—Kolda.)
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Proposition. If 7" is udeco and real, then it 1s odeco.

Proof. For d > 3, use the uniqueness of the decomposition. O

Observation. If K =Rand T = >, v;; ® - - - ® v;y odeco, then for
each jo the contraction ), Vi X ). V; > &), (V;® V;) maps

(T, T)1nto ) ;(vij,lvij,) ®j¢jo V;®v;, which lies in (X)ji].o Symz(Vj)

Conjecture (Robeva). This characterises ordinary odeco tensors.
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This makes V a commutative R-algebra that decomposes as an or-
thogonal direct sum of simple 1deals.

Proposition. 7' 1s symmetrically odeco iff (V, -) 1s also associative.

Proof. =: If T = 3, u®>, then

)z = (Ciuilx)uily)u)z = Xl ) wily) (wil)|luill*u; = x(yz)

< may assume (V,-) 1s simple. Pick x such that M, : y = xy 1s

nonzero. Then ker M, is an ideal, so 0. Define y * z := M;!(yz).

~»> (V, %) 1s simple, comm, ass, with 1 and compatible (.|.), so = R.
O



Main theorem for ordinary odeco three-tensors 10

The proof 1s very similar, exceptnow 7T € U @ V® W gives rise to
a commutative algebra structureon U@ Ve W with U -V C W,
U-U = {0}, etc., and we are interested only in homogeneous 1deals.



Main theorem for ordinary odeco three-tensors 10

The proof 1s very similar, exceptnow 7T € U @ V® W gives rise to
a commutative algebra structureon U@ Ve W with U -V C W,
U-U = {0}, etc., and we are interested only in homogeneous 1deals.

Partial associativity means that (xy)z = x(yz) whenever x,y, z are
homogeneous and x, z belong to the same space (U, V, W).
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Main theorem for alternatingly odeco three-tensors 1
Again, T € Alt’(V) gives a bilinear multiplication (x,y) — xy.
Now we have xy = —yx and (xy|z) = —(xz]y).

Proposition. 7 is alternatingly odeco ifl (V,-) satisfies the Jacobi
1dentity as well as the cross product identity x((xy)(xz)) = 0.

Proof. =: V decomposes as an orthogonal direct sum of copies of
(R3, %), and we have x X (x X y) X (x X 2)) = 0
| |

a vector L x Xy and x X z,
so a scalar multiple of x

&: (V,-)1s then a compact Lie algebra. Their classification implies
that the only simple one satisfying the above identity is (R>, X). O
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We have a similar characterisation for ordinary three-tensors.
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Ordinary case. Ford > 4, atensorin V| ®---® V,; is odeco/udeco
1T 1ts flattening into ((X)l.E I V)®- - -<§Z>((X)l.E ; Vi) 1s for each partition
Ii,....I,of {1,...,d} with at least one |/;| > 1.

Symmetric case. A symmetric tensor is symmetrically odeco/
udeco 1iff 1t 1s odeco/udeco as an ordinary tensor.

Alternating case. For d > 4, a tensor in Alt’V is alternatingly
odeco/udeco iff all its contractions into Alt*~'V are.

This proves the main theorem, except ...
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Main theorem. For d > 3 odeco/udeco tensors form a real-
algebraic variety defined by polynomials of the following degrees:

odeco (R) udeco (C)
symmetric | 2 (associativity) 3 (semi-associativity)
ordinary 2 (partial associativity) | 3 (partial semi-asso.)
alternating | 2 (Jacobi), 4 (Casimir) 3 (Casimir), 4 (cross)

Example There 1s a 280-dimensional space of cubic equations for
udeco tensors in Alt*C®, one of which looks like:

Has5t340 35 — H3ala5035 + 12403450135 + Haeh340136 —
N34ha6l136 + 12403460136 — H46l2450 56 + 11450460156 —

0404560156 + 124603450356 — 14503460356 T 123484560356
... but the algebra has no polynomial i1dentities of degree 3!
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