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Let K be an algebraically closed field of characteristic zero, and let V be a
finite-dimensional vector space over K. Define

T := T (V ∗)⊗ T (V ).

Here T (V ) and T (V ∗) are the tensor algebras over V and V ∗, respectively, so that
T is canonically the direct sum of all spaces

V p
q := (V ∗)p ⊗ V q.

The group G := GL(V ) acts naturally on T , hence so does any subgroup H of G.
We want to characterise the subsets of T that are of the form TH for certain H.

First we do this for TG. We need some observations and notation:
(1) T is an associative algebra (in which elements from T (V ) commute with

elements of T (V ∗)), and the V p
q define a bigrading on T .

(2) The space V 1
1 can be identified with End(V ), and the G-action on V 1

1 then
corresponds to conjugation. Let I denote the element of V 1

1 corresponding
to the identity in End(V ).

(3) For i = 1, . . . , p and j = 1, . . . , q let ∂i
j : V p

q → V p−1
q−1 be the contraction of

the i-th copy of V ∗ and the j-th copy of V . Note that ∂i
j is a G-equivariant

map.
Then we have the following classical first fundamental theorem for GL(V ).

Theorem 0.1 (Weyl). TG is the smallest subalgebra of T which is bigraded (i.e.,
TG =

⊕
p,q(T

G ∩ V p
q )), contains I and is closed under all contractions.

Now let H be any subgroup of G. Then one readily verifies that TH is a bigraded
subalgebra of T containing I and closed under contractions. However, not every
subalgebra A of T with these properties is of the form TH .

Example 0.2. Suppose that dimV = 1, say V ∗ = Kx and V = Ke with 〈x, e〉 = 1,
so that T = K[x, e]. Take A =

⊕
i≥j Kx

iej . Then A is a bigraded subalgebra of T
containing I = xe and closed under contraction, but only 1 ∈ GL1 stabilises x, so
that A is not of the form TH .

So to characterise the TH we need further conditions. It seems very hard to do
this without without further assumptions on H. A natural assumption in invariant
theory is that H be compact, or linearly reductive.

For a compact approach, suppose that K = C and V carries a Hermitian inner
product. Then the FFT as above is still valid for G replaced with U(V ) (since
this group is dense in GL(V )). For a subgroup H of U(V ), TH has more structure,
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namely: TH is closed under the natural map ∗ : V p
q → V q

p induced by the Hermitian
form.

Theorem 0.3 (Schrijver). The map H → TH maps the closed subgroups of U(V )
bijectively onto the bi-graded subalgebras of T that contain I and are closed under
contraction and ∗.

However, a reductive approach would be more satisfactory, since the introduction
of a Hermitian form seemed somewhat arbitrary. Instead, let 〈., .〉 be the natural
bilinear form on T coming from the pairing V ∗ × V → K, and let H be a linearly
reductive subgroup of G. If U,U ′ are finite-dimensional H-submodules of T , then
the restriction of 〈., .〉 to U×U ′ is an H-invariant map to the trivial representation.
In particular, if U and U ′ are irreducible, the form is trivial on U × U ′ unless
(U ′)∗ = U . Write V p

q = (V p
q )H ⊕U and V q

p = (V q
p )H ⊕U ′ as H-modules. Then the

observation before shows that the form is zero on (V p
q )H × U ′ and on U × (V q

p )H .
Since it is non-degenerate on V p

q × V q
p , we find that it pairs (V p

q )H and (V q
p )H

non-degenerately. Summarising: if H is linearly reductive, then the form is non-
degenerate on TH .

Theorem 0.4 (Derksen). The map H 7→ TH is a bijection between (Zariski-)closed
reductive subgroups of GL(V ) and contraction-closed, bigraded subalgebras of T that
contain I and are non-degenerate relative to 〈., .〉.

The proof seems to need a detour, which Derksen had in fact already developed
before learning Schrijver’s theorem. As a motivation for this detour, observe the
following: if H is a reductive subgroup of G, then G/H is an affine variety, and

(K[G/H]⊗ T )G → TH , f 7→ f(eH)

is an algebra isomorphism. (Note that an element of K[G/H]⊗ T can be regarded
as a T -valued function on G/H.) Thus find that TH can be thought of as the set of
G-equivariant T -valued regular functions on some affine scheme. It turns out that
a wide class of algebras related to T can be thought of in this way. We need the
following definitions.

Definition 0.5. For any commutative K-algebra R with 1, A := R ⊗ T is an
associative algebra which inherits a bigrading Ap

q := R⊗ V p
q , R-linear contractions

∂i
j : Ap

q → Ap−1
q−1 and an element I = 1⊗ I ∈ A1

1 from T .
For any such R, any bigraded subalgebra of R⊗T which contains I and is closed

under contractions is called a tensalgebra. Tensalgebras form a category in which
the morphisms A → B of are algebra homomorphisms that respect the grading,
map IA to IB , and intertwine (∂i

j)A and (∂i
j)B .

