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Given an infinite collection (Xn)n of algebro-geometric structures,
are they characterised by finitely many among them?

n runs through N, or through all finite sets or trees, or . . .

have maps Xn → Xm that propagate structure

Topic 1 (Gaussian two-factor model)
Xn := {S S T + D | S ∈ Rn×2,D diag > 0}
any {i1 < . . . < im} ⊆ {1, . . . , n} gives a map Xn → Xm

Theorem [Drton-Xiao, 2010]
Σ ∈ Rn×n, PD, is in Xn iff all 6 × 6 principal submatrices are in X6.

Xn is given by polynomial eqs and ineqs; we will focus on the eqs.
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≥0 ⇒ ∃i < j : α j − αi ∈ Z
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≥0

uses Higman’s Lemma: α1, α2, . . . ∈ Z
∗
≥0 ⇒ ∃i < j : αi ≤ α j

same thm for K[xi j|i ∈ S , j ∈ [k]] but not for K[xi j | i, j ∈ S ]

Varying the number of variables
For every finite set S set RS := K[xi | i ∈ S ], and for injective
σ : S → T consider σ : RS → RT , xi 7→ xσ(i).
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Topic 1, continued [Drton-Sturmfels-Sullivant, 2007]
Xn ⊆ R

n×n 2-factor model, vanishing ideal In ⊆ R[xi j | i, j ∈ [n]]

xi j − x ji ∈ In for n ≥ 2
off-diagonal 3 × 3-subdeterminants ∈ In for n ≥ 6∑
π∈Sym(5)sgn(π)π · x12x23x34x45x51 ∈ I5 eqs for n ≥ 5

Theorem [Brouwer-D, 2011]
These generate In for all n ≥ 6 via injections [6]→ [n].

Replacing 2 by k we know only weaker stabilisation:

Theorem [D, 2010]
∀k ∃n0 such that via injections [n0] → [n] the ideal In0 generates
In up to radical.
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Instances of stabilisation

(using Noetherianity up to symmetry)
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Snowden has a stabilisation result for higher syzygies for k = 1.
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Theorem [De Loera-Sturmfels-Thomas, 1995]
Pn has a Markov basis consisting of moves vi j + vkl → vil + vk j

and vi j → v ji for i, j, k, l distinct; i.e., if
∑

i j ci jvi j =
∑

i j di jvi j with
ci j, di j ∈ Z≥0, then the expressions are connected by such moves.

Theorem [D-Eggermont-Krone-Leykin 2016]
Any sequence (Pn ⊆ Z

n)n of lattice point configurations such that
Pn = Sym(n)Pn−1 for n � 0 admits a sequence (Mn)n of Markov
bases such that Mn = Sym(n)Mn−1 for n � 0.

(Also true for Pn ⊆ Z
k×n, considered a subset of Zk×(n+1) by adding

a zero column. We also have an algorithm for computing (Mn)n.)
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Theorem [Church, 2012]
For a fixed d and M, finitely many of these cohomology groups
generate the other ones via these maps.

M a compact manifold
for a finite set S define CS (M) := {(pi)i∈S | pi , p j if i , j} ⊆ MS

for any injection S ⊆ T have map CT (M)→ CS (M)
dually: Hd(CS (M),Q)→ Hd(CT (M),Q).

Among other things, this implies that the Sym(S )-character of
Hd(CS (M),Q) is constant for |S | � 0.

The map S 7→ Hd(CS (M),Q) is an example of an FI-module; their
structure has been studied intensively by Church, Ellenberg, Farb.
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Grassmannians
Grk(V) is a variety parameterising k-dimensional subspaces of V .
It is functorial in V , and the “Hodge dual”

∧k V →
∧n−k V∗ with

dim V = n maps Grk(V)→ Grn−k(V∗).

A sequence X0, X1, X2, . . . of rules V 7→ Xk(V) ⊆
∧k(V) satisfying

these two properties is called a Plücker variety.

Construction of new Plücker varieties
tangential variety, secant variety, etc.

Theorem [D-Eggermont 2014]
For bounded Plücker varieties, (Xk(Kn))k,n−k stabilises.

(For X = Gr, X∞ = Sato’s Grassