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Tilted polynomial ring

& € RE, o Klx]e :={), cax” | V(ca) + @ - & 2 0}

has ideal {) , c,x* | v(cy) + @ - € > 0}

Quotient 1s k[y; | & # oo] where y; 1s image of c¢;x;, v(c;) + & = 0.
(Assume v surjective.)

Initial ideal
ing(/) := 1mage of K[x]: NI 1n k[y; | & # oo]
Trop(X) = {£ € Ry, | ing] does not contain any monomial}
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Berkovich space
X :={w: K[X] —» Ry | wring valuation extending v}
Topology: wi,w», ... converge iff (w;(f)); converges for all f.

Fundamental theorem of tropical geometry
nx : X" > RL, wr (w(x)),...,w(x,)) maps onto Trop(X).

Question
When does mx have a continuous section oy : Trop(X) — X%"?

Baker-Payne-Rabinofl (2011)
For a curve it suffices that all multiplicities are 1.
(And then there 1s an 1sometric embedding!)

Cueto-Habich-Werner (2013)
For X = Gr(2, m) € A™™=D/2 3 gsection exists (& all mults are 1).
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Theorem
If Y C A" 1s a linear subspace, then
y . Y — Trop(Y) has a continuous section.

Construction (constant coefficient case)
1. pick n € Trop(Y) N R”
2. choose m € Sym(n) such thatn,, >--->n,
3. set Jy := 0 and
Ji = Jiog Ur(D) 1 xz)ly € <xjly, J € Jic1);
= J;,_; otherwise
4. set J := J,, a maximal-weight basis of the matroid defined by Y
5. pick f € K[Y] ~» unique expression f = ) w7 Co Xt
6. set oy(n)(f) := min,(v(c,) + @ - n)
(extends continuously to points with oo coordinates) O
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Example: graphical matroid of K,,,.

Y € Amm=D/Z defined by parameterisation x;; = (y; — y,)i<;
{xi; | (i, j) € J} independent on Y 1ff J a tree

n € Trop(Y)

For (i, j) € J, n;j is minimal weight in cycle closed by i}.
~w oy ()(Xij) = 1ij
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Setting

X C A"

¢ : G" — G" torus homomorphism given by A € Z™™
assume X stable under ¢(G7))

Well-known fact
R™ acts on Trop(X) by (7, &) — AT + €.
(AR™ 1s contained in lineality space of Trop(X))

Lemma Definition of u
R x xa — K xan 1. pick 7 € R", w € X*, f € K[X]
l i l 2. write f(@(t)x) = X pezm & Jp(x)
X Ty Ty . :
3. u(r,w)(f) := ming(w(f) + B - 7)
R™ X Trop(X) — Trop(X)

action
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llXﬂX lﬂ'X

R™ X Trop(X) — Trop(X)
action

Example

X=A%2¢:G. -Gt (1,17

= 2ijcijx'y ~o u(r,w)(f) = mingez(W(Q;— j= ¢ijX'y’) + kT)
In general u(0,w) # w!

Lemma

1. u(ty + 1, w) = u(ry, u(ra, w))
2. Z :=1mage(u) 1s a retract of X*" on which R™ acts continuously.
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In general u(0,w) # w!

Lemma
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Smearing around a subspace by a torus

Setting

Y C A" linear subspace

¢ : G — G homomorphism, given by A € Z"*"
X = p(GM)Y; X" .= XNG"

Well-known
Trop(X) = AR™ + Trop(Y) and Trop(X") = AR™ + Trop(Y")

Proposition
1. If R™ x Trop(Y") — Trop(X") has a continuous section,

then so does X" D Z° — Trop(X").
2. If the first can be chosen R™-equivariant, then so can the latter.

I don’t know a general condition for extending to all of Trop(X).
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Theorem
X C A™P m < p defined by m X m-minors
~> the map (XY)*™ — Trop(X") has an R™-equivariant section.

1. X = G"Y where Y = {x | (1,..., )x =0}

2. 1 € R™P lies in Trop(Y") iff (0, ..., 0) lies in tropical
hyperplane C R" defined by each column.

. R™ acts by translation on hyperplanes.

. Pick & € Trop(X")

. —7 .= stable intersection of hyperplanes of first m — 1 columns
. =-AT+ €&

. Trop(X") = R™ x Trop(Y"), &€ — (1, 7n) is continuous.

. Section: Trop(X?) — R™ x Trop(Y") - R" x (Y™ - Z O

(I don’t know if this extends to Trop(X).)

0 J ON U & W
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New proof of Cueto, Habich, Werner (2013)
For X = Gr(2,n) € A"~ D/2 the map X* — Trop(X) has a
continuous section.

1. X is image of A™ x A™ — A™m=DI2 (y 2y b (yiz; — ¥zi)i<;
2. Y C X obtained by setting z := (1,...,1)

3. =G"Y

4. Trop(X") parameterises tropical lines in (R” — c0)/R(1,...,1)
5. Trop(Y) parameterises lines through (O, ..., 0).

6. Fix a tropical hyperplane H.

7. For ¢ € Trop(X"), let —7 be stable intersection of line with H.
3. Setn .= —-At+ & € Trop(Y)

0.
|

Set ox (&) := u(t,oy(n)) (uses graphical matroid of K,;,)
0. Show that 1t extends. O




Example 2, continued

Remark

In this case, the map R™ x Trop(Y?) — Z, (1,1) — u(t, oy(n))
factorises through R™ x Trop(Y"), i.e., decomposition of & as
AT + n 1s 1irrelevant. This 1s used in the proof, and implies
R™-equivariance.
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Example 3: rank-two matrices.

Theorem
X C A™P variety defined by 3 X 3-minors
~» X — Trop(X) has a continuous section.

1. as for Gr(2, m), now using Y = (y; — z,)i;

~» graphical matroid of K, .

2. can make 1t R”-equivariant or R”-equivariant,
but (maybe) not both.

3. uses work by Develin-Santos-Sturmfels.
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Setting

: G — GL

V = o(G) C A" toric variety

X=1{heA"|h LT,V for some p € V} dual variety
Y = (Ty1yV)™ linear subspace

~» X = o(GR)Y (Horn uniformisation)

Dickenstein-Feichtner-Sturmfels (2007)
Trop(X") = AR™ + Trop(Y")
(and a ray shooting method for computing Trop(X"))

Question
Does there exist a section Trop(X") — Z°, or even Trop(X) — Z?
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V € A%**2 rank-one tensors
X =dual variety, a quartic hyperplane

Trop(X)/AR**?*? intersected with a S

Theorem
(X2 2 Z° — Trop(X") has a continuous R***"2-equivariant
section ~»> the double tetrahedron is a retract of (X°/G2++2)an,
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