An introduction to tropical geometry

Jan Draisma

RWTH Aachen, 8 April 2011

Part I: what you must know

Tropical numbers

```
\overline{\mathbb{R}} := \mathbb{R} \cup \{\infty\} the tropical semi-ring a \oplus b := \min\{a, b\} a \odot b := a + b \infty \oplus b = b 0 \odot b = b \infty \odot b = \infty a \odot (b \oplus c) = (a \odot b) \oplus (a \odot c)
```

Univariate tropical polynomials

$$f = \bigoplus_{i=0}^d c_i \odot x^{\odot i}$$

shorter: $f = \text{``} \sum_{i=0}^d c_i x^i \text{'`}$
can be tropically added and multiplied
 f determines function $\overline{\mathbb{R}} \to \overline{\mathbb{R}}, \ x \mapsto \min_{i=0}^d (c_i + ix)$

Theorem

 $g: \overline{\mathbb{R}} \to \overline{\mathbb{R}}$ piecewise linear, concave, integral slopes $\leadsto g$ determined by unique " $c_d \prod_{i=0}^d (x+x_i)$ " (x_i are **roots** of g)

Relation to ordinary polynomials

K a field

 $v:K\to\mathbb{R}$ a non-Archimedean valuation:

- $v^{-1}(\infty) = \{0\}$
- $\bullet \ v(ab) = v(a) + v(b) (= v(a) \odot v(b))$
- $\bullet \ v(a+b) \ge \min\{v(a), v(b)\} (= v(a) \oplus v(b))$

Examples

$$K = \mathbb{Q}$$
, $v(a) = v_p(a) = \text{number of factors } p \text{ in } a$
 $K = \mathbb{C}((t))$ Laurent series, $v(a_i t^i + \text{ higher order terms}) = i$

Tropicalisation map

Trop:
$$K[x] \to \overline{\mathbb{R}}[x], \sum_{i=0}^d a_i x^i \mapsto \sum_{i=0}^d v(a_i) x^{i}$$

Fundamental fact (Gauss)

$$\operatorname{Trop}(fg) = \operatorname{Trop}(f) \odot \operatorname{Trop}(g)$$

\$\sim \{\text{roots of } \text{Trop}(f)\} = v(\{\text{roots of } f\})\$

Multivariate tropical polynomials

```
x=(x_1,\ldots,x_n)
f=\text{``}\sum_{\alpha\in\mathbb{N}^n}c_\alpha x^{\alpha''}
(only finitely many c_\alpha\neq\infty)
determines concave, piecewise linear function \overline{\mathbb{R}}^n\to\overline{\mathbb{R}} with integral slopes
```

Tropical hypersurface $V(f) := \{x \in \overline{\mathbb{R}}^n \mid f \text{ not linear at } x\}$ $= \{x \in \overline{\mathbb{R}}^n \mid \min_{\alpha} (c_{\alpha} + x \cdot \alpha) \text{ is attained at least twice} \}.$

$$2 + x = 1 \le 3 + y$$

$$2 + x$$

$$(-1, -2)$$

$$3 + y = 1 \le 2 + x$$

$$2 + x = 3 + y < 1$$

→ tropical analogues of Desargues, Pappus, etc.

Tropical curves in the plane

$$f=$$
 " $\sum_{i+j\leq d}c_{ij}x^iy^j$ "; assume $c_{00},c_{d0},c_{0d}\neq\infty$ $C=$ convex hull in \mathbb{R}^3 of $\{(i,j,t)\mid t\geq c_{ij},i,j\in\mathbb{N},i+j\leq d\}$ edges of C project to line segments in Δ_d spanned by $(0,0),(d,0),(0,d)$ perpendicular to segments of $V(f)$

Fact

C has edge whose projection connects (i,j) and (i',j') $\Leftrightarrow V(f)$ has segment where minimum is attained exactly in $c_{ij}+ix+jy$ and in $c_{i',j'}+i'x+j'y$

Curves in the plane, continued

Segments of V(f) have weight gcd(i - i', j - j') and are balanced around each vertex

Theorem (Richter-Gebert, Sturmfels, Theobald 2003)

X balanced, weighted, piecewise linear curve in \mathbb{R}^2 with integral slopes and unbounded segments only in directions (1,0),(0,1),(-1,-1),d each $\leadsto X=V(f)$ for suitable f

Theorem (RG-S-T): tropical Bézout

The stable intersection multiplicity of tropical curves of degrees d and e is $d \cdot e$.

→ tropical analogues of Riemann-Roch, Torelli, Brill-Noether theory etc.

Tropical varieties

Recall: (K, v) valued field

$$x=(x_1,\ldots,x_n)$$

Trop : $K[x] \to \overline{\mathbb{R}}[x]$

assume K algebraically closed $X \subseteq K^n$ algebraic variety $I \subseteq K[x_1, \dots, x_n]$ ideal of X

Tropicalisation of X $\operatorname{Trop}(X) := \bigcap_{f \in I} V(\operatorname{Trop}(f))$

Fundamental theorem of tropical geometry $v(X) \subseteq \overline{\mathbb{R}}^n$ equals $\operatorname{Trop}(X) \cap v(K)^n$

(Einsiedler-Kapranov-Lind, Speyer-Sturmfels, D, Jensen-Markwig-Markwig, Payne, ...)

 $(\subseteq easy, \supseteq harder)$

Singular matrices

$$X\subseteq K^{3\times 3} \text{ defined by } \\ x_{11}x_{22}x_{33}+x_{12}x_{23}x_{31}+x_{13}x_{21}x_{32}-x_{11}x_{23}x_{32}-x_{13}x_{22}x_{31}-x_{12}x_{21}x_{33}=0.$$

Trop(X) $\cap \mathbb{R}^{3\times 3}$ consists of $x \in \mathbb{R}^{3\times 3}$ where $\min\{x_{11} + x_{22} + x_{33}, \dots, x_{12} + x_{21} + x_{33}\}$ attained \geq twice.

- one 8-dimensional cone for each pair of permutations
- all cones stable under adding $y_i + z_j$ to position (i, j)
- modulo this, 3-dimensional facets in 4-space
- intersecting with 3-sphere in 4 space gives

Tropical varieties, continued

Theorem (Bieri-Groves)

 $X \subseteq K^n$ pure of dimension d

 $\Rightarrow \operatorname{Trop}(X)$ pure polyhedral complex of dimension d

Grassmannian of 2-spaces

$$X \subseteq K^{\binom{m}{2}}$$

defined by relations among

$$x_{ij} = y_i z_j - y_j z_i$$

$$x_{12} x_{34} - x_{13} x_{24} + x_{14} x_{23} = 0$$

Theorem (Speyer-Sturmfels)

Tropicalisations of these quadratic three-term relations cut out Trop(X) \rightsquigarrow (phylogenetic) trees

Part II: three tropical challenges

Challenge 1: reparameterisations

Lemma

 $\phi: K^m \to K^n$ polynomial map, $X = \overline{\operatorname{im} \phi}$ $\Rightarrow \operatorname{Trop}(\phi): \overline{\mathbb{R}}^m \to \operatorname{Trop}(X) \subseteq \overline{\mathbb{R}}^n$ (typically strict containment)

Question

 \exists ? finitely many reparameterisations

 $\alpha:K^p\to K^m$ such that

 $\operatorname{Trop}(X) = \bigcup_{\alpha} \operatorname{im} \operatorname{Trop}(\phi \circ \alpha)$

Challenge 2: secant varieties

Secant varieties of $(\mathbb{P}^1)^n$:

n natural number $\neq 4$ $C = \{0, 1\}^n$ hypercube $k = \lfloor \frac{2^n}{n+1} \rfloor$

By repeated cutting with hyperplanes, can you partition C into k affine bases of \mathbb{R}^n and 1 affinely independent set?

(Lots of variations for Segre-Veronese varieties!)

Challenge 3: B-N theory for graphs

Requirements

finite, undirected graph Γ $d \geq 0$ chips natural number r

Rules

B puts d chips on Γ N demands $r_v \geq 0$ chips at v with $\sum_v r_v = r$ B wins iff he can *fire* to meet N's demand

Brill-Noether theorems for graphs

$$g:=e(\Gamma)-v(\Gamma)+1$$
 genus of Γ $ho:=g-(r+1)(g-d+r)$

Conjecture (Baker)

- 1. $\rho \ge 0 \Rightarrow B$ has a winning starting position.
- 2. $\rho < 0 \Rightarrow$ B may not have one, depending on Γ . $(\forall q \exists \Gamma \forall d, r : \rho < 0 \Rightarrow \text{Brill loses.})$

Theorem (Baker)

is true if B may put chips at rational points of edges.
 (uses sophisticated algebraic geometry)

Theorem (Cools-D-Payne-Robeva)

2. is true.

(implies sophisticated algebraic geometry)