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Definition

V : ZF — {d-dimensional subspaces of KX}, a — V,
1S a vector space flock on E over (K, o) of rank d 1f
(VF1) V,/i = V... \i and

(VF2)V,.1 =1V,.

W\i := image of W in K&~
W/i := image of e N W in K*'
1 = the all-one vector
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Example 3

(VFl) Va/i — Va+ei\i (VFZ) Va+1 — IVCL’

E={1,2}, Vo ={(1,a)),a #0
Vo/1 =10} =V, \1,s0V, =((1,0)) =V, fork>1

o O O O

(La))  1,0)) 1,0y  ((1,0))
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(VET) Vo /i = Viaie \i (VEF2) Voip = 1V,
E=1{1,2}, Vo ={(1,a)),a #0

Vo/1 =10} =V, \1,s0V, =((1,0)) =V, fork>1
similarly V., = (0, 1)) tor k > 1

(0, 1) ¢
o O O e
(La))  1,0)) 1,0y  ((1,0))
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(VE1) Vo /i = Ve \i (VF2) Vi1 = 1V,
E={1,2}, Vo =<{((1,a)),a #0

Vo/1 =10} =V, \1,s0V, =((1,0)) =V, fork>1
similarly V., = (0, 1)) tor k > 1

/
(0, 1)) /
e, O

(La))  1,0)) 1,0y  ((1,0))

(1, 0(a)))

VF2 yields:
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For W C K* linear subspace, M(W) matroid on E defined by W.

Theorem
For a flock V on E, call I C E independent if do € ZE: I indepen-
dent in M(V,). This defines a matroid M(V) on E.

Question
Which matroids are flock-representable?

Theorem
Certainly all algebraic matroids over algebraically closed K of
characteristic p > 0 with o(a) = a'/?—so-called Frobenius flocks.

But, (unfortunately?) many more.
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Operations on flocks 5

Duality
If V is a flock over (K, o), then V* : @ — V= is a flock over
(K, o 1), and it satisfies M(V*) = M(V)*.

Foraflock Von E,x € ZE,i € E,
e i 1s a coloop in M(Vy.ke.) for k > 0 unless it is a loop in M(V);
e i 1s aloop in M(Vyike,) for k < O unless it 1s a coloop in M (V).

Minors

V/i:a e Z" — Vg/ifor Blg-; = a and B; > 0; and
VNi:«a € ZE Vlg\l fOI',B|E_i = and,Bl- < ()

are flocks on E — i, satisfying

MV/i) = MV)/i, M(V\i) = M(V)\i,and V*/i = (V\i)*.
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Flocks from non-Archimedean fields
o : K — K trivial, W C K((¢))* a linear subspace
for @ € ZF set t*W := {(t%w;); | w € W} C K((¢))F

Construction
V:aw— V, :=image in K% of W n K[[#]]*
1s a vector space flock of rank dim W over (K, 1g).

M(V,) has no loops 1f and only if & € Trop(W).

This suggests a tropical connection.
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K algebraically closed, X C K irreducible variety ~» matroid
M(X) on E: I independent iff X — K! dominant.

Ingleton’s observation
If charK = 0, then M(X) = M(T,X) for v € X general, so

{matroids algebraically representable over K}

= {matroids linearly representable over K}.

Example

This 1s not true 1n char, say, 2:

—3
X ={(x,y,2,xy, x2,y2, x2y) | X,y,2 € F }
represents the non-Fano matroid, which 1s
not linearly representable over [F,.
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Flocks from algebraic matroids :

K algebraically closed of char p, 0 : K — K,a > a'/?
ZF acts on KX by homeomorphisms in the Zariski topology.

Theorem
For X € K* irreducible and v € X general, V : @ — T,,aX is a
Frobenius flock over (K, o) satistying M(V) = M(X).

Conditions (*)
v should satisfy the the following conditions for all @ € Zt:

e aX 1s smooth at av, and
o M(T,,aX) = M(T¢,aX), where £ 1s the generic point of @ X.

To reduce from very general to just general we establish finiteness
properties of flocks.
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X ={(6y,x+y,x+y")) [ (x,y) € K*} S K* g > 1, M(X) = Upy

1 0 1 1

TOX:rowspaceof[O 1 1 0

], so 1,4 parallel in M(TyX).

(—ez — e3)X = {(x,y, X" + y, x + Y7 ) | (x,y) € K?}
0O 0 1
1 1 O

To(—ey — e3)X = row space of (1)

]; also 2, 3 parallel.



X ={(6y,x+y,x+y")) [ (x,y) € K*} S K* g > 1, M(X) = Upy

1 0 1 1

01 1 0 ], so 1,4 parallel in M(TyX).

ToX = row space of [

(—ez — e3)X = {(x,y, X" + y, x + Y7 ) | (x,y) € K?}
0O 0 1
1 1 O

To(—ey — e3)X = row space of (1)

]; also 2, 3 parallel.

(—gex — ge3)X = {(x, v, xP) +y,x +y) | (x,y) € K?}

1 0 0 1

0 1 1 1];1,41ndep.

To(—ger — ge3)X = row space of [
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Cells where M(To(aX)) = M(T¢,aX) 1s constant:

These cells are alcoved polytopes: max-plus and min-plus closed.
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(v then lies 1n the Dressian)
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Matroid flocks from valuations and vice versa 11

Definition (Dress-Wenzel)

A matroid valuation 1s a map v : {d-sets in E} — R U {oo} such
that v(B) # oo for some B and VB,B’, i € B\ B" dj € B'\ B :
v(iB)+v(B")>v(B—i+ j)+v(B +i—)).

(v then lies 1n the Dressian)

Observations
v ~» two matroids: MY := {B | v(B) < oo} and {B | v(B) minimal};
and v'(B) := v(B) — « - e is a valuation for each @ € R”.

Theorem

Given a Z U {oo}-valued v, set M} := {B | v(B) — « - ep minimal}
for each @ € Z*. This satisfies matroid analogues of VF1,VF2.
Conversely, each such matroid flock arises in this manner.
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Overview

(X, v) > (a— T,aX)

12

{algebraic varieties X C K¥}—— {Frobenius flocks V : @ — V,}

X — M(X)

| M — | ], {bases of M}

Vi (@ M(V,))

v

{Matroids on E} = \ {Matroid flocks M : a — M}

N

Murota—thanks to Yu! H

{Z U {oo}-valued matroid valuations}

So to a d-dimensional algebraic variety X C K% in char p we
associate the Lindstrom valuation v* : {d-subsets of E} — ZU{co}.
Cartwright found a direct construction of v*.
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Proposition
v a Z U {oo}-valued valuation and a,8 € Rf. Then M” D My ift
Viij\v'BEM’g cai—a; 2 v(B)-v(B—-1i+)).

This gives a finite polyhedral complex with alcoved polyhedra, in
the relative interior of which M, 1s constant.
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Proposition
v a Z U {oo}-valued valuation and «,8 € R¥. Then M” D My ift
Viij\v'BEM’g cai—a; 2 v(B)-v(B—-1i+)).

This gives a finite polyhedral complex with alcoved polyhedra, in
the relative interior of which M) is constant.

Consequences:

e A vector space flock can be specified by a finite amount of data.
e Conditions (*) on v are satisfied by general v: 1f av satisfies it for

aX, and if M, = M.}, , then (e; + @)v satisfies it at (a + e;)X.
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Definition (Dress-Wenzel)
A matroid M 1s rigid if every valuation v with MY = M 1s of the
form M — R, B — « - eg for some a € RE.



14

Definition (Dress-Wenzel)
A matroid M 1s rigid if every valuation v with MY = M 1s of the
form M — R, B — « - eg for some a € RE.

Theorem

A rigid matroid 1s algebraically representable over an algebraically
closed field K of positive characteristic if and only if 1t is linearly
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Definition (Dress-Wenzel)
A matroid M 1s rigid if every valuation v with MY = M 1s of the
form M — R, B — « - eg for some a € RE.

Theorem

A rigid matroid 1s algebraically representable over an algebraically
closed field K of positive characteristic if and only if 1t is linearly
representable over K.

Proof
If X 1s an algebraic representation, then the Lindstrom valuation
vX 1 M(X) — Zsends B — a-ep for some o € R¥. Then M, = M"”,

and the cell where this happens also contains an integral . Now
M(X) = M(T,,aX) for v € X general. O
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Using this theorem, we can re-prove several existing results, such
as: the projective plane over F, 1s algebraically representable only
over fields of characteristic p (Lindstrom).

To extend the applicability of this method, we are trying to relax
the condition that the matroid be rigid.
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Using this theorem, we can re-prove several existing results, such
as: the projective plane over F, 1s algebraically representable only
over fields of characteristic p (Lindstrom).

To extend the applicability of this method, we are trying to relax
the condition that the matroid be rigid.

However, using Frobenius flocks alone one cannot reprove all non-
algebraicity results:

Theorem-in-progress

If M has a flock representation over (K, o), and H 1s a circuit hy-
perplane in M, then the matroid obtained by turning H into a basis
again has a flock representation over (K, o).
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Vamos has a flock realisation; but it 1s non-algebraic.
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e Compute the Lindstrom valuation from a prime ideal? (Bollen)

e Bounds on the Lindstrom locus 1n the Dressian? (No 1dea.)
°...
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The missing diagonal plane 1s independent:

P
W

Vamos has a flock realisation; but it 1s non-algebraic.

Questions/projects
e Compute the Lindstrom valuation from a prime ideal? (Bollen)
e Bounds on the Lindstrom locus 1n the Dressian? (No 1dea.)

Thanks!
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