The second category that plays a role is the category of commutative G-algebras,
i.e., commutative K-algebras R with 1 with a right G-action given by an algebra
homomorphism R → R ⊗ K[G]. The morphisms are G-equivariant K-algebra
homomorphisms.

Now Derksen defines two functors. First, to any commutative G-algebra R he
associates Φ(R) := (R ⊗ T )G. For the functor in the opposite direction, we need
the following lemma.

Lemma 0.6. For any tensalgebra A there exists a commutative algebra R with
1 and a tensalgebra homomorphism ψ : A → R ⊗ T such that any tensalgebra
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homomorphism A → S ⊗ T factorises into ψ followed by a unique homomorphism
of the form φ⊗ idT , where φ is a homomorphism R→ S.

We will set Θ(A) := R.

Proof. For any p, q ∈ N let {vi} be a basis of V p
q . For any a ∈ Ap

q introduce variables
xi,a and make the Ansatz

ψ(a) =
∑

i

xi,a ⊗ vi.

Now factor out the relations in K[(xi,a)p,q,a,i] that make this ψ into a tensalgebra
homomorphism, and the resulting algebra obviously has the required properties. �

It turns out that the R associated to A above carries a natural G-algebra struc-
ture, and one checks Θ is a functor from tensalgebras to commutative G-algebras.

Theorem 0.7 (Derksen). Θ and Φ are each other’s inverses.

Example 0.8. (1) Θ(TH) ∼= K[G/H] for all closed reductive subgroups H of
G.

(2) With A as in the earlier example, Θ(A) can be found as follows: A is
generated by x and xe, so any morphism of tensalgebras A → R ⊗ T is
determined by the images of x and xe, which must be of the form s ⊗ x
and t ⊗ xe, respectively, by the bi-gradedness. Moreover, xe = I, so t =
1. Now there are no further restrictions on s: the map sending xiej to
si−j ⊗ xiej intertwines the contractions. We conclude that Θ(A) = K[s].
Going through the definition of the G-action, we find that γ ∈ K∗ acts on
the affine line by multiplication with γ−1.

Conversely, take R = K[s] = K[A1] with K∗ acting on A1 by (inverse)
scalar multiplication. Which regular functions f : A1 → T = K[x, e] are
equivariant? Write f(p) =

∑
i,j cij(p)x

iej , so that

(fγ)(p) =
∑
i,j

cij(γ−1p)γj−ixiej

for the right-hand side to be equal to f(p) for all p, we need that cij(γ−1p) =
γi−jcij(p) for all p, so that cij is a scalar multiple of si−j . But for this to
be a regular function on A1, we need i ≥ j. Hence f is of the form

f =
∑
i≥j

si−jxiej .

Finally, Derksen needs ideals of tensalgebras: an ideal in a tensalgebra A is
by definition the kernel of a tensalgebra homomorphism from A, or, equivalently,
a bigraded ordinary ideal which is closed under contractions. They are in one-
to-one correspondence with G-stable ideals in Θ(A) =: R, in the following sense:
A ∼= (R ⊗ T )G, and any G-stable ideal J in R gives rise to an epimorphism A →
(R/J ⊗ T )G of tensalgebras, hence to an ideal in A.

Proof of the main theorem. Let A be a sub-tensalgebra of T , and suppose that A
is non-degenerate relative to 〈., .〉. This latter condition implies that A has no
tensalgebra ideals other than 0 and A: if J is is a non-zero ideal, and v ∈ Jp

q is non-
zero, then exists a w ∈ Aq

p with 〈v, w〉 6= 0. Now this latter element is a repeated
contraction of the element vw ∈ J to an element of A0

0 = K, hence J = A.
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The inclusion A ⊆ T gives Θ(A) ⊆ R := Θ(T ) = K[G]. So, in other words,
A ∼= (R ⊗ T )G, where R is some G-stable subalgebra of K[G]. Since A is simple,
R has no non-zero G-stable ideals. On the other hand, the set of f ∈ R for which
Rf is a finitely generated algebra is an ideal in R, and G-stable by symmetry.
Moreover, one can shows that it is non-zero, so that it must be all of R. Hence R
is a finitely generated G-stable subalgebra of K[G], and therefore X := SpecR is
an affine G-variety equipped with a dominant G-equivariant map G→ X. Since R
has no non-trivial G-stable ideals, this map is in fact surjective, so X = G/H for
some H, where H is a reductive closed subgroup of G since X is affine.

We conclude that Θ(A) ∼= K[G/H] ∼= Θ(TH), from which one readily concludes
that A = TH . �


