Algebraic matroids and Frobenius flocks

Jan Draisma, Universität Bern j.w.w. Rudi Pendavingh and Guus Bollen, Eindhoven

K a field, σ an automorphism of K, E a finite set \mathbb{Z}^E acts on K^E via $\alpha v := (\sigma^{\alpha_i} v_i)_{i \in E}$

K a field, σ an automorphism of K, E a finite set \mathbb{Z}^E acts on K^E via $\alpha v := (\sigma^{\alpha_i} v_i)_{i \in E}$

Definition

 $V: \mathbb{Z}^E \to \{d\text{-dimensional subspaces of } K^E\}, \alpha \mapsto V_{\alpha}$ is a *vector space flock* on E over (K, σ) of rank d if $(VF1) \ V_{\alpha}/i = V_{\alpha+e_i} \setminus i$ and $(VF2) \ V_{\alpha+1} = \mathbf{1} V_{\alpha}$.

 $W \setminus i := \text{image of } W \text{ in } K^{E-i}$ $W/i := \text{image of } e_i^{\perp} \cap W \text{ in } K^{E-i}$ $\mathbf{1} = \text{the all-one vector}$

(VF1)
$$V_{\alpha}/i = V_{\alpha+e_i} \setminus i$$
 (VF2) $V_{\alpha+1} = \mathbf{1}V_{\alpha}$
 $E = \{1, 2\}, V_0 = \langle (1, a) \rangle, a \neq 0$

(VF1)
$$V_{\alpha}/i = V_{\alpha+e_i} \setminus i$$
 (VF2) $V_{\alpha+1} = \mathbf{1}V_{\alpha}$
 $E = \{1, 2\}, V_0 = \langle (1, a) \rangle, a \neq 0$
 $V_0/1 = \{0\} = V_{e_1} \setminus 1$, so $V_{e_1} = \langle (1, 0) \rangle$

(VF1)
$$V_{\alpha}/i = V_{\alpha+e_i} \setminus i$$
 (VF2) $V_{\alpha+1} = \mathbf{1}V_{\alpha}$
 $E = \{1, 2\}, V_0 = \langle (1, a) \rangle, a \neq 0$
 $V_0/1 = \{0\} = V_{e_1} \setminus 1, \text{ so } V_{e_1} = \langle (1, 0) \rangle = V_{ke_1} \text{ for } k \geq 1$

(VF1)
$$V_{\alpha}/i = V_{\alpha+e_i} \setminus i$$
 (VF2) $V_{\alpha+1} = \mathbf{1}V_{\alpha}$
 $E = \{1, 2\}, V_0 = \langle (1, a) \rangle, a \neq 0$
 $V_0/1 = \{0\} = V_{e_1} \setminus 1, \text{ so } V_{e_1} = \langle (1, 0) \rangle = V_{ke_1} \text{ for } k \geq 1$
similarly $V_{ke_2} = \langle (0, 1) \rangle \text{ for } k \geq 1$

(VF1)
$$V_{\alpha}/i = V_{\alpha+e_i} \setminus i$$
 (VF2) $V_{\alpha+1} = \mathbf{1}V_{\alpha}$
 $E = \{1, 2\}, \ V_0 = \langle (1, a) \rangle, \ a \neq 0$
 $V_0/1 = \{0\} = V_{e_1} \setminus 1, \text{ so } V_{e_1} = \langle (1, 0) \rangle = V_{ke_1} \text{ for } k \geq 1$
similarly $V_{ke_2} = \langle (0, 1) \rangle \text{ for } k \geq 1$

VF2 yields:

Theorem

For a flock V on E, call $I \subseteq E$ independent if $\exists \alpha \in \mathbb{Z}^E$: I independent in $M(V_\alpha)$. This defines a matroid M(V) on E.

Theorem

For a flock V on E, call $I \subseteq E$ independent if $\exists \alpha \in \mathbb{Z}^E$: I independent in $M(V_\alpha)$. This defines a matroid M(V) on E.

Question

Which matroids are flock-representable?

Theorem

For a flock V on E, call $I \subseteq E$ independent if $\exists \alpha \in \mathbb{Z}^E$: I independent in $M(V_\alpha)$. This defines a matroid M(V) on E.

Question

Which matroids are flock-representable?

Theorem

Certainly all algebraic matroids over algebraically closed K of characteristic p > 0 with $\sigma(a) = a^{1/p}$ —so-called *Frobenius flocks*.

Theorem

For a flock V on E, call $I \subseteq E$ independent if $\exists \alpha \in \mathbb{Z}^E$: I independent in $M(V_\alpha)$. This defines a matroid M(V) on E.

Question

Which matroids are flock-representable?

Theorem

Certainly all algebraic matroids over algebraically closed K of characteristic p > 0 with $\sigma(a) = a^{1/p}$ —so-called *Frobenius flocks*.

But, (unfortunately?) many more.

Duality

If V is a flock over (K, σ) , then $V^* : \alpha \mapsto V_{-\alpha}^{\perp}$ is a flock over (K, σ^{-1}) , and it satisfies $M(V^*) = M(V)^*$.

Duality

If V is a flock over (K, σ) , then $V^* : \alpha \mapsto V_{-\alpha}^{\perp}$ is a flock over (K, σ^{-1}) , and it satisfies $M(V^*) = M(V)^*$.

For a flock V on E, $\alpha \in \mathbb{Z}^E$, $i \in E$,

- *i* is a coloop in $M(V_{\alpha+ke_i})$ for $k \gg 0$ unless it is a loop in M(V);
- *i* is a loop in $M(V_{\alpha+ke_i})$ for $k \ll 0$ unless it is a coloop in M(V).

Duality

If V is a flock over (K, σ) , then $V^* : \alpha \mapsto V_{-\alpha}^{\perp}$ is a flock over (K, σ^{-1}) , and it satisfies $M(V^*) = M(V)^*$.

For a flock V on E, $\alpha \in \mathbb{Z}^E$, $i \in E$,

- *i* is a coloop in $M(V_{\alpha+ke_i})$ for $k \gg 0$ unless it is a loop in M(V);
- *i* is a loop in $M(V_{\alpha+ke_i})$ for $k \ll 0$ unless it is a coloop in M(V).

Minors

```
V/i: \alpha \in \mathbb{Z}^{E-i} \to V_{\beta}/i \text{ for } \beta|_{E-i} = \alpha \text{ and } \beta_i \gg 0; and V \setminus i: \alpha \in \mathbb{Z}^{E-i} \to V_{\beta} \setminus i \text{ for } \beta|_{E-i} = \alpha \text{ and } \beta_i \ll 0 are flocks on E-i, satisfying M(V/i) = M(V)/i, M(V \setminus i) = M(V) \setminus i, and V^*/i = (V \setminus i)^*.
```

 $\sigma: K \to K$ trivial, $W \subseteq K((t))^E$ a linear subspace for $\alpha \in \mathbb{Z}^E$ set $t^{\alpha}W := \{(t^{\alpha_i}w_i)_i \mid w \in W\} \subseteq K((t))^E$

 $\sigma: K \to K$ trivial, $W \subseteq K((t))^E$ a linear subspace for $\alpha \in \mathbb{Z}^E$ set $t^{\alpha}W := \{(t^{\alpha_i}w_i)_i \mid w \in W\} \subseteq K((t))^E$

Construction

 $V: \alpha \mapsto V_{\alpha} := \text{image in } K^E \text{ of } t^{-\alpha}W \cap K[[t]]^E$ is a vector space flock of rank dim W over $(K, 1_K)$.

 $M(V_{\alpha})$ has no loops if and only if $\alpha \in \text{Trop}(W)$.

This suggests a tropical connection.

Algebraic matroids

K algebraically closed, $X \subseteq K^E$ irreducible variety \rightsquigarrow matroid M(X) on E: I independent iff $X \to K^I$ dominant.

K algebraically closed, $X \subseteq K^E$ irreducible variety \rightsquigarrow matroid M(X) on E: I independent iff $X \to K^I$ dominant.

Ingleton's observation

If char K = 0, then $M(X) = M(T_v X)$ for $v \in X$ general, so {matroids algebraically representable over K} = {matroids linearly representable over K}.

K algebraically closed, $X \subseteq K^E$ irreducible variety \rightsquigarrow matroid M(X) on E: I independent iff $X \to K^I$ dominant.

Ingleton's observation

If char K = 0, then $M(X) = M(T_v X)$ for $v \in X$ general, so {matroids algebraically representable over K} = {matroids linearly representable over K}.

Example

This is *not* true in char, say, 2:

$$X = \{(x, y, z, xy, xz, yz, xzy) \mid x, y, z \in \overline{\mathbb{F}_2}^3\}$$
 represents the *non-Fano* matroid, which is not linearly representable over $\overline{\mathbb{F}_2}$.

K algebraically closed of char $p, \sigma : K \to K, a \mapsto a^{1/p}$ \mathbb{Z}^E acts on K^E by homeomorphisms in the Zariski topology. K algebraically closed of char $p, \sigma : K \to K, a \mapsto a^{1/p}$ \mathbb{Z}^E acts on K^E by homeomorphisms in the Zariski topology.

Theorem

For $X \subseteq K^E$ irreducible and $v \in X$ general, $V : \alpha \mapsto T_{\alpha v} \alpha X$ is a Frobenius flock over (K, σ) satisfying M(V) = M(X).

K algebraically closed of char $p, \sigma : K \to K, a \mapsto a^{1/p}$ \mathbb{Z}^E acts on K^E by homeomorphisms in the Zariski topology.

Theorem

For $X \subseteq K^E$ irreducible and $v \in X$ general, $V : \alpha \mapsto T_{\alpha v} \alpha X$ is a Frobenius flock over (K, σ) satisfying M(V) = M(X).

Conditions (*)

v should satisfy the the following conditions for all $\alpha \in \mathbb{Z}^E$:

- αX is smooth at αv , and
- $M(T_{\alpha \nu}\alpha X) = M(T_{\xi_{\alpha}}\alpha X)$, where ξ is the generic point of αX .

To reduce from *very general* to just *general* we establish finiteness properties of flocks.

$$X = \{(x, y, x + y, x + y^{(p^g)}) \mid (x, y) \in K^2\} \subseteq K^4, g > 1, M(X) = U_{2,4}$$

$$X = \{(x, y, x + y, x + y^{(p^g)}) \mid (x, y) \in K^2\} \subseteq K^4, g > 1, M(X) = U_{2,4}$$

$$T_0X = \text{row space of} \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$
, so 1,4 parallel in $M(T_0X)$.

$$X = \{(x, y, x + y, x + y^{(p^g)}) \mid (x, y) \in K^2\} \subseteq K^4, g > 1, M(X) = U_{2,4}$$

$$T_0X = \text{row space of} \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$
, so 1,4 parallel in $M(T_0X)$.

$$(-e_2 - e_3)X = \{(x, y, x^p + y, x + y^{(p^{g-1})}) \mid (x, y) \in K^2\}$$

$$T_0(-e_2 - e_3)X = \text{row space of } \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$
; also 2, 3 parallel.

$$X = \{(x, y, x + y, x + y^{(p^g)}) \mid (x, y) \in K^2\} \subseteq K^4, g > 1, M(X) = U_{2,4}$$

$$T_0X = \text{row space of} \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$
, so 1,4 parallel in $M(T_0X)$.

$$(-e_2 - e_3)X = \{(x, y, x^p + y, x + y^{(p^{g-1})}) \mid (x, y) \in K^2\}$$

$$T_0(-e_2 - e_3)X = \text{row space of } \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$
; also 2, 3 parallel.

$$(-ge_2 - ge_3)X = \{(x, y, x^{(p^g)} + y, x + y) \mid (x, y) \in K^2\}$$

$$T_0(-ge_2 - ge_3)X = \text{row space of} \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}$$
; 1,4 indep.

Cells where $M(T_0(\alpha X)) = M(T_{\xi_\alpha} \alpha X)$ is constant:

These cells are *alcoved polytopes*: max-plus and min-plus closed.

Definition (Dress-Wenzel)

A matroid valuation is a map $\nu : \{d\text{-sets in } E\} \to \mathbb{R} \cup \{\infty\}$ such that $\nu(B) \neq \infty$ for some B and $\forall B, B', i \in B \setminus B' \exists j \in B' \setminus B : \nu(B) + \nu(B') \geq \nu(B - i + j) + \nu(B' + i - j)$.

(ν then lies in the *Dressian*)

Definition (Dress-Wenzel)

A matroid valuation is a map $\nu : \{d\text{-sets in } E\} \to \mathbb{R} \cup \{\infty\}$ such that $\nu(B) \neq \infty$ for some B and $\forall B, B', i \in B \setminus B' \exists j \in B' \setminus B : \nu(B) + \nu(B') \geq \nu(B - i + j) + \nu(B' + i - j)$.

(ν then lies in the *Dressian*)

Observations

 $\nu \rightsquigarrow$ two matroids: $M^{\nu} := \{B \mid \nu(B) < \infty\}$ and $\{B \mid \nu(B) \text{ minimal}\}$; and $\nu'(B) := \nu(B) - \alpha \cdot e_B$ is a valuation for each $\alpha \in \mathbb{R}^E$.

Definition (Dress-Wenzel)

A matroid valuation is a map $\nu : \{d\text{-sets in } E\} \to \mathbb{R} \cup \{\infty\}$ such that $\nu(B) \neq \infty$ for some B and $\forall B, B', i \in B \setminus B' \exists j \in B' \setminus B : \nu(B) + \nu(B') \geq \nu(B - i + j) + \nu(B' + i - j)$.

(ν then lies in the *Dressian*)

Observations

 $\nu \rightsquigarrow$ two matroids: $M^{\nu} := \{B \mid \nu(B) < \infty\}$ and $\{B \mid \nu(B) \text{ minimal}\};$ and $\nu'(B) := \nu(B) - \alpha \cdot e_B$ is a valuation for each $\alpha \in \mathbb{R}^E$.

Theorem

Given a $\mathbb{Z} \cup \{\infty\}$ -valued ν , set $M_{\alpha}^{\nu} := \{B \mid \nu(B) - \alpha \cdot e_B \text{ minimal}\}$ for each $\alpha \in \mathbb{Z}^E$. This satisfies matroid analogues of VF1,VF2. Conversely, each such *matroid flock* arises in this manner.

{algebraic varieties $X \subseteq K^E$ }

$$(X, v) \mapsto (\alpha \mapsto T_{\alpha v} \alpha X)$$

{algebraic varieties $X \subseteq K^E$ } \longrightarrow {Frobenius flocks $V : \alpha \mapsto V_{\alpha}$ }

$$(X, v) \mapsto (\alpha \mapsto T_{\alpha v} \alpha X)$$

{algebraic varieties $X \subseteq K^E$ } \longrightarrow {Frobenius flocks $V : \alpha \mapsto V_{\alpha}$ }

$$V \mapsto (\alpha \mapsto M(V_{\alpha}))$$

{Matroid flocks $M : \alpha \mapsto M_{\alpha}$ }

$$(X, v) \mapsto (\alpha \mapsto T_{\alpha v} \alpha X)$$

{algebraic varieties $X \subseteq K^E$ } \longrightarrow {Frobenius flocks $V : \alpha \mapsto V_{\alpha}$ }

$$V \mapsto (\alpha \mapsto M(V_{\alpha}))$$

{Matroid flocks $M : \alpha \mapsto M_{\alpha}$ }

Murota-thanks to Yu!

 $\{\mathbb{Z} \cup \{\infty\}\$ -valued matroid valuations $\}$

$$(X, v) \mapsto (\alpha \mapsto T_{\alpha v} \alpha X)$$

{algebraic varieties $X \subseteq K^E$ } \longrightarrow {Frobenius flocks $V : \alpha \mapsto V_{\alpha}$ }

$$X \mapsto M(X)$$
 $V \mapsto (\alpha \mapsto M(V_{\alpha}))$

{Matroids on *E*}

{Matroid flocks $M : \alpha \mapsto M_{\alpha}$ }

Murota–thanks to Yu!

 $\{\mathbb{Z} \cup \{\infty\}\$ -valued matroid valuations $\}$

$$(X, v) \mapsto (\alpha \mapsto T_{\alpha v} \alpha X)$$

{algebraic varieties $X \subseteq K^E$ } \longrightarrow {Frobenius flocks $V : \alpha \mapsto V_{\alpha}$ }

$$X \mapsto M(X) \qquad V \mapsto (\alpha \mapsto M(V_{\alpha}))$$

$$M \mapsto \bigcup_{\alpha} \{\text{bases of } M_{\alpha}\}$$

{Matroids on E} \blacktriangleleft {Matroid flocks $M : \alpha \mapsto M_{\alpha}$ }

Murota–thanks to Yu!

 $\{\mathbb{Z} \cup \{\infty\}\$ -valued matroid valuations $\}$

$$(X, v) \mapsto (\alpha \mapsto T_{\alpha v} \alpha X)$$

{algebraic varieties $X \subseteq K^E$ } \longrightarrow {Frobenius flocks $V : \alpha \mapsto V_{\alpha}$ }

$$X \mapsto M(X) \qquad V \mapsto (\alpha \mapsto M(V_{\alpha}))$$

$$M \mapsto \bigcup_{\alpha} \{ \text{bases of } M_{\alpha} \}$$

{Matroids on E} \blacktriangleleft {Matroid flocks $M: \alpha \mapsto M_{\alpha}$ }

$$(X, v) \mapsto (\alpha \mapsto T_{\alpha v} \alpha X)$$
{algebraic varieties $X \subseteq K^E$ } \longrightarrow {Frobenius flocks $V : \alpha \mapsto V_{\alpha}$ }
$$X \mapsto M(X) \qquad V \mapsto (\alpha \mapsto M(V_{\alpha}))$$

$$M \mapsto \bigcup_{\alpha} \{\text{bases of } M_{\alpha}\}$$

{Matroids on E} \longrightarrow {Matroid flocks $M: \alpha \mapsto M_{\alpha}$ } $\vee \mapsto M^{\vee}$ $\vee \mapsto M^{\vee}$ $\vee \mapsto M^{\vee}$ { $\mathbb{Z} \cup \{\infty\}$ -valued matroid valuations}

So to a d-dimensional algebraic variety $X \subseteq K^E$ in char p we associate the $Lindstrom\ valuation\ v^X: \{d\text{-subsets of}\ E\} \to \mathbb{Z} \cup \{\infty\}.$ Cartwright found a direct construction of v^X .

Proposition

 ν a $\mathbb{Z} \cup \{\infty\}$ -valued valuation and $\alpha, \beta \in \mathbb{R}^E$. Then $M_{\alpha}^{\nu} \supseteq M_{\beta}^{\nu}$ iff $\forall i \neq j \ \forall B \in M_{\beta}^{\nu} : \alpha_i - \alpha_j \geq \nu(B) - \nu(B - i + j)$.

This gives a finite polyhedral complex with *alcoved polyhedra*, in the relative interior of which M_{α}^{ν} is constant.

Proposition

 ν a $\mathbb{Z} \cup \{\infty\}$ -valued valuation and $\alpha, \beta \in \mathbb{R}^E$. Then $M_{\alpha}^{\nu} \supseteq M_{\beta}^{\nu}$ iff $\forall i \neq j \ \forall B \in M_{\beta}^{\nu} : \alpha_i - \alpha_j \geq \nu(B) - \nu(B - i + j)$.

This gives a finite polyhedral complex with *alcoved polyhedra*, in the relative interior of which M_{α}^{ν} is constant.

Consequences:

- A vector space flock can be specified by a finite amount of data.
- Conditions (*) on v are satisfied by general v: if αv satisfies it for αX , and if $M_{\alpha}^{\nu_X} = M_{\alpha + e_J}^{\nu_X}$, then $(e_J + \alpha)v$ satisfies it at $(\alpha + e_J)X$.

Rigidity

Definition (Dress-Wenzel)

A matroid M is *rigid* if every valuation ν with $M^{\nu} = M$ is of the form $M \to \mathbb{R}$, $B \mapsto \alpha \cdot e_B$ for some $\alpha \in \mathbb{R}^E$.

Definition (Dress-Wenzel)

A matroid M is *rigid* if every valuation ν with $M^{\nu} = M$ is of the form $M \to \mathbb{R}$, $B \mapsto \alpha \cdot e_B$ for some $\alpha \in \mathbb{R}^E$.

Theorem

A rigid matroid is algebraically representable over an algebraically closed field K of positive characteristic if and only if it is linearly representable over K.

Definition (Dress-Wenzel)

A matroid M is *rigid* if every valuation ν with $M^{\nu} = M$ is of the form $M \to \mathbb{R}$, $B \mapsto \alpha \cdot e_B$ for some $\alpha \in \mathbb{R}^E$.

Theorem

A rigid matroid is algebraically representable over an algebraically closed field K of positive characteristic if and only if it is linearly representable over K.

Proof

If X is an algebraic representation, then the Lindström valuation $v^X: M(X) \to \mathbb{Z}$ sends $B \mapsto \alpha \cdot e_B$ for some $\alpha \in \mathbb{R}^E$. Then $M_\alpha^\nu = M^\nu$, and the cell where this happens also contains an integral α . Now $M(X) = M(T_{\alpha \nu}\alpha X)$ for $\nu \in X$ general.

(Non-)examples

Using this theorem, we can re-prove several existing results, such as: the projective plane over \mathbb{F}_p is algebraically representable only over fields of characteristic p (Lindström).

To extend the applicability of this method, we are trying to relax the condition that the matroid be rigid.

(Non-)examples

Using this theorem, we can re-prove several existing results, such as: the projective plane over \mathbb{F}_p is algebraically representable only over fields of characteristic p (Lindström).

To extend the applicability of this method, we are trying to relax the condition that the matroid be rigid.

However, using Frobenius flocks alone one cannot reprove all non-algebraicity results:

Theorem-in-progress

If M has a flock representation over (K, σ) , and H is a circuit hyperplane in M, then the matroid obtained by turning H into a basis again has a flock representation over (K, σ) .

Vamos

The missing diagonal plane is independent:

Vamos has a flock realisation; but it is non-algebraic.

The missing diagonal plane is independent:

Vamos has a flock realisation; but it is non-algebraic.

Questions/projects

- Compute the Lindström valuation from a prime ideal? (Bollen)
- Bounds on the Lindström locus in the Dressian? (No idea.)

• . . .

The missing diagonal plane is independent:

Vamos has a flock realisation; but it is non-algebraic.

Questions/projects

- Compute the Lindström valuation from a prime ideal? (Bollen)
- Bounds on the Lindström locus in the Dressian? (No idea.)

• . . .