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David Hilbert
Any polynomial system
f1(x1, . . . , xn) = 0,
f2(x1, . . . , xn) = 0, . . .
reduces to a finite system
( Noetherianity of K[x1, . . . , xn])

Paul Gordan
Das ist nicht Mathematik,
das ist Theologie!

Bruno Buchberger
Gröbner bases, algorithmic methods
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3Three-stage approach

1. Model
high-dim data ∞-dim data space
data property  ∞-dim subvariety
small window finite window
 leave fin-dim commutative algebra

2. Prove
∞-dim property finitely defined
up to symmetry?
 generalise Basis Theorem to∞ variables

3. Compute
actual windows for fin-dim data
 generalise Buchberger alg to∞ variables

1

2

dim→ ∞

3

3
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Example
K[x1, x2, . . .] is not Noetherian, e.g. x1 = 0, x2 = 0, . . .
does not reduce to a finite system.

Cohen [J Algebra, 1967]
K[x1, x2, . . .] is Sym(N)-Noetherian, i.e., every Sym(N)-stable
system reduces to finitely many equations up to Sym(N).

Notion of G-Noetherianity generalises to G-actions on rings or
topological spaces.

Fundamental (non-)examples
K[xi j | i ∈ {1, . . . , k}, j ∈ N] is Sym(N)-Noetherian;
K[xi j | i, j ∈ N] is not Sym(N)-Noetherian, but it is
GLN × GLN-Noetherian, and so is (KN×N)p for all p.
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Second hypersimplex
Pn := {vi j = ei + e j | 1 ≤ i , j ≤ n}

Markov basis Mn of integral relations
vi j = v ji and vi j + vkl = vil + vk j for i, j, k, l distinct
 if

∑
i j ci jvi j =

∑
i j di jvi j with ci j, di j ∈ Z≥0,

then the expressions are connected by such
moves without creating negative coefficients

Draisma-Eggermont-Krone-Leykin [ 2013]
For any family (Pn ⊆ Z

k×n), if Pn = Sym(n)Pn0 for n ≥ n0, then
∃n1: for n ≥ n1 has a Markov basis Mn with Mn = Sym(n)Mn0 .
 uses combinatorial notions such as well-partial orders
 we also have an algorithm for computing n1 and Mn1
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i.e., is Xi =

∑
j si jZ j + tiεi, with Z1, . . . ,Zk,
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2
n)

Definition
Fk,n := {S S T + diag(t2

1, . . . , t
2
n) | S ∈ Rn×k, ti ∈ R}

 algebraic variety in Rn×n called Gaussian k-factor model

S

S T
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Example
F2,5 is zero set of {σij − σ ji | i, j = 1, . . . , 5} and the pentad∑
π∈Sym(5) sgn(π)σπ(1)π(2)σπ(2)π(3)σπ(3)π(4)σπ(4)π(5)σπ(5)π(1)
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Drton-Sturmfels-Sullivant [Prob Th Rel Fields 2007]
If Σ ∈ Fk,n then any principal n0 × n0 submatrix Σ′ ∈ Fk,n0 .
 Is there an n0 = n0(k) such that the converse holds for n ≥ n0?

S

S T

t2
i

k

n n0

De Loera-Sturmfels-Thomas [Combinatorica 1995]
yes for k = 1 (n0 = 4)

Draisma [Adv Math 2010]
yes for all k (n0 =?)
 uses Fk,∞ and Noetherianity up to Sym(N)

Brouwer-Draisma [Math Comp 2011]
yes for k = 2: pentads and 3 × 3-minors define F2,n, n ≥ n0 := 6
 uses Sym(N)-Buchberger algorithm (+ a weekend on 20 computers)
 a single computation proves this for all n
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A wrong-titled movie
tensor T=multi-indexed array of numbers
matrices=two-way tensors
this picture=three-way tensor, . . .

Pure tensor P
has entries Pi, j,...,k = xiy j · · · zk

for vectors x, . . . , z
 for a matrix: xyT , rank one

Tensor rank of T
is minimal k in T =

∑k
j=1 P( j) with each P( j) pure

 generalises matrix rank
 useful for MRI data, communication complexity, phylogenetics etc.
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Matrix rank Tensor rank
efficiently computable NP-hard
field independent field dependent
can only go down in limit can also go up

Border rank of T
is smallest rank of T ′ arbitrarily close to T
 also extremely useful
 for matrices coincides with rank

Matrix rank < k Border rank < k
given by k × k-subdets finitely many equations up to symmetry

Draisma-Kuttler [Duke 2014]

efficiently checkable polynomial-time checkable
 uses space of∞-way tensors

a
a
b
c

a
b
c

d
e
f

g
h
i

a
b
c

d
e
f

g
h
i

⋃∞
n=0 Sym(n) n GLn
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V a fin-dim vector space over an infinite field K
 Grp(V) := {v1 ∧ · · · ∧ vp | vi ∈ V} ⊆

