Torus actions and faithful tropicalisation

Jan Draisma
TU Eindhoven
joint work with Elisa Postinghel (Leuven)

GeorgiaTech, April 2014

```
\mathbb{R}_{\infty} := \mathbb{R} \cup {\infty} tropical numbers v: K \to \mathbb{R}_{\infty} field valuation, k residue field X \subseteq \mathbb{A}^n_K closed subvariety with ideal I = I(X) \leadsto Trop(X) \subseteq \mathbb{R}^n_{\infty} tropical variety
```

 $\mathbb{R}_{\infty} := \mathbb{R} \cup {\infty}$ tropical numbers $v : K \to \mathbb{R}_{\infty}$ field valuation, k residue field $X \subseteq \mathbb{A}^n_K$ closed subvariety with ideal I = I(X) \leadsto Trop $(X) \subseteq \mathbb{R}^n_{\infty}$ tropical variety

Tilted polynomial ring

 $\xi \in \mathbb{R}_{\infty}^{n} \rightsquigarrow K[x]_{\xi} := \{ \sum_{\alpha} c_{\alpha} x^{\alpha} \mid v(c_{\alpha}) + \alpha \cdot \xi \geq 0 \}$ has ideal $\{ \sum_{\alpha} c_{\alpha} x^{\alpha} \mid v(c_{\alpha}) + \alpha \cdot \xi > 0 \}$ Quotient is $k[y_{i} \mid \xi_{i} \neq \infty]$ where y_{i} is image of $c_{i}x_{i}$, $v(c_{i}) + \xi_{i} = 0$. (Assume v surjective.)

 $\mathbb{R}_{\infty} := \mathbb{R} \cup {\infty}$ tropical numbers $v : K \to \mathbb{R}_{\infty}$ field valuation, k residue field $X \subseteq \mathbb{A}^n_K$ closed subvariety with ideal I = I(X) $\leadsto \operatorname{Trop}(X) \subseteq \mathbb{R}^n_{\infty}$ tropical variety

Tilted polynomial ring

 $\xi \in \mathbb{R}_{\infty}^{n} \rightsquigarrow K[x]_{\xi} := \{ \sum_{\alpha} c_{\alpha} x^{\alpha} \mid v(c_{\alpha}) + \alpha \cdot \xi \geq 0 \}$ has ideal $\{ \sum_{\alpha} c_{\alpha} x^{\alpha} \mid v(c_{\alpha}) + \alpha \cdot \xi > 0 \}$ Quotient is $k[y_{i} \mid \xi_{i} \neq \infty]$ where y_{i} is image of $c_{i}x_{i}$, $v(c_{i}) + \xi_{i} = 0$. (Assume v surjective.)

Initial ideal

 $\operatorname{in}_{\xi}(I) := \operatorname{image of} K[x]_{\xi} \cap I \operatorname{in} k[y_i \mid \xi_i \neq \infty]$ $\operatorname{Trop}(X) = \{ \xi \in \mathbb{R}^n_{\infty} \mid \operatorname{in}_{\xi} I \operatorname{does not contain any monomial} \}$

```
X^{\text{an}} := \{w : K[X] \to \mathbb{R}_{\infty} \mid w \text{ ring valuation extending } v\}
Topology: w_1, w_2, \dots converge iff (w_i(f))_i converges for all f.
```

 $X^{\mathrm{an}} := \{w : K[X] \to \mathbb{R}_{\infty} \mid w \text{ ring valuation extending } v\}$ Topology: w_1, w_2, \ldots converge iff $(w_i(f))_i$ converges for all f.

Fundamental theorem of tropical geometry

 $\pi_X: X^{\mathrm{an}} \to \mathbb{R}^n_{\infty}, \quad w \mapsto (w(x_1), \dots, w(x_n)) \text{ maps onto Trop}(X).$

 $X^{\mathrm{an}} := \{w : K[X] \to \mathbb{R}_{\infty} \mid w \text{ ring valuation extending } v\}$ Topology: w_1, w_2, \ldots converge iff $(w_i(f))_i$ converges for all f.

Fundamental theorem of tropical geometry

 $\pi_X: X^{\mathrm{an}} \to \mathbb{R}^n_{\infty}, \quad w \mapsto (w(x_1), \dots, w(x_n)) \text{ maps onto Trop}(X).$

Question

When does π_X have a continuous section σ_X : Trop $(X) \to X^{an}$?

 $X^{\text{an}} := \{w : K[X] \to \mathbb{R}_{\infty} \mid w \text{ ring valuation extending } v\}$ Topology: w_1, w_2, \ldots converge iff $(w_i(f))_i$ converges for all f.

Fundamental theorem of tropical geometry

$$\pi_X: X^{\mathrm{an}} \to \mathbb{R}^n_{\infty}, \quad w \mapsto (w(x_1), \dots, w(x_n)) \text{ maps onto Trop}(X).$$

Question

When does π_X have a continuous section σ_X : Trop $(X) \to X^{an}$?

Baker-Payne-Rabinoff (2011)

For a *curve* it suffices that all multiplicities are 1. (And then there is an isometric embedding!)

 $X^{\mathrm{an}} := \{w : K[X] \to \mathbb{R}_{\infty} \mid w \text{ ring valuation extending } v\}$

Topology: w_1, w_2, \ldots converge iff $(w_i(f))_i$ converges for all f.

Fundamental theorem of tropical geometry

 $\pi_X: X^{\mathrm{an}} \to \mathbb{R}^n_{\infty}, \quad w \mapsto (w(x_1), \dots, w(x_n)) \text{ maps onto Trop}(X).$

Question

When does π_X have a continuous section σ_X : Trop $(X) \to X^{an}$?

Baker-Payne-Rabinoff (2011)

For a *curve* it suffices that all multiplicities are 1. (And then there is an isometric embedding!)

Cueto-Häbich-Werner (2013)

For $X = \mathbf{Gr}(2, m) \subseteq \mathbb{A}^{m(m-1)/2}$ a section exists (& all mults are 1).

If $Y \subseteq \mathbb{A}^n$ is a linear subspace, then

 $\pi_Y: Y^{\mathrm{an}} \to \mathrm{Trop}(Y)$ has a continuous section.

If $Y \subseteq \mathbb{A}^n$ is a linear subspace, then $\pi_Y : Y^{\mathrm{an}} \to \mathrm{Trop}(Y)$ has a continuous section.

Construction (constant coefficient case)

- 1. pick $\eta \in \text{Trop}(Y) \cap \mathbb{R}^n$
- 2. choose $\pi \in \text{Sym}(n)$ such that $\eta_{\pi_1} \geq \cdots \geq \eta_{\pi_n}$
- 3. set $J_0 := \emptyset$ and
- $J_i := J_{i-1} \cup \{\pi(i)\} \text{ if } x_{\pi(i)}|_Y \notin \langle x_j|_Y, j \in J_{i-1} \rangle;$:= J_{i-1} otherwise

If $Y \subseteq \mathbb{A}^n$ is a linear subspace, then

 $\pi_Y: Y^{\mathrm{an}} \to \mathrm{Trop}(Y)$ has a continuous section.

Construction (constant coefficient case)

- 1. pick $\eta \in \text{Trop}(Y) \cap \mathbb{R}^n$
- 2. choose $\pi \in \text{Sym}(n)$ such that $\eta_{\pi_1} \geq \cdots \geq \eta_{\pi_n}$
- 3. set $J_0 := \emptyset$ and
- $J_i := J_{i-1} \cup \{\pi(i)\} \text{ if } x_{\pi(i)}|_Y \notin \langle x_j|_Y, j \in J_{i-1} \rangle;$:= J_{i-1} otherwise
- 4. set $J := J_n$, a maximal-weight basis of the matroid defined by Y
- 5. pick $f \in K[Y] \rightsquigarrow$ unique expression $f = \sum_{\alpha \in \mathbb{N}^J} c_{\alpha} x^{\alpha}$
- 6. set $\sigma_Y(\eta)(f) := \min_{\alpha} (v(c_{\alpha}) + \alpha \cdot \eta)$

If $Y \subseteq \mathbb{A}^n$ is a linear subspace, then

 $\pi_Y: Y^{\mathrm{an}} \to \mathrm{Trop}(Y)$ has a continuous section.

Construction (constant coefficient case)

- 1. pick $\eta \in \text{Trop}(Y) \cap \mathbb{R}^n$
- 2. choose $\pi \in \text{Sym}(n)$ such that $\eta_{\pi_1} \geq \cdots \geq \eta_{\pi_n}$
- 3. set $J_0 := \emptyset$ and
- $J_i := J_{i-1} \cup \{\pi(i)\} \text{ if } x_{\pi(i)}|_Y \notin \langle x_j|_Y, j \in J_{i-1} \rangle;$:= J_{i-1} otherwise
- 4. set $J := J_n$, a maximal-weight basis of the matroid defined by Y
- 5. pick $f \in K[Y] \rightsquigarrow$ unique expression $f = \sum_{\alpha \in \mathbb{N}^J} c_{\alpha} x^{\alpha}$
- 6. set $\sigma_Y(\eta)(f) := \min_{\alpha} (v(c_{\alpha}) + \alpha \cdot \eta)$

(extends continuously to points with ∞ coordinates)

 $Y \subseteq \mathbb{A}^{m(m-1)/2}$ defined by parameterisation $x_{ij} = (y_i - y_j)_{i < j}$ $\{x_{ij} \mid (i, j) \in J\}$ independent on Y iff J a tree

 $Y \subseteq \mathbb{A}^{m(m-1)/2}$ defined by parameterisation $x_{ij} = (y_i - y_j)_{i < j}$ $\{x_{ij} \mid (i, j) \in J\}$ independent on Y iff J a tree

 $Y \subseteq \mathbb{A}^{m(m-1)/2}$ defined by parameterisation $x_{ij} = (y_i - y_j)_{i < j}$ $\{x_{ij} \mid (i, j) \in J\}$ independent on Y iff J a tree

 $Y \subseteq \mathbb{A}^{m(m-1)/2}$ defined by parameterisation $x_{ij} = (y_i - y_j)_{i < j}$ $\{x_{ij} \mid (i, j) \in J\}$ independent on Y iff J a tree

 $Y \subseteq \mathbb{A}^{m(m-1)/2}$ defined by parameterisation $x_{ij} = (y_i - y_j)_{i < j}$ $\{x_{ij} \mid (i, j) \in J\}$ independent on Y iff J a tree

 $Y \subseteq \mathbb{A}^{m(m-1)/2}$ defined by parameterisation $x_{ij} = (y_i - y_j)_{i < j}$ $\{x_{ij} \mid (i, j) \in J\}$ independent on Y iff J a tree

 $Y \subseteq \mathbb{A}^{m(m-1)/2}$ defined by parameterisation $x_{ij} = (y_i - y_j)_{i < j}$ $\{x_{ij} \mid (i, j) \in J\}$ independent on Y iff J a tree

For $(i, j) \notin J$, η_{ij} is minimal weight in cycle closed by ij. $\leadsto \sigma_Y(\eta)(x_{ij}) = \eta_{ij}$

 $X \subseteq \mathbb{A}^n$

 $\varphi: \mathbb{G}_{\mathrm{m}}^m \to \mathbb{G}_{\mathrm{m}}^n$ torus homomorphism given by $A \in \mathbb{Z}^{n \times m}$ assume X stable under $\varphi(\mathbb{G}_{\mathrm{m}}^m)$

$$X \subseteq \mathbb{A}^n$$

 $\varphi: \mathbb{G}_{\mathrm{m}}^m \to \mathbb{G}_{\mathrm{m}}^n$ torus homomorphism given by $A \in \mathbb{Z}^{n \times m}$ assume X stable under $\varphi(\mathbb{G}_{\mathrm{m}}^m)$

Well-known fact

 \mathbb{R}^m acts on $\operatorname{Trop}(X)$ by $(\tau, \xi) \mapsto A\tau + \xi$. $(A\mathbb{R}^m \text{ is contained in } lineality \, space \, \text{of } \operatorname{Trop}(X))$

$$X \subseteq \mathbb{A}^n$$

 $\varphi: \mathbb{G}_{\mathrm{m}}^m \to \mathbb{G}_{\mathrm{m}}^n$ torus homomorphism given by $A \in \mathbb{Z}^{n \times m}$ assume X stable under $\varphi(\mathbb{G}_{\mathrm{m}}^m)$

Well-known fact

 \mathbb{R}^m acts on $\operatorname{Trop}(X)$ by $(\tau, \xi) \mapsto A\tau + \xi$. $(A\mathbb{R}^m \text{ is contained in } lineality \, space \, \text{of } \operatorname{Trop}(X))$

$$\mathbb{R}^m \times X^{\mathrm{an}} \longrightarrow X^{\mathrm{an}}$$

$$\downarrow \qquad \downarrow$$

$$\mathbb{R}^m \times \mathrm{Trop}(X) \longrightarrow \mathrm{Trop}(X)$$

$$X \subseteq \mathbb{A}^n$$

 $\varphi: \mathbb{G}_{\mathrm{m}}^m \to \mathbb{G}_{\mathrm{m}}^n$ torus homomorphism given by $A \in \mathbb{Z}^{n \times m}$ assume X stable under $\varphi(\mathbb{G}_{\mathrm{m}}^m)$

Well-known fact

 \mathbb{R}^m acts on $\operatorname{Trop}(X)$ by $(\tau, \xi) \mapsto A\tau + \xi$. $(A\mathbb{R}^m \text{ is contained in } lineality \, space \, \text{of } \operatorname{Trop}(X))$

$$\mathbb{R}^{m} \times X^{\mathrm{an}} \longrightarrow X^{\mathrm{an}}$$

$$\downarrow \qquad \qquad \qquad \qquad \qquad \downarrow \pi_{X}$$

$$\mathbb{R}^{m} \times \mathrm{Trop}(X) \longrightarrow \mathrm{Trop}(X)$$

$$X \subseteq \mathbb{A}^n$$

 $\varphi: \mathbb{G}_{\mathrm{m}}^m \to \mathbb{G}_{\mathrm{m}}^n$ torus homomorphism given by $A \in \mathbb{Z}^{n \times m}$ assume X stable under $\varphi(\mathbb{G}_{\mathrm{m}}^m)$

Well-known fact

 \mathbb{R}^m acts on $\operatorname{Trop}(X)$ by $(\tau, \xi) \mapsto A\tau + \xi$. $(A\mathbb{R}^m \text{ is contained in } lineality \, space \, \text{of } \operatorname{Trop}(X))$

$$\mathbb{R}^{m} \times X^{\mathrm{an}} \longrightarrow X^{\mathrm{an}}$$

$$\downarrow 1 \times \pi_{X} \quad \Box \qquad \downarrow \pi_{X}$$

$$\mathbb{R}^{m} \times \mathrm{Trop}(X) \longrightarrow \mathrm{Trop}(X)$$

$$X \subseteq \mathbb{A}^n$$

 $\varphi: \mathbb{G}_{\mathrm{m}}^m \to \mathbb{G}_{\mathrm{m}}^n$ torus homomorphism given by $A \in \mathbb{Z}^{n \times m}$ assume X stable under $\varphi(\mathbb{G}_{\mathrm{m}}^m)$

Well-known fact

 \mathbb{R}^m acts on $\operatorname{Trop}(X)$ by $(\tau, \xi) \mapsto A\tau + \xi$. $(A\mathbb{R}^m \text{ is contained in } lineality \, space \, \text{of } \operatorname{Trop}(X))$

$$\mathbb{R}^{m} \times X^{\mathrm{an}} \longrightarrow X^{\mathrm{an}}$$

$$\downarrow 1 \times \pi_{X} \quad \Box \qquad \downarrow \pi_{X}$$

$$\mathbb{R}^{m} \times \operatorname{Trop}(X) \longrightarrow \operatorname{Trop}(X)$$

$$\operatorname{action}$$

$$X \subseteq \mathbb{A}^n$$

 $\varphi: \mathbb{G}_{\mathrm{m}}^m \to \mathbb{G}_{\mathrm{m}}^n$ torus homomorphism given by $A \in \mathbb{Z}^{n \times m}$ assume X stable under $\varphi(\mathbb{G}_{\mathrm{m}}^m)$

Well-known fact

 \mathbb{R}^m acts on $\operatorname{Trop}(X)$ by $(\tau, \xi) \mapsto A\tau + \xi$. $(A\mathbb{R}^m \text{ is contained in } lineality \, space \, \text{of } \operatorname{Trop}(X))$

$$\mathbb{R}^{m} \times X^{\text{an}} \xrightarrow{\mu} X^{\text{an}}$$

$$\downarrow 1 \times \pi_{X} \quad \Box \qquad \downarrow \pi_{X}$$

$$\mathbb{R}^{m} \times \text{Trop}(X) \xrightarrow{\text{action}} \text{Trop}(X)$$

$$X \subseteq \mathbb{A}^n$$

 $\varphi: \mathbb{G}_{\mathrm{m}}^m \to \mathbb{G}_{\mathrm{m}}^n$ torus homomorphism given by $A \in \mathbb{Z}^{n \times m}$ assume X stable under $\varphi(\mathbb{G}_m^m)$

Well-known fact

 \mathbb{R}^m acts on Trop(X) by $(\tau, \xi) \mapsto A\tau + \xi$. $(A\mathbb{R}^m \text{ is contained in } lineality space \text{ of } Trop(X))$

Lemma

$$\mathbb{R}^{m} \times X^{\operatorname{an}} \xrightarrow{\mu} X^{\operatorname{an}} \qquad 1. \text{ pick } \tau \in \mathbb{R}^{m}, w \in X^{\operatorname{an}}, f \in K[X]$$

$$\downarrow 1 \times \pi_{X} \qquad \downarrow \pi_{X} \qquad 2. \text{ write } f(\varphi(t)x) = \sum_{\beta \in \mathbb{Z}^{m}} t^{\beta} f_{\beta}(x)$$

$$3. \mu(\tau, w)(f) := \min_{\beta} (w(f_{\beta}) + \beta \cdot \tau)$$

$$\mathbb{R}^{m} \times \operatorname{Trop}(X) \xrightarrow{\operatorname{action}} \operatorname{Trop}(X)$$

Definition of μ

- 1. pick $\tau \in \mathbb{R}^m$, $w \in X^{an}$, $f \in K[X]$

Retract

$$\mathbb{R}^{m} \times X^{\text{an}} \xrightarrow{\mu} X^{\text{an}}$$

$$\downarrow 1 \times \pi_{X} \quad \Box \qquad \downarrow \pi_{X}$$

$$\mathbb{R}^{m} \times \text{Trop}(X) \xrightarrow{\text{action}} \text{Trop}(X)$$

Example

$$X = \mathbb{A}^{2}, \varphi : \mathbb{G}_{m}^{1} \to \mathbb{G}_{m}^{2}, t \mapsto (t, t^{-1})$$

$$f = \sum_{ij} c_{ij} x^{i} y^{j} \rightsquigarrow \mu(\tau, w)(f) = \min_{k \in \mathbb{Z}} (w(\sum_{i-j=k} c_{ij} x^{i} y^{j}) + k\tau)$$
In general $\mu(0, w) \neq w$!

Retract

$$\mathbb{R}^{m} \times X^{\text{an}} \xrightarrow{\mu} X^{\text{an}}$$

$$\downarrow 1 \times \pi_{X} \quad \Box \qquad \downarrow \pi_{X}$$

$$\mathbb{R}^{m} \times \text{Trop}(X) \xrightarrow{\text{action}} \text{Trop}(X)$$

Example

$$X = \mathbb{A}^{2}, \varphi : \mathbb{G}_{\mathrm{m}}^{1} \to \mathbb{G}_{\mathrm{m}}^{2}, t \mapsto (t, t^{-1})$$

$$f = \sum_{ij} c_{ij} x^{i} y^{j} \rightsquigarrow \mu(\tau, w)(f) = \min_{k \in \mathbb{Z}} (w(\sum_{i-j=k} c_{ij} x^{i} y^{j}) + k\tau)$$
In general $\mu(0, w) \neq w$!

- 1. $\mu(\tau_1 + \tau_2, w) = \mu(\tau_1, \mu(\tau_2, w))$
- 2. $Z := \text{image}(\mu)$ is a retract of X^{an} on which \mathbb{R}^m acts continuously.

Retract

$$\mathbb{R}^{m} \times X^{\mathrm{an}} \xrightarrow{\mu} X^{\mathrm{an}} \qquad \mathbb{R}^{m} \times Z \xrightarrow{\mathrm{action}} Z$$

$$\downarrow 1 \times \pi_{X} \qquad \downarrow \pi_{X} \qquad \downarrow 1 \times \pi_{X} \qquad \downarrow \pi_{X}$$

$$\mathbb{R}^{m} \times \mathrm{Trop}(X) \xrightarrow{\mathrm{action}} \mathrm{Trop}(X)$$

$$\mathbb{R}^{m} \times \mathrm{Trop}(X) \xrightarrow{\mathrm{action}} \mathrm{Trop}(X)$$

Example

$$X = \mathbb{A}^{2}, \varphi : \mathbb{G}_{\mathrm{m}}^{1} \to \mathbb{G}_{\mathrm{m}}^{2}, t \mapsto (t, t^{-1})$$

$$f = \sum_{i,j} c_{i,j} x^{i} y^{j} \rightsquigarrow \mu(\tau, w)(f) = \min_{k \in \mathbb{Z}} (w(\sum_{i-j=k} c_{i,j} x^{i} y^{j}) + k\tau)$$
In general $\mu(0, w) \neq w$!

- 1. $\mu(\tau_1 + \tau_2, w) = \mu(\tau_1, \mu(\tau_2, w))$
- 2. $Z := \text{image}(\mu)$ is a retract of X^{an} on which \mathbb{R}^m acts continuously.

 $Y \subseteq \mathbb{A}^n$ linear subspace

 $\varphi: \mathbb{G}_{\mathrm{m}}^m \to \mathbb{G}_{\mathrm{m}}^n$ homomorphism, given by $A \in \mathbb{Z}^{m \times n}$

 $X := \overline{\varphi(\mathbb{G}_{\mathrm{m}}^m)Y}; X^0 := X \cap \mathbb{G}_{\mathrm{m}}^n$

 $Y \subseteq \mathbb{A}^n$ linear subspace

 $\varphi: \mathbb{G}_{\mathrm{m}}^m \to \mathbb{G}_{\mathrm{m}}^n$ homomorphism, given by $A \in \mathbb{Z}^{m \times n}$

$$X := \overline{\varphi(\mathbb{G}_{\mathrm{m}}^m)Y}; X^0 := X \cap \mathbb{G}_{\mathrm{m}}^n$$

Well-known

 $\operatorname{Trop}(X) = \overline{A\mathbb{R}^m + \operatorname{Trop}(Y)}$ and $\operatorname{Trop}(X^0) = A\mathbb{R}^m + \operatorname{Trop}(Y^0)$

 $Y \subseteq \mathbb{A}^n$ linear subspace

 $\varphi: \mathbb{G}_{\mathrm{m}}^m \to \mathbb{G}_{\mathrm{m}}^n$ homomorphism, given by $A \in \mathbb{Z}^{m \times n}$

$$X := \overline{\varphi(\mathbb{G}_{\mathrm{m}}^m)Y}; X^0 := X \cap \mathbb{G}_{\mathrm{m}}^n$$

Well-known

 $\operatorname{Trop}(X) = \overline{A\mathbb{R}^m + \operatorname{Trop}(Y)}$ and $\operatorname{Trop}(X^0) = A\mathbb{R}^m + \operatorname{Trop}(Y^0)$

Proposition

- 1. If $\mathbb{R}^m \times \operatorname{Trop}(Y^0) \to \operatorname{Trop}(X^0)$ has a continuous section, then so does $X^{\operatorname{an}} \supseteq Z^0 \to \operatorname{Trop}(X^0)$.
- 2. If the first can be chosen \mathbb{R}^m -equivariant, then so can the latter.

 $Y \subseteq \mathbb{A}^n$ linear subspace

 $\varphi: \mathbb{G}_{\mathrm{m}}^m \to \mathbb{G}_{\mathrm{m}}^n$ homomorphism, given by $A \in \mathbb{Z}^{m \times n}$

 $X := \overline{\varphi(\mathbb{G}_{\mathrm{m}}^m)Y}; X^0 := X \cap \mathbb{G}_{\mathrm{m}}^n$

Well-known

 $\operatorname{Trop}(X) = \overline{A\mathbb{R}^m + \operatorname{Trop}(Y)}$ and $\operatorname{Trop}(X^0) = A\mathbb{R}^m + \operatorname{Trop}(Y^0)$

Proposition

- 1. If $\mathbb{R}^m \times \operatorname{Trop}(Y^0) \to \operatorname{Trop}(X^0)$ has a continuous section, then so does $X^{\operatorname{an}} \supseteq Z^0 \to \operatorname{Trop}(X^0)$.
- 2. If the first can be chosen \mathbb{R}^m -equivariant, then so can the latter.

I don't know a general condition for extending to all of Trop(X).

 $X \subseteq \mathbb{A}^{m \times p}, m \le p$ defined by $m \times m$ -minors \leadsto the map $(X^0)^{\mathrm{an}} \to \mathrm{Trop}(X^0)$ has an \mathbb{R}^m -equivariant section.

 $X \subseteq \mathbb{A}^{m \times p}, m \le p$ defined by $m \times m$ -minors \leadsto the map $(X^0)^{\mathrm{an}} \to \mathrm{Trop}(X^0)$ has an \mathbb{R}^m -equivariant section.

- 1. $X = \overline{\mathbb{G}_{m}^{m} Y}$ where $Y = \{x \mid (1, ..., 1)x = 0\}$
- 2. $\eta \in \mathbb{R}^{m \times p}$ lies in $\text{Trop}(Y^0)$ iff (0, ..., 0) lies in tropical hyperplane $\subseteq \mathbb{R}^m$ defined by each column.
- 3. \mathbb{R}^m acts by translation on hyperplanes.

 $X \subseteq \mathbb{A}^{m \times p}, m \le p$ defined by $m \times m$ -minors \leadsto the map $(X^0)^{\mathrm{an}} \to \mathrm{Trop}(X^0)$ has an \mathbb{R}^m -equivariant section.

- 1. $X = \overline{\mathbb{G}_{\mathrm{m}}^m Y}$ where $Y = \{x \mid (1, ..., 1)x = 0\}$
- 2. $\eta \in \mathbb{R}^{m \times p}$ lies in $\text{Trop}(Y^0)$ iff (0, ..., 0) lies in tropical hyperplane $\subseteq \mathbb{R}^m$ defined by each column.
- 3. \mathbb{R}^m acts by translation on hyperplanes.
- 4. Pick $\xi \in \text{Trop}(X^0)$
- 5. $-\tau :=$ stable intersection of hyperplanes of first m-1 columns
- 6. $\eta := -A\tau + \xi$

 $X \subseteq \mathbb{A}^{m \times p}, m \le p$ defined by $m \times m$ -minors \rightsquigarrow the map $(X^0)^{\mathrm{an}} \to \mathrm{Trop}(X^0)$ has an \mathbb{R}^m -equivariant section.

- 1. $X = \overline{\mathbb{G}_{m}^{m} Y}$ where $Y = \{x \mid (1, ..., 1)x = 0\}$
- 2. $\eta \in \mathbb{R}^{m \times p}$ lies in $\text{Trop}(Y^0)$ iff (0, ..., 0) lies in tropical hyperplane $\subseteq \mathbb{R}^m$ defined by each column.
- 3. \mathbb{R}^m acts by translation on hyperplanes.
- 4. Pick $\xi \in \text{Trop}(X^0)$
- 5. $-\tau :=$ stable intersection of hyperplanes of first m-1 columns
- 6. $\eta := -A\tau + \xi$
- 7. $\operatorname{Trop}(X^0) \to \mathbb{R}^m \times \operatorname{Trop}(Y^0), \ \xi \mapsto (\tau, \eta) \text{ is continuous.}$
- 8. Section: $\operatorname{Trop}(X^0) \to \mathbb{R}^m \times \operatorname{Trop}(Y^0) \to \mathbb{R}^m \times (Y^0)^{\operatorname{an}} \to Z$

 $X \subseteq \mathbb{A}^{m \times p}, m \le p$ defined by $m \times m$ -minors \rightsquigarrow the map $(X^0)^{\mathrm{an}} \to \mathrm{Trop}(X^0)$ has an \mathbb{R}^m -equivariant section.

- 1. $X = \overline{\mathbb{G}_{m}^{m} Y}$ where $Y = \{x \mid (1, ..., 1)x = 0\}$
- 2. $\eta \in \mathbb{R}^{m \times p}$ lies in $\text{Trop}(Y^0)$ iff (0, ..., 0) lies in tropical hyperplane $\subseteq \mathbb{R}^m$ defined by each column.
- 3. \mathbb{R}^m acts by translation on hyperplanes.
- 4. Pick $\xi \in \text{Trop}(X^0)$
- 5. $-\tau :=$ stable intersection of hyperplanes of first m-1 columns
- 6. $\eta := -A\tau + \xi$
- 7. $\operatorname{Trop}(X^0) \to \mathbb{R}^m \times \operatorname{Trop}(Y^0), \ \xi \mapsto (\tau, \eta)$ is continuous.
- 8. Section: $\operatorname{Trop}(X^0) \to \mathbb{R}^m \times \operatorname{Trop}(Y^0) \to \mathbb{R}^m \times (Y^0)^{\operatorname{an}} \to Z$

(I don't know if this extends to Trop(X).)

New proof of Cueto, Häbich, Werner (2013)

For $X = \mathbf{Gr}(2, n) \subseteq \mathbb{A}^{m(m-1)/2}$ the map $X^{\mathrm{an}} \to \mathrm{Trop}(X)$ has a continuous section.

New proof of Cueto, Häbich, Werner (2013)

For $X = \mathbf{Gr}(2, n) \subseteq \mathbb{A}^{m(m-1)/2}$ the map $X^{\mathrm{an}} \to \mathrm{Trop}(X)$ has a continuous section.

- 1. X is image of $\mathbb{A}^m \times \mathbb{A}^m \to \mathbb{A}^{m(m-1)/2}$, $(y, z) \mapsto (y_i z_j y_j z_i)_{i < j}$
- 2. $Y \subseteq X$ obtained by setting z := (1, ..., 1)
- 3. $X^0 = \mathbb{G}_{\rm m}^m Y$
- 4. Trop(X^0) parameterises tropical lines in $(\mathbb{R}^m_{\infty} \infty)/\mathbb{R}(1, \dots, 1)$
- 5. Trop(Y) parameterises lines through (0, ..., 0).
- 6. Fix a tropical hyperplane *H*.
- 7. For $\xi \in \text{Trop}(X^0)$, let $-\tau$ be stable intersection of line with H.
- 8. Set $\eta := -A\tau + \xi \in \text{Trop}(Y)$
- 9. Set $\sigma_X(\xi) := \mu(\tau, \sigma_Y(\eta))$ (uses graphical matroid of K_m)
- 10. Show that it extends.

Remark

In this case, the map $\mathbb{R}^m \times \operatorname{Trop}(Y^0) \to Z$, $(\tau, \eta) \mapsto \mu(\tau, \sigma_Y(\eta))$ factorises through $\mathbb{R}^m \times \operatorname{Trop}(Y^0)$, i.e., decomposition of ξ as $A\tau + \eta$ is irrelevant. This is used in the proof, and implies \mathbb{R}^m -equivariance.

