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Part I: what you must know



Tropical numbers

R := R ∪ {∞} the tropical semi-ring
a⊕ b := min{a, b}
a� b := a + b

∞⊕ b = b
0� b = b
∞� b =∞
a� (b⊕ c) = (a� b)⊕ (a� c)



Univariate tropical polynomials

f =
⊕d

i=0 ci � x�i
shorter: f = “

∑d
i=0 cix

i”
can be tropically added and multiplied
f determines function R→ R, x 7→ mindi=0(ci + ix)
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f = “3(x + 2)2(x + 6)”

= “3(x2 + 2x + 4)(x + 6)”

= “3x3 + 5x2 + 7x + 13”

= “3(x3 + 2x2 + 4x + 10)”
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Theorem
g : R→ R piecewise linear, concave, integral slopes
 g determined by unique “cd

∏d
i=0(x + xi)” (xi are roots of g)



Relation to ordinary polynomials

K a field
v : K → R a non-Archimedean valuation:
• v−1(∞) = {0}
• v(ab) = v(a) + v(b)(= v(a)� v(b))
• v(a + b) ≥ min{v(a), v(b)}(= v(a)⊕ v(b))

Examples
K = Q, v(a) = vp(a) = number of factors p in a
K = C((t)) Laurent series, v(ait

i + higher order terms) = i

Tropicalisation map
Trop : K[x]→ R[x],

∑d
i=0 aix

i 7→ “
∑d

i=0 v(ai)x
i”

Fundamental fact (Gauss)
Trop(fg) = Trop(f )� Trop(g)
 {roots of Trop(f )} = v({roots of f})



Multivariate tropical polynomials

x = (x1, . . . , xn)
f = “

∑
α∈Nn cαx

α”
(only finitely many cα 6=∞)
determines concave, piecewise linear function Rn → R with integral slopes

Tropical hypersurface
V (f ) := {x ∈ Rn | f not linear at x}
= {x ∈ Rn | minα(cα + x · α) is attained at least twice}.

V (“2x + 3y + 1”)

3 + y = 1 ≤ 2 + x

2 + x = 1 ≤ 3 + y

(−1,−2)

2 + x = 3 + y ≤ 1

2 + x

3 + y

1

 tropical analogues of Desargues, Pappus, etc.



Tropical curves in the plane

f = “
∑

i+j≤d cijx
iyj”; assume c00, cd0, c0d 6=∞

C = convex hull in R3 of {(i, j, t) | t ≥ cij, i, j ∈ N, i + j ≤ d}
edges of C project to line segments in ∆d spanned by (0, 0), (d, 0), (0, d)
perpendicular to segments of V (f )

Fact
C has edge whose projection connects (i, j) and (i′, j ′)
⇔ V (f ) has segment where minimum is attained exactly in
cij + ix + jy and in ci′,j′ + i′x + j ′y



Curves in the plane, continued

Segments of V (f ) have weight gcd(i− i′, j − j ′)
and are balanced around each vertex

Theorem (Richter-Gebert, Sturmfels, Theobald 2003)
X balanced, weighted, piecewise linear curve in R2

with integral slopes and unbounded segments only in
directions (1, 0), (0, 1), (−1,−1), d each
 X = V (f ) for suitable f

Theorem (RG-S-T): tropical Bézout
The stable intersection multiplicity of tropical curves of degrees d and e is d ·e.
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 tropical analogues of Riemann-Roch, Torelli, Brill-Noether theory etc.



Tropical varieties

Recall: (K, v) valued field
x = (x1, . . . , xn)
Trop : K[x]→ R[x]

assume K algebraically closed
X ⊆ Kn algebraic variety
I ⊆ K[x1, . . . , xn] ideal of X

Tropicalisation ofX
Trop(X) :=

⋂
f∈I V (Trop(f ))

Fundamental theorem of tropical geometry
v(X) ⊆ Rn

equals Trop(X) ∩ v(K)n

(Einsiedler-Kapranov-Lind, Speyer-Sturmfels, D,
Jensen-Markwig-Markwig, Payne, . . . )

(⊆ easy,⊇ harder)



Singular matrices

X ⊆ K3×3 defined by
x11x22x33 +x12x23x31 +x13x21x32−x11x23x32−x13x22x31−x12x21x33 = 0.

Trop(X) ∩ R3×3 consists of x ∈ R3×3 where
min{x11 + x22 + x33, . . . , x12 + x21 + x33} attained≥ twice.
• one 8-dimensional cone for each pair of permutations
• all cones stable under adding yi + zj to position (i, j)
• modulo this, 3-dimensional facets in 4-space
• intersecting with 3-sphere in 4 space gives



Tropical varieties, continued

Theorem (Bieri-Groves)
X ⊆ Kn pure of dimension d
⇒ Trop(X) pure polyhedral complex of dimension d

Grassmannian of 2-spaces

X ⊆ K(m
2)

defined by relations among
xij = yizj − yjzi
x12x34 − x13x24 + x14x23 = 0

Theorem (Speyer-Sturmfels)
Tropicalisations of these quadratic
three-term relations cut out Trop(X)
 (phylogenetic) trees



Part II: three tropical challenges



Challenge 1: reparameterisations

Lemma
φ : Km → Kn polynomial map, X = imφ
⇒ Trop(φ) : Rm → Trop(X) ⊆ Rn

(typically strict containment)

Question
∃? finitely many reparameterisations
α : Kp → Km such that
Trop(X) =

⋃
α im Trop(φ ◦ α)



Challenge 2: secant varieties

Secant varieties of (P1)n:
n natural number 6= 4
C = {0, 1}n hypercube
k = b 2n

n+1c
By repeated cutting with hyperplanes, can you partition C into k
affine bases of Rn and 1 affinely independent set?

(Lots of variations for Segre-Veronese varieties!)



Challenge 3: B-N theory for graphs

Requirements
finite, undirected graph Γ
d ≥ 0 chips
natural number r

Rules
B puts d chips on Γ
N demands rv ≥ 0 chips at v with

∑
v rv = r

B wins iff he can fire to meet N’s demand
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Brill-Noether theorems for graphs

g := e(Γ)− v(Γ) + 1 genus of Γ
ρ := g − (r + 1)(g − d + r)

Conjecture (Baker)
1. ρ ≥ 0⇒ B has a winning starting position.
2. ρ < 0⇒ B may not have one, depending on Γ.
(∀g ∃Γ ∀d, r : ρ < 0⇒ Brill loses.)

Theorem (Baker)
1. is true if B may put chips at rational points of edges.
(uses sophisticated algebraic geometry)

Theorem (Cools-D-Payne-Robeva)
2. is true.
(implies sophisticated algebraic geometry)


