Tropical Brill-Noether theory

Jan Draisma Eindhoven University of Technology

Island 4, Glasgow, 4 July 2011

The B(aker)-N(orin) game on graphs

Requirements

finite, connected, undirected graph Γ $d \geq 0$ chips natural number r

Rules

B puts d chips on Γ N demands $\geq r_v \geq 0$ chips at v with $\sum_v r_v = r$ B wins iff he can *fire* to meet N's demand

Brill-Noether theorems for graphs

$$g:=e(\Gamma)-v(\Gamma)+1 \text{ genus of } \Gamma$$

$$\rho:=g-(r+1)(g-d+r)$$

Conjecture (Matthew Baker)

- 1. $\rho \ge 0 \Rightarrow B$ has a winning starting position.
- 2. $\rho < 0 \Rightarrow$ B may not have one, depending on Γ .

 $(\forall g \; \exists \Gamma \; \forall d, r : \rho < 0 \Rightarrow \text{Brill loses.})$

Theorem (Baker / Caporaso)

I. is true.

(uses sophisticated algebraic geometry)

Theorem (Cools-D-Payne-Robeva)

2. is true.

(implies sophisticated algebraic geometry)

Chip dragging on graphs

Simultaneously moving all chips along edges, with zero net movement around every cycle.

Lemma

- 1. Chip dragging is realisable by chip firing.
- 2. W.l.o.g. B drags instead of firing.

Example 1: Γ a tree

$$\begin{array}{l} \rho = g - (r+1)(g-d+r) = -(r+1)(-d+r) \\ \text{B wins} \Leftrightarrow \rho \geq 0 \Leftrightarrow d \geq r \end{array}$$

$$d = 2, r = 1$$
 Who wins?

The B(rill)-N(oether) game on Riemann surface

Requirements compact Riemann surface X d chips natural number r

Rules

B puts d chips on XN demands $\geq r_x \geq 0$ chips at x with $\sum_x r_x = r$ B wins iff he can drag to meet N's demand

Chip dragging on Riemann surfaces

Simultaneously moving chips c along paths $\gamma_c: [0,1] \to X$, such that $\sum_c \langle \omega|_{\gamma(t)}, \gamma'_c(t) \rangle = 0$ for all holomorphic 1-forms ω on X.

Lemma

$$\begin{split} D &= \sum_c [\gamma_c(0)] \text{ initial position} \\ E &= \sum_c [\gamma_c(1)] \text{ final position} \\ \Leftrightarrow E - D \text{ is divisor of meromorphic function on } X \\ \textit{drag-equivalence} &= \textit{linear equivalence} \end{split}$$

Example: torus

only one holomorphic 1-form: dz condition: $\sum_{c} \gamma'_{c}(t) = 0$ when does B win?

Dimension count

```
\omega_1, \ldots, \omega_q basis of holomorphic 1-forms
 \mathbf{x} = (x_1, \dots, x_d) \in X \times \dots \times X
 v_i \neq 0 tangent vector at x_i
 \rightsquigarrow matrix A_{\mathbf{x}} = (\langle \omega_i, v_i \rangle)_{ij} \in \mathbb{C}^{g \times d}
 (c_1v_1,\ldots,c_dv_d) infinitesimal dragging direction \Rightarrow A(c_1,\ldots,c_d)^T=0
 x winning for B \Rightarrow
 dragging x fills \geq r-dimensional variety
 where \ker A is > r-dimensional
for B to have a winning position, "need" g-d+r d-r(g-d+r) \geq r \Rightarrow \rho = g-(r+1)(g-d+r) \geq r
```

Brill-Noether theorems for Riemann surfaces

Theorem (Meis 1960, Kempf 1971, Kleiman-Laksov 1972) $\rho \ge 0 \Rightarrow$ B has a winning position.

Theorem (Griffiths-Harris 1980)

- 1. $\rho < 0 \Rightarrow$ B may lose, depending on X. ($\forall g \exists X \ \forall d, r : \rho < 0 \Rightarrow$ B loses.)
- 2. $\rho \ge 0$ and X general $\Rightarrow \rho = \dim\{\text{winning positions modulo dragging}\}$
- 3. $\rho = 0$ and X general $\Rightarrow \# = \#$ standard tableaux of shape $(r+1) \times (g-d+r)$ with entries $1, 2, \ldots, g$

Specialisation

Algebro-geometric (Baker, Caporaso)

dual graph of special fibre applies to arbitrary fields integral starting positions for B

Complex-analytic (Mikhalkin-Zharkov)

conceptually simpler? rational starting positions for B $\{X_t\}_{t\neq 0}$ family of Riemman surfaces Γ for T of ("tropical limit") holomorphic 1-forms on T on T chip dragging on T

Theorem

 D_t winning for B on X_t and $D_t \to D$ on Γ for $t \to 0$ $\Rightarrow D$ winning on Γ .

Consequences of Specialisation

Meis/Kempf/Kleiman-Laksov

($\rho \ge 0$ implies B wins on Riemann surfaces)

 \Rightarrow same statement for Γ .

No combinatorial proof is known!

Cools-D-Payne-Robeva

 $(\rho < 0 \Rightarrow B \text{ loses for suitable } \Gamma)$

 \Rightarrow same for Riemann surfaces (Griffiths-Harris 1 and 2, and probably 3).

Technical difficulties:

- I. Find family $\{X_t\}_t$ with dual graph Γ (algebro-geometric) or degenerating to Γ (complex-analytic);
- 2. show that $t \mapsto D_t$ (winning position on X_t) can be chosen such that D_t "converges".

Example (Cools-D-Payne-Robeva)

$$g = 4, d = 3, r = 1$$

 $g - d + r = 2$
 $r + 1 = 2, \rho = 0$

1	3		1, 2, 3, 2,	1
2	4	7	1, 2, 0, 2,	1

A larger example

$$g = 7, d = 7, r = 2$$

 $\leadsto g - d + r = 2, r + 1 = 3, \rho = 1$

1	2	4	000	(21, 31,	, 32, 42, 31,	21 22 21)	lingering lattice	nath
3	6	7	• • • • • • • • • • • • • • • • • • •			$,$ $o_1,$	31, 32, 21)	ingering wince f

Theorem (Cools-D-Payne-Robeva)

B's starting position \leadsto lingering lattice path in \mathbb{Z}^r ;

B wins iff path stays in chamber $\{(x_1,\ldots,x_r)\mid x_1>x_2>\ldots>x_r>0\}$.

$$\rightsquigarrow \rho \ge 0 \Leftrightarrow B \text{ wins}$$

Castryck and Cools's gonality conjecture

r=1 $f\in \mathbb{C}[x,y]$ general with Newton polytope Δ $X:=\{f=0\}$ Riemann surface

Conjecture

minimal d for which B wins on $X:=\{f=0\}$ (=minimal degree of a meromorphic map to \mathbb{P}^1) equals d= lattice width of Δ (with two exceptions)

Purely combinatorial?

Theorem (van der Pol)

 $\rho \geq 0$ and Γ a cactus graph

 \Rightarrow B has winning positions with all chips at vertices.

Future goal:

Understand Kleiman-Laksov for (metric) graphs.

Baker's Specialisation Lemma

 \mathfrak{X} curve family over $\mathbb{C}[[t]]$ (proper, flat, regular scheme) generic fibre $\mathfrak{X}_{\mathbb{C}((t))}$ smooth curve X special fibre $\mathfrak{X}_{\mathbb{C}} = X_1 \cup \ldots \cup X_s$ X_i smooth, intersections simple nodes $\leadsto dual\ graph\ \Gamma$ on $\{u_1,\ldots,u_s\}$ (metric with edge lengths I) $\leadsto \max X(\mathbb{C}((t))) \to \{u_1,\ldots,u_s\}$

well-behaved with respect to finite extensions $\mathbb{C}((t^{1/n}))/\mathbb{C}((t))$ \leadsto specialisation map $\tau: X(\mathbb{C}\{\{t\}\}) \to \Gamma_{\mathbb{Q}}$

Theorem

Brill wins with starting positing D on $X(\mathbb{C}\{\{t\}\})$ \Rightarrow Baker wins with starting position $\tau(D)$ on $\Gamma_{\mathbb{Q}}$

Advertisement

84th European Study Group Mathematics with Industry

- 5 or 6 industrial problems
- one week of intensive collaboration
- about 70 participating mathematicians
- hosted by Eurandom, Eindhoven, 30 January-3 February 2012
- Google **SWI 2012 mathematics**