Example 3: rank-two matrices.

Theorem

 $X \subseteq \mathbb{A}^{m \times p}$ variety defined by 3×3 -minors $\rightsquigarrow X^{\mathrm{an}} \to \mathrm{Trop}(X)$ has a continuous section.

Example 3: rank-two matrices.

Theorem

 $X \subseteq \mathbb{A}^{m \times p}$ variety defined by 3×3 -minors $\rightsquigarrow X^{\mathrm{an}} \to \mathrm{Trop}(X)$ has a continuous section.

- 1. as for Gr(2, m), now using $Y = (y_i z_j)_{ij}$ \rightsquigarrow graphical matroid of $K_{m,p}$.
- 2. can make it \mathbb{R}^m -equivariant or \mathbb{R}^p -equivariant, but (maybe) not both.
- 3. uses work by Develin-Santos-Sturmfels.

Setting

```
\varphi: \mathbb{G}_{\underline{m}}^{m} \to \mathbb{G}_{\underline{m}}^{n}
V = \overline{\varphi(\mathbb{G}_{\underline{m}}^{m})} \subseteq \mathbb{A}^{n} \text{ toric variety}
X = \{h \in \mathbb{A}^{n} \mid h \perp T_{p}V \text{ for some } p \in V\} \text{ dual variety}
Y = (T_{\varphi(1)}V)^{\perp} \text{ linear subspace}
\rightsquigarrow X = \overline{\varphi(\mathbb{G}_{\underline{m}}^{m})Y} \text{ (Horn uniformisation)}
```

Setting

$$\varphi: \mathbb{G}_{\underline{m}}^{m} \to \mathbb{G}_{\underline{m}}^{n}$$

$$V = \overline{\varphi(\mathbb{G}_{\underline{m}}^{m})} \subseteq \mathbb{A}^{n} \text{ toric variety}$$

$$X = \{h \in \mathbb{A}^{n} \mid h \perp T_{p}V \text{ for some } p \in V\} \text{ dual variety}$$

$$Y = (T_{\varphi(1)}V)^{\perp} \text{ linear subspace}$$

$$\rightsquigarrow X = \overline{\varphi(\mathbb{G}_{\underline{m}}^{m})Y} \text{ (Horn uniformisation)}$$

Dickenstein-Feichtner-Sturmfels (2007)

$$\operatorname{Trop}(X^0) = A\mathbb{R}^m + \operatorname{Trop}(Y^0)$$

(and a ray shooting method for computing $\operatorname{Trop}(X^0)$)

Setting

$$\varphi: \mathbb{G}_{\mathrm{m}}^{m} \to \mathbb{G}_{\mathrm{m}}^{n}$$

$$V = \overline{\varphi(\mathbb{G}_{\mathrm{m}}^{m})} \subseteq \mathbb{A}^{n} \text{ toric variety}$$

$$X = \{h \in \mathbb{A}^{n} \mid h \perp T_{p}V \text{ for some } p \in V\} \text{ dual variety}$$

$$Y = (T_{\varphi(1)}V)^{\perp} \text{ linear subspace}$$

$$\longrightarrow X = \overline{\varphi(\mathbb{G}_{\mathrm{m}}^{m})Y} \text{ (Horn uniformisation)}$$

Dickenstein-Feichtner-Sturmfels (2007)

$$\operatorname{Trop}(X^0) = A\mathbb{R}^m + \operatorname{Trop}(Y^0)$$

(and a ray shooting method for computing $\operatorname{Trop}(X^0)$)

Question

Does there exist a section $\operatorname{Trop}(X^0) \to Z^0$, or even $\operatorname{Trop}(X) \to Z$?

Example 4: Cayley's hyperdeterminant

 $V \subseteq \mathbb{A}^{2 \times 2 \times 2}$ rank-one tensors

X =dual variety, a quartic hyperplane

 $V \subseteq \mathbb{A}^{2 \times 2 \times 2}$ rank-one tensors

X =dual variety, a quartic hyperplane

 $V \subseteq \mathbb{A}^{2 \times 2 \times 2}$ rank-one tensors

X =dual variety, a quartic hyperplane

Theorem

 $(X^0)^{an} \supseteq Z^0 \to \operatorname{Trop}(X^0)$ has a continuous \mathbb{R}^{2+2+2} -equivariant section \rightsquigarrow the double tetrahedron is a retract of $(X^0/\mathbb{G}_m^{2+2+2})^{an}$.