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History: Hilbert’s Basis Theorem

David Hilbert

Any polynomial system

fixg, ..., x,) =0,

fz(xl,...,xn) = O,

reduces to a finite system

(~> Noetherianity of K[xq,...,Xx,])

Paul Gordan
Das ist nicht Mathematik,
das ist Theologie!

Bruno Buchberger
Grobner bases, algorithmic methods
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Three-step approach

1. Model ®© 0|0 0|0
high-dim data ~» co-dim data space o0 .3 ol e

data property ~» co-dim subvariety
small window ~» finite window
w> leave fin-dim commutative algebra

2. Prove
co-dim property finitely defined

up to symmetry?

~» generalise Basis Theorem to oo variables e eiede o o s 0 s aie 0o

3. Compute
actual windows for fin-dim data
~»> generalise Buchberger alg to oo variables




Noetherianity up to symmetry

Example
K[x1, xo,...] 1s not Noetherian, e.g. x; =0,x, =0,...
does not reduce to a finite system.



Noetherianity up to symmetry

Example
K[x1, xo,...] 1s not Noetherian, e.g. x; =0,x, =0,...
does not reduce to a finite system.

Cohen [J Algebra, 1967]
K[x1, x2,...] is Sym(N)-Noetherian, 1.e., every Sym(IN)-stable
system reduces to finitely many equations up to Sym(N).



Noetherianity up to symmetry

Example
K[x1, xo,...] 1s not Noetherian, e.g. x; =0,x, =0,...
does not reduce to a finite system.

Cohen [J Algebra, 1967]
K[x1, x2,...] is Sym(N)-Noetherian, 1.e., every Sym(IN)-stable
system reduces to finitely many equations up to Sym(N).

Notion of G-Noetherianity generalises to G-actions on rings or
topological spaces.



Noetherianity up to symmetry

Example
K[x1, xo,...] 1s not Noetherian, e.g. x; =0,x, =0,...
does not reduce to a finite system.

Cohen [J Algebra, 1967]
K[x1, x2,...] is Sym(N)-Noetherian, 1.e., every Sym(IN)-stable
system reduces to finitely many equations up to Sym(N).

Notion of G-Noetherianity generalises to G-actions on rings or
topological spaces.

Fundamental (non-)examples

K
K

Gl

xiiliefl,..., k},j € N]1s Sym(IN)-Noetherian;
x;; | 1, j € N]1s not Sym(N)-Noetherian, but it is

L X GLy-Noetherian, and so is (K*>*)? for all p.
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Noetherianity up to symmetry, continued

Hillar-Sullivant [Adv Math, 2012]
S :=Kl[x;;|ie{l,..., k}, j € N]is Sym(IN)-Noetherian.

Open question
Given ¢ : R — § reasonable Sym(IN)-equivariant map,
1s ker(¢) generated by finitely many Sym(IN)-orbits?

D-Eggermont-Krone-LeyKkin [20/5]
Yes if R 1s a polynomial ring with finitely many Sym(IN)-orbits
of variables and moreover ¢ 1s monomial.

Moreover, Krone-Leykin have developed and implemented
an oo-dimensional Buchberger algorithm for computing ker .
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Gaussian factor analysis

Setting

Xi,...,X, jointly Gaussian, mean 0

~» explained well by k < n factors? st
l.e.,18 X; = Zj SijZk + t;6, with Z1, . .., Z,

€1, ..., €, Independent standard normals? q tiz
& X(Xi,...,X,) =SST +diag(#, ...,

Definition
Fr,:={SST +diag(¢3,...,2) | S e R 1; € R}

~»> algebraic variety in R™" called Gaussian k-factor model

Example
Frsiszerosetof {o;;—oj | i,j=1,...,5} and the pentad
ZneSym(S) SEN(TT) 0 1(1)2(2) O 7(2)7(3) T 7 (3)n(4) T m(d)(5) O n(5)m(1)
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Finiteness for the Gaussian k-factor model

Drton-Sturmfels-Sullivant [ Prob Th Rel Fields 2007]
If 2 € Fy, then any principal ng X ny submatrix X" € Fy .
~» Is there an ng = no(k) such that the converse holds for n > ngy?

De Loera-Sturmfels-Thomas [ Combinatorica 1995]
yesfork =1 (ng =4)

k

ST

Draisma [Adv Math 2010]
yes for all k (ng =?) n
> uses Fy. ., and Noetherianity up to Sym(IN)

S

Brouwer-Draisma [Maih Comp 2011

yes for k = 2: pentads and 3 X 3-minors define F»,,,n > ny := 6

~» uses Sym(N)-Buchberger algorithm (+ a weekend on 20 computers)

~» a single computation proves this for all n
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Tensor rank

A wrong-titled movie

tensor T'=multi-indexed array of numbers
matrices=two-way tensors

this picture=three-way tensor, ...

Pure tensor P

has entries P; ;. x = x;y; - %
for vectors x,...,zZ

~» for a matrix: xy', rank one

Tensor rank of T

is minimal kin 7 = 21;21 PY with each PY pure

~w> generalises matrix rank

w> useful for MRI data, communication complexity, phylogenetics etc.
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Finiteness for bounded-rank tensors 11

Matrix rank Tensor rank

efficiently computable NP-hard o~

field independent field dependent

can only go down in limit | can also go up

Border rank of T

1s smallest rank of 7 arbitrarily close to T m

~»> also extremely useful o Bl [7)

~» for matrices coincides with rank U~ Sym(n) < GLY
Draisma-Kuttler [Duke 2014]

Matrix rank < k Border rank < k

given by k X k-subdets finitely many equations up to symmetry

efficiently checkable polynomial-time checkable
> Uses space of co-way tensors
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Grassmannians: functoriality and duality

V a fin-dim vector space over an infinite field K
> Gry(V) i={viA---Av, | v, e VIC APV
cone over Grassmannian

(rank-one alternating tensors)

Two properties:

1.if ¢ : V — W linear

w AP NPV - APW
maps Gr,(V) — Gr,(W)

2.1 dmV =n+pwithn,p >0
~» natural map A’V — (A" V)" - A"(V")
maps Gr,(V) — Gr, (V")
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Pliicker varieties

Definition
Rules Xy, X1, X,, ... with

X, : {vector spaces V} — {varieties in A\” V}

form a Pliicker variety if, fordimV = n + p,
l.o: V> W~ AP @ maps X,(V) — X,(W)
2. APV = A"(V*) maps X,,(V) = X,,(V")

Constructions

X, Y Pliicker varieties ~» so are
X + Y (join), X (tangential),
XUuY,XNnY

skew analogue of Snowden’s A-varieties

14
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Finiteness for Pliicker varieties, with Eggermont 15

Definition
A Pliicker variety {X,}, 1S bounded
if Xo(V) # A* V for dim V sufficiently large.

Theorem

Any bounded Pliicker variety 1s defined
set-theoretically in bounded degree, by
finitely many equations up to symmetry.

Theorem
For any fixed bounded Pliicker variety there
exists a polynomial-time membership test.

Theorems apply, in particular, to

kGr = k-th secant variety of Gr.



The infinite wedge

VOO .= < * x—39 x—29 x—la xla x29 X3, © o

DK

Vip i= Xons oo X215 X1, ..o, Xp) € Vi
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The infinite wedge 16

Vo 1= (oo X3, X0, X1, X1, X2, X3, .. K

Vip = Xcps oo s X215 X155 Xp) € Vo

Diagram

AVoo —» A'Vor o ANV —» | A2 Vip —o AP Vi
Cr RIS

A'Vio o A'Vii o A°Vio —a | AP Virip

l l l

Definition
A®? V= lim_, AP V,..p the infinite wedge (charge-0 part);
basis {x; :==x;, Axp, A}, I={i1<ip<...),ig=ktfork>0

On \™"* Vo acts GLo := U, , GL(V,, ).
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Young diagrams

Recall
/\00/2 Vs has basis {x; := Xip N\ Xj, N\ - -}7, where
I[={ii<ih<..})C(-N)U+N)with iy = kfork> 0

Bijection with Young diagrams
xywithl ={-3,-2,1,2,4,6,7, ...} corresponds to

|
v
’
— Ve
’
|

17



Young diagrams 17

Recall
/\00/2 Vs has basis {x; := Xip N\ Xj, N\ - -}7, where
I[={ii<ih<..})C(-N)U+N)with iy = kfork> 0

Bijection with Young diagrams
xywithl ={-3,-2,1,2,4,6,7, ...} corresponds to

.’, /*/,’ 7’ ,, ,',/ ’ ,/ /,,, /,/,
[ /* /f 7’ 7’ 7’ /,
1 234567
These x; will be the coordinates of our ambient space, partially

ordered by I < J 1t iy > ji for all £ (inclusion of Young diags).
Unique minimum s [ = {1,2,...}.




The limit of a Pliicker variety

Dual diagram

/\O V{)ko < /\1 V{)kl <+ /\p V;zk,p <+ /\p+1 V;:,p+1
T T T

/\O Viko - /\1 Vikl - /\p VZ+1,p
T T




The limit of a Pliicker variety

Dual diagram

/\O VSO < /\1 Vgl <+ /\p V}j,p <+ /\p+1 V;:,p+1
T | T

/\O Viko - /\1 Vikl - /\p V:H,p
T T

{Xp}p>0 a Pliicker variety ~» varieties X, , := X, (V)



The limit of a Pliicker variety

Dual diagram

AV «— A'Vo o NPFN“W
i i % %
AVip — A'Vi — N Vi T”p - Sl
T T N,

n+l,p

{Xp}p>0 a Pliicker variety ~» varieties X, , := X, (V)



The limit of a Pliicker variety

Dual diagram

A'Viy o AV - NPFN“W
I I % %
AVip — A'Vi — N Vi T”p - Sl
T T N

n+l,p

{Xp}p>0 a Pliicker variety ~» varieties X, , := X, (V)

w X = lim X, , 1S GL-stable subvariety of ( AZ? Vo)



The limit of a Pliicker variety

Dual diagram

AV o ATV /\” ey — NV
f f Py, N,
AVip — A'Vi — N Vi T’”’ - Sl
T T N
n+l,p

{Xp}p>0 a Pliicker variety ~» varieties X, , := X, (V)
w X 1= limc X, , 1s GL-stable subvariety of ( /\°°/ 2 V)

Theorem (implies earlier)
For bounded X, the limit X, 1s cut out by finitely many
GL-orbits of equations.