∧p V
cone over Grassmannian
(rank-one alternating tensors)

Two properties:
1. if ϕ : V → W linear
 
∧p ϕ :

∧p V →
∧p W

maps Grp(V)→ Grp(W)

2. if dim V =: n + p with n, p ≥ 0
 natural map

∧p V → (
∧n V)∗ →

∧n(V∗)
maps Grp(V)→ Grn(V∗)
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Definition
Rules X0,X1,X2, . . . with

Xp : {vector spaces V} → {varieties in
∧p V}

Constructions
X,Y Plücker varieties so are
X + Y (join), τX (tangential),
X ∪ Y,X ∩ Y
skew analogue of Snowden’s ∆-varieties

form a Plücker variety if, for dim V = n + p,
1. ϕ : V → W 

∧p ϕ maps Xp(V)→ Xp(W)
2.
∧p V →

∧n(V∗) maps Xp(V)→ Xn(V∗)
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16Finiteness for Plücker varieties, with Eggermont

Definition
A Plücker variety {Xp}p is bounded
if X2(V) ,

∧2 V for dim V sufficiently large.

Theorem
Any bounded Plücker variety is defined
set-theoretically in bounded degree, by
finitely many equations up to symmetry.

Theorem
For any fixed bounded Plücker variety there
exists a polynomial-time membership test.

Theorems apply, in particular, to
kGr = k-th secant variety of Gr.
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∧p Vn,p

∧p Vn+1,p

∧p+1 Vn,p+1
t 7→ t ∧ xp+1

Definition∧∞/2 V∞ := lim→
∧p Vn,p the infinite wedge (charge-0 part);

basis {xI := xi1 ∧ xi2 ∧ · · ·}I , I = {i1 < i2 < . . .}, ik = k for k � 0

On
∧∞/2 V∞ acts GL∞ :=

⋃
n,p GL(Vn,p).
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{Xp}p≥0 a Plücker variety varieties Xn,p := Xp(V∗n,p)

Dual diagram∧0 V∗00
∧1 V∗01∧0 V∗10
∧1 V∗11

∧p V∗n,p

∧p V∗n+1,p

∧p+1 V∗n,p+1



18The limit of a Plücker variety
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18The limit of a Plücker variety

{Xp}p≥0 a Plücker variety varieties Xn,p := Xp(V∗n,p)

Dual diagram∧0 V∗00
∧1 V∗01∧0 V∗10
∧1 V∗11

∧p V∗n,p

∧p V∗n+1,p

∧p+1 V∗n,p+1

Xn,p Xn,p+1

Xn+1,p

Theorem (implies earlier)
For bounded X, the limit X∞ is cut out by finitely many
GL∞-orbits of equations.

 X∞ := lim← Xn,p is GL∞-stable subvariety of (
∧∞/2 V∞)∗
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Example
The limit Gr∞ ⊆ (

∧∞/2 V∞)∗ of (Grp)p is Sato’s Grassmannian
defined by polynomials

∑
i∈I ±xI−i · xJ+i = 0

where ik = k − 1 for k � 0 and jk = k + 1 for k � 0.

 not finitely many GL∞-orbits

But in fact the GL∞-orbit of
(x−2,−1,3,... · x1,2,3,...) − (x−2,1,3,... · x−1,2,3,...) + (x−2,2,3,... · x−1,1,3,...)

defines Gr∞ set-theoretically.

Our theorems imply that also higher secant varieties of Sato’s
Grassmannian are defined by finitely many GL∞-orbits of
equations. . . we just don’t know which!
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combinatorics

Conjecture
Over any field K, Sato’s Grassmannian Gr∞(K) is Noetherian up
to Sym(−N ∪ +N) ⊆ GL∞.

The algebra of symmetric
high-dimensional data
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Wagner [Math Ann 1937]
For planarity these are

Graph minors
Any sequence of operations

takes a graph to a minor.
and

and

Robertson-Seymour [JCB 1983–2004, 669pp]
Any network property preserved under
taking minors can be characterised by
finitely many forbidden minors.
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1

From graphs to matroids

1
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0
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0

0
0
0

0
0
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0

column independence
structure = matroid

Matroid minor theorem (Geelen-Gerards-Whittle)
Any minor-preserved property of matroids
over a fixed finite field K can be characterised
by finitely many forbidden minors.

Correspondence
“Equivalant” to Sym(−N ∪ +N)-Noetherianity of Gr∞(K)
(but Noetherianity may hold even for infinite K).
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 theory and algorithms for highly symmetric,∞-dim varieties
 exciting interplay of algebra, combinatorics, statistics, and geometry

Ich habe mich davon überzeugt, daß
auch die Theologie ihre Vorzüge hat.

Paul Gordan

Thank you!

The Commutative Algebra
of Highly Symmetric Data

alg geometryalg statistics combinatoricsmultilin alg
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