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1. Tropical numbers and valuations

Tropical numbers.
• R∞ := R ∪ {∞} tropical numbers, equipped with two operations: tropical

addition “a+ b” = min{a, b} and tropical multiplication “ab” = a+ b
• commutative, associative
• “a(b+ c)” = “ab+ ac” for all a, b ∈ R∞
• neutral elements: ∞ for tropical addition, 0 for tropical multiplication;

note: we do NOT write “1” = 0 or “0” =∞.
• “(a+ b)n” = “an + bn” for all a, b ∈ R∞
• note that “x + (−0.5)” 6= “x − 0.5”—in fact, the latter expression has no

meaning. Note that we do not write “1/2”—if anything, that would be the
real number −1..
• tropical matrix multiplication: replace + by min and · by +.

Exercise 1.1. Define the term (tropical) eigenvector and the corresponding eigen-
value for tropical matrices A ∈ Rn×n∞ . Show that an eigenspace is closed under
(componentwise) tropical addition and under tropical scalar multiplication. Draw
the eigenspaces of each of the following matrices in R2

∞:

A =
[
0 0
0 0

]
, B =

[
1 2
3 6

]
, and C =

[
1 3
0 1

]
.

Tropical polynomials.

• tropical polynomials “
∑d
i=0 aix

i”, can be tropically added and multiplied
• defines a piecewise linear function, concave function R∞ → R∞ with inte-

gral slopes
• cannot be reconstructed from that function

Theorem 1.2. For every piecewise linear, concave function f : R∞ → R∞ with
integral slopes that is not identically ∞, there exist unique d ∈ N and unique
x1, . . . , xd ∈ R∞ (up to permutation) and unique c ∈ R such that f(x) = “c(x +
x1) · · · (x+ xd)” for all x ∈ R∞.

The numbers xi are called the roots of f . The finite roots are found as follows:
take the positions x ∈ R where f is non-linear. Then the slope of f decreases by a
positive integer m. Then x is a root of multiplicity m. Similarly, the multiplicity
of ∞ is the (constant) slope of f at x� 0. Finally, the coefficient c is determined
by specialising at a suitable value.

Fields with a valuation.
• K a field
• valuation v : K → R∞ satisfying v(ab) = v(a) + v(b) (= “v(a)v(b)”) and
v(a+ b) ≥ min{v(a), v(b)} (= “v(a) + v(b)”) and v−1(∞) = {0}

• easy but important facts: v(1) = 0 and v(−a) = v(a) and v(a+ b) = v(a) if
v(a) < v(b). (For the latter, write v(a) = v((a+b)−b) ≥ min{v(a+b), v(b)},
so v(a) ≥ v(a+ b) since v(a) < v(b).)

• examples: Q with p-adic valuation, C(t) (rational functions) or C((t)) (Lau-
rent series) with t-adic valuations

• fundamental fact: valuation can be extended to any field extension; discuss
completion and algebraic closure
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Definition 1.3. The tropicalisation of f =
∑d
i=0 cix

i ∈ K[x] is Trop(f) :=
“
∑d
i=0 v(ci)xi”.

Lemma 1.4 (Gauss’s lemma). For f, g ∈ K[x] we have Trop(fg)(a) = “ Trop(f)(a) Trop(g)(a)”
for all a ∈ R∞.

Exercise 1.5. The preceding lemma concerns the functions defined by Trop(fg),
Trop(f), and Trop(g). Find a concrete example of polynomials f, g, say over the
field C(t), where Trop(fg) is not equal to “ Trop(f) Trop(g)” as polynomials.

Theorem 1.6 (Newton? Puiseux?). For f ∈ K[x] with all roots in K we have

v({roots of f}) = {roots of Trop(f)}.
Exercise 1.7. Using the previous theorem and the 2-adic valuation on Q, give a
“tropical proof” of the non-rationality of

√
2.

Exercise 1.8. Eisenstein’s criterion says that if a polynomial f = cdx
d+ . . .+ c0 ∈

Z[x] satisfies p 6 |cd, p|cd−1, . . . , c0, and p2 6 |c0, then f is irreducible over the
rational numbers. Take v equal to the p-adic valuation on Q. Prove that, in this
case, Trop(f) has a d-fold root 1/d, prove that the function defined by Trop(f) is
“irreducible”, and argue that this implies Eisenstein’s criterion.
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2. Tropicalising varieties

Tropical hypersurfaces.

Definition 2.1. A tropical multivariate polynomial f = “
∑
α∈N cαx

α” defines a
piecewise linear map f : Rn∞ → R∞. Define

T (f) := {x ∈ Rn∞ | f is infinite or else not linear at x},
the tropical hypersurface defined by f (or corner locus of f).

Exercise 2.2. Prove that T (f) consists of all points where either f takes the value
∞ or else there are at least two distinct α, β with cα +α · x = cβ + β · x, i.e., where
the minimum is attained at least twice.

Example 2.3. f = “x11x22 + x12x21 + 0” = Trop(det−1). Note: T (f) ⊆ R2×2
∞ is

closed under tropical matrix multiplication. “Tropical SL2.”

Tropicalising varieties. Recall: K field with valuation v (perhaps trivial). We
assume K algebraically closed.

Definition 2.4. For an algebraic varietyX ⊆ Kn defined by ideal I ⊆ K[x1, . . . , xn]
define

Trop(X) :=
⋂
f∈I

T (Trop(f)),

the tropicalisation of X.

Remark 2.5. Trop(X) doesn’t depend on the ideal I chosen to define X: take
J =

√
I. Since J contains I, the tropicalisation of X using J is contained in that

using I. But since every f ∈ J has a power fk in I (Hilbert’s Nullstellensatz), and
since T (Trop(f)) = T (Trop(fk)), we also have the opposite inclusion.

Exercise 2.6. Prove that if I is generated by a single element f , then Trop(X) is
just T (Trop(f)). (Use Gauss’s lemma.)

Example 2.7. X = O2(C) = {x ∈ C2×2 | xTx = I}, say over C with trivial
valuation. So X is defined by the vanishing of f1 := a2 +c2−1 and f2 := b2 +d2−1
and f3 := ab + cd. Tropicalising f3 yields that a + b = c + d holds on Trop(X).
Tropicalising f1 yields that min{2a, 2c, 0} is attained (at least) twice, which gives
min{a, c, 0} attained twice. Similarly, f2 gives min{b, d, 0} attained twice. All
conditions are closed under multiplication with a common positive scalar, so we
distinguish three cases:

(1) a = 0. Then c ≥ 0 by f1. If c > 0 then b = d + (c − a) = b + c > d by f3
and hence d = 0 by f2 and hence b = c. Thus we have the cone

C1 :=
{[

0 c ≥ 0
c 0

]}
,

(which includes the case where c =∞).
If c = 0 then b = d by f3 and b = d ≤ 0 by f2. Thus we have the cone

C2 :=
{[

0 b ≤ 0
0 b

]}
.

(2) a > 0. Then c = 0 by f1 and a+ b = d by f3, so d > b so b = 0 by f2, and
d = a. This gives the cone C3 = CT1 .
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(3) a < 0. Then c = a by f1 and b = d by f3, so b = d ≤ 0 by f2. This gives a
two-dimensional cone

C4 :=
{[
a ≤ 0 b ≤ 0
a b

]}
.

The union C := C1 ∪ C2 ∪ C3 ∪ C4 is not stable under transposition, while O2

is. Using the “transposed equations” a2 + b2 = 1, c2 + d2 = 1, ac + bd = 0 for
O2 we find CT := CT1 ∪ CT2 ∪ CT3 ∪ CT4 . So certainly Trop(O2) is contained in the
intersection of C and CT . This intersection equals C1 ∪ C3 ∪ C5, where

C5 :=
{[
a ≤ 0 a
a a

]}
is contained in C4. Note that C1, C3, C5 all have dimension 1, and that any two of
them meet in the all-zero matrix. Is their union equal to Trop(O2)?

(1) X ⊆ Kn variety as before
(2) L any valued extension of K, and p = (p1, . . . , pn) ∈ X(L). Then v(p) ∈

Trop(X): Write xi = v(pi) and take f =
∑
α cαx

α ∈ I. Then v(cα)+α ·x is
the valuation of the α-term in f . If the minimum of these valuations were
finite and attained only once, then v(f(p)) would equal that minimum. But
this contradicts v(f(p)) = v(0) =∞. Hence the minimum is either infinite
or attained at least twice.

(3) This gives a method of certifying that a point lies in Trop(X), by given a
lift in X(L) for suitable L.

Example 2.8. In the O2-example take a point in C3 with a > 0 and construct
L = C((t)) with the scaled p-adic valuation where where v(t) = a. Then the
valuation of the orthogonal matrix[

cos(t) − sin(t)
sin(t) cos(t)

]
equals the prescribed matrix. This shows that C3 ⊆ Trop(O2).

Exercise 2.9. Find lifts of arbitrary points in C1 and C5 in suitable valued exten-
sions of C, showing that C1 ∪ C3 ∪ C5 is really the tropicalisation of O2.

Exercise 2.10. Prove that Trop(O2) is closed under tropical matrix multiplication.

Tropical basis theorem.

Theorem 2.11. There exist finitely many f1, . . . , fk ∈ I such that Trop(X) is the
intersection of all T (Trop(fi)).

Such a tuple (sometimes required, in addition, to generate the ideal I) is called
a tropical basis of the ideal. These can be computed (but not very efficiently).

Fundamental theorem.

Theorem 2.12. X ⊆ Kn algebraic variety, K algebraically closed. Then for every
point a in Trop(X) with coordinates in v(K) there exists a point x = (x1, . . . , xn) ∈
X(K) with v(x) = a.
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Bieri-Groves’s theorem.

• polyhedron in Rn: intersection of a finite number of closed half-spaces.
• dimension is the dimension of the smallest affine subspace containing it.
• polyhedron in Rn∞: topological closure of a polyhedron in some Rm ×
{∞}n−m (up to permutation).

Theorem 2.13. Trop(X) can be written as a finite union of polyhedra. If, more-
over, X is irreducible of dimension d, then the polyhedra can all be chosen of di-
mension d.

Exercise 2.14. Show that for varieties X,Y ⊆ Kn one has Trop(X) ∪Trop(Y ) =
Trop(X ∪ Y ). Give one proof using the definition of Trop and one proof using the
fundamental theorem.

The fundamental theorem for hypersurfaces. We follow Payne’s proof [5].

• K valued field
• R := {c ∈ K | v(c) ≥ 0} valuation ring
• M := {c ∈ K | v(c) > 0} maximal ideal
• k := R/M residue field (algebraically closed if K is).
• homomorphisms c 7→ c̄ from R→ R/M = k, extends to polynomials.
• Now X ⊆ Kn given by a single polynomial f .
• Given a ∈ Trop(X) = T (f) with valuation v(a) ∈ v(K)n, want to lift a to

a point p ∈ X(K) with valuation a.
• Easy reduction to case where a = (0, . . . , 0), which we assume now, so after

dividing f by the coefficient with smallest valuation have f ∈ R[x] with at
least two coefficients not in M .

• Write f̄ ∈ k[x] for image of f modulo M ; this has at least two terms. Hence
there is a variable xi that appears in f̄ with at least two distinct exponents;
wlog xi = xn.

• Write f = f0 + f1xn . . . + fdx
d
n + . . . fex

e
n + . . . + frx

r
n with f0, . . . , fr ∈

K[x1, . . . , xn−1] and d < e and f̄d, f̄e 6= 0.
• Choose a point q̄ in (k∗)n−1 where f̄d, f̄e are non-zero, and lift the point to
q = (q1, . . . , qn−1) ∈ R \M .

• Hence fd(q1, . . . , qn−1) and fe(q1, . . . , qn−1) have valuation zero.
• Set g(y) := f(q1, . . . , qn−1, y) ∈ R[y], a univariate polynomial. It satisfies:

(1) Trop(g)(0) = 0.
(2) ḡ = f̄(q̄, y) has at least two non-zero terms, and hence a non-zero root

in k∗; lift this root to q̃n ∈ R \M .
(3) v(g(q̃n)) > 0 while v(q̃n) = 0.

• Hence Trop(g) has a tropical root at zero.
• But that means that g has a root qn with v(qn) = 0 (the corollary to Gauss’s

lemma).
• (q1, . . . , qn) is the required root of f with valuation 0.

Note that q1, . . . , qn−1 were more or less “freely” chosen (subject to the non-
vanishing of f̄d, f̄e). This can be used to prove that the image under projection on
the first (n−1) coordinates of the fibre v−1(0)∩X = (R\M)n∩X is Zariski-dense
in Kn−1. As a consequence, if X is irreducible and not contained in any coordinate
hyperplane, then v−1(a)∩X is Zariski-dense in X for every a ∈ Trop(X)∩Rn. We
will use this later on.



AN INTRODUCTION TO TROPICAL GEOMETRY 7

Well-behaved under monomial maps. The following proposition shows that
tropical varieties behave “linearly” under monomial maps.

Proposition 2.15. X ⊆ Kn algebraic variety, and π : Kn → Km a monomial
map, i.e., π(x) = (xα1 , . . . , xαm) for certain α1, . . . , αm ∈ Nn. Let A be the m× n-
matrix with rows the αi, and let Y be the closure of π(X). Then Trop(Y ) ⊇
A · Trop(X), where · is just matrix-column multiplication.

Actually, equality holds, but this will follow only later. The proposition can be
proved using the fundamental theorem, but we will want to use it to prove the
fundamental theorem, so we proceed from first principles.

• I an ideal defining X
• J the ideal of all polynomials in K[y1, . . . , ym] that are mapped into I when

each yi is replaced by xαi .
• Then J is an ideal defining Y .
• u ∈ Rn∞ be a point in Trop(X)
• f =

∑
β cβy

β ∈ J . We claim that Trop(f) is infinite or not linear at Au;
this will then prove that Au lies in Trop(Y ).

• Replacing yi by xαi in f yields the polynomial
∑
β cβx

β·A where β is con-
sidered a row vector.

• Tropicalising gives the tropical polynomial minβ(v(cβ) + β · A · x), and by
assumption, at x = u, this minimum is either infinite or else attained at
least twice.

• This is equivalent to the statement that Trop(f) is infinite or not linear at
A · x.

This proves that A · Trop(X) ⊆ Trop(Y ).

Exercise 2.16. Find a 2 × 2-matrix over the field C(t) with determinant 0 and

entrywise valuation
[

1 5
−2 2

]
.

Tropical Grassmannian and space of trees. For this stuff see [6].

• Plücker map

Kn → K(n
2), x =

[
x1 . . . xn
y1 . . . yn

]
7→ (zij := xiyj − xjyi)i<j

• Image defined by ideal I generated by the polynomials (for i < j < k < l):
zijzkl − zikzjl + zilzjk This is the (affine cone over the) Grassmannian.

• Theorem (Speyer-Sturmfels): these form a tropical basis; the Tropical Grass-
mmannian.

• How to make tuples (zij) ∈ R(n
2)
∞ such that for each i < j < k < l the

minimum of zij + zkl and zik + zjl and zil + zjk is attained at least twice?
(Have to lift such points to the tropical variety.)

• Answer: trees with n leaves, negative weights on internal edges, and arbi-
trary weights on leaf edges.

• Theorem (neighbour-joining): for every tuple there is a tree with that tuple
as leaf-to-leaf distance matrix.

• Construction: from trees to matrices; first reduce to distance-balanced case.
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−2

−3
112 2

−1

1 2 3 4 5

a b
c

d e f g

x1 = at−2

x2 = bt−2 + dt4

x3 = bt−2 + et4

x4 = ct−2 + ft2

x5 = ct−2 + gt2
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3. Proofs of some fundamental results

X ⊆ Kn algebraic variety defined by an ideal I.

Theorem 3.1 (Existence of finite tropical bases). There exist finitely many f1, . . . , fk ∈
I such that Trop(X) is the intersection of all T (Trop(fi)).

Theorem 3.2 (Fundamental Theorem). X ⊆ Kn algebraic variety, K algebraically
closed. Then for every point a in Trop(X) with coordinates in v(K) there exists a
point x = (x1, . . . , xn) ∈ X(K) with v(x) = a.

Done for X a hypersurface, in fact set of such points is then dense in X.

Theorem 3.3 (Bieri-Groves). Trop(X) can be written as a finite union of polyhe-
dra. If, moreover, X is irreducible of dimension d, then the polyhedra can all be
chosen of dimension d.

Proof of Bieri-Groves’s Theorem. We follow Bieri and Groves [1].

• X irreducible algebraic variety of dimension d in Kn

• to show: Trop(X) is a union of d-dimensional polyhedra.
• if X hypersurface with equation f , then done (Trop(X) union of polyhedra

dual to the induced subdivision of the Newton polytope of f).

Lemma 3.4. If A ∈ N(d+1)×n such that the induced monomial map πA : Kn →
Kd+1 maps X onto a hypersurface Y , then Trop(Y ) = ATrop(X).

Proof. We know Trop(Y ) ⊇ ATrop(X). For the converse, let a be a point in
Trop(Y ). Then the set {y ∈ Y | v(y) = a} is non-empty (hypersurface case
of fundamental theorem) and in fact Zariski-dense in Y . Hence it intersects the
constructable set π(X) (which contains an open dense subset of Y by basic algebraic
geometry). Hence there is x ∈ X be such that v(π(x)) = a. This translates into
A · v(x) = a, while of course v(x) ∈ Trop(X). �

Here’s the key idea, which we will not prove but which is at least plausible.

Lemma 3.5 (Regular projection lemma). If a set S in Rn∞ has the property that
for “generic” matrices A ∈ N(d+1)×n the image A · S of S is a finite union of
d-dimensional polyhedra, then so is S itself. Moreover, one can find finitely many
matrices A1, . . . , Ak such that

S =
k⋂
i=1

A−1
i (Ai(S)).

Remark 3.6. In fact, one can find k = n− d+ 1 such matrices, which proves the
existence of a tropical basis of that cardinality (at least, if one does not require that
a tropical basis generate the ideal).

• “πA maps X onto a hypersurface” turns out to be sufficiently generic
• for each such A, ATrop(X) is a finite union of d-dimensional polyhedra by

the hypersurface case of Bieri-Groves
• applying the regular projection lemma yields that so is Trop(X).
• in fact, it yields more: take A1, . . . , Ak as in the lemma, and f1(y), . . . , fk(y)

the equations of the corresponding hypersurfaces in Kd+1, and let g1, . . . , gk
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be their pull-backs to K[x1, . . . , xn] under πA1 , . . . , πAk
; these are elements

of the ideal of X. Then the lemma says

Trop(X) =
k⋂
i=1

T (Trop(gi)),

so g1, . . . , gk forms a tropical basis.
This latter proof of existence of a finite tropical basis first appeared in print in

[4], while the first proof appeared in [2].

Proof of Fundamental Theorem. (For an affinoid proof see [3].)
• Fix u ∈ Trop(X) ∩ v(K)n. Want to show that there exists an x ∈ X(K)

with v(x) = u.
• Reduce to case where X is irreducible
• Reduce to case where u ∈ RRn.

Lemma 3.7. Fix a point u ∈ Trop(X) ∩ Rn. Then for “generic” A ∈ N(d+1)×n

such that A−1(Au) ∩ Trop(X) consists only of u.

The proof will make clear what generic means in this case.

Proof. • This uses (only) that Trop(X) is the union of finitely many d-
dimensional polyhedra.

• for an affine subspace V = v0 + 〈v1, . . . , vd〉 ⊆ Rn the condition that Av =
Au translates into A(u− v0) ∈ 〈Av1, . . . , Avd〉, i.e., the determinant of the
(d+ 1)× (d+ 1)-matrix with rows A(u− v0), Av1, . . . , Avd is zero.

• This gives a non-trivial polynomial equation on A that should be avoided.
• Only finitely many of these need to be avoided.
• N(d+1)×n is Zariski-dense in R(d+1)×n, so these conditions are avoided by

some (“most”) A ∈ N(d+1)×n.
�

Now for the proof of the fundamental theorem:
• Pick a matrix A ∈ N(d+1)×n as in the lemma, and with the additional prop-

erty that the corresponding monomial map maps X onto a hypersurface Y
in K(d+1). (Intersection of finitely many generic conditions is generic.)

• Pick a point y ∈ πA(X) with valuation Au (see the proof of Lemma 3.4),
and take x ∈ X with πA(x) = y.

• Then Av(x) = v(y) = Au and v(x) ∈ Trop(X). Hence by the choice of A,
v(x) = u.

Actually, this proof shows that points x ∈ X with v(x) = u are Zariski-dense in
X; this is the main result of [5].
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