Sato’s Grassmannian

Example

The Iimit Gr,, C ( /\OO/ 2 V)" of (Gr),), 18 Sato’s Grassmannian
defined by polynomials ) ;c; +x;; - xj.; = 0

where iy =k —1fork> 0Oand j, = k+ 1 fork > 0.

19



Sato’s Grassmannian

Example

The Iimit Gr,, C ( /\OO/ 2 V)" of (Gr),), 18 Sato’s Grassmannian
defined by polynomials ) ;c; +x;; - xj.; = 0

where iy =k —1fork> 0Oand j, = k+ 1 fork > 0.

~» not finitely many GL,-orbits

19



Sato’s Grassmannian

Example

The Iimit Gr,, C ( /\OO/ 2 V)" of (Gr),), 18 Sato’s Grassmannian
defined by polynomials ) ;c; +x;; - xj.; = 0

where iy =k —1fork> 0Oand j, = k+ 1 fork > 0.

~» not finitely many GL,-orbits

But in fact the GL_, -orbit of
(Xx_0-13... " X123..)—(x_213.. " X_123..) + (X_223... - X-1.13...)

defines Gr., set-theoretically.
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Sato’s Grassmannian 19

Example

The Iimit Gr,, C ( /\OO/ 2 V)" of (Gr),), 18 Sato’s Grassmannian
defined by polynomials ) ;c; +x;; - xj.; = 0

where iy =k —1fork> 0Oand j, = k+ 1 fork > 0.

~» not finitely many GL,-orbits

But in fact the GL_, -orbit of
(Xx_0-13... " X123..)—(x_213.. " X_123..) + (X_223... - X-1.13...)

defines Gr., set-theoretically.

Our theorems 1mply that also higher secant varieties of Sato’s
Grassmannian are defined by finitely many GL,-orbits of
equations. . . we just don’t know which/!
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Conjecture

Over any field K, Sato’s Grassmannian Gr.,(K) 1s Noetherian up

to Sym(—-N U +N) C GL...

~
AR
7' N

combinatorics
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The graph minor theorem

Graph minors
Any sequence of operations

S>> and P> X

takes a graph to a minor.
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The graph minor theorem

Graph minors
Any sequence of operations

S>> and P> X

takes a graph to a minor.

Robertson-Seymour [JCB 1983-2004, 669pp]
Any network property preserved under
taking minors can be characterised by
finitely many forbidden minors.
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The graph minor theorem

Graph minors
Any sequence of operations

S>> and P> X

takes a graph to a minor.

Robertson-Seymour [JCB 1983-2004, 669pp]
Any network property preserved under
taking minors can be characterised by
finitely many forbidden minors.

Wagner [Math Ann 1937]
For planarity these are

% and

21




The matroid minor theorem

From graphs to matroids
1 1 |

I I |

O 1 0 0 1 0 0

O 0 1 0 0 1 0
—» O 0 0 1 0 0 1
O -1 -1-10 0 0

O 0 0 0 -1 -1 -1

© 0 0 0 0 0 0

COCOoOO— mm

COO—O =m

OO =m

—>

22

column independence
structure = matroid



The matroid minor theorem

From graphs to matroids
1 1 |

I 1 1 1 1 |

Ol 00 1 0 0 L 0 O

O 0 L 00 1 0 0 I O
—» O 0 0 1 0 0 I 0 0 I —p

O -1-1-10 0 0 0 0 O

O 0 0 0 -1-1-10 0 0

© 0 0 0 0 0 0 -1 -1 —1I

Matroid minor theorem (Geelen-Gerards-Whittle)
Any minor-preserved property of matroids

over a fixed finite field K can be characterised

by finitely many forbidden minors.

22

column independence
structure = matroid




The matroid minor theorem 2

From graphs to matroids
1 1 |

[ 1 1 1 1 1
O 1 0 0 1 0 0 1 0 0 :
O 01 0 0 1 0 0 1 0 column independence
—> 0 0 1 0 0 I 0 0 1— :
8 1 -1 -1 0 0 0 0 0 0 structure = matroid
O 0 0 0 -1-1-120 0 0
© 0 0 0 0 0 0 -1 -1 -1

Matroid minor theorem (Geelen-Gerards-Whittle)
Any minor-preserved property of matroids

over a fixed finite field K can be characterised i
by finitely many forbidden minors. ' <

Correspondence
Equivalant to Sym(—N U +N)-Noetherianity of Gr.,(K)
(but Noetherianity may be true even for infinite K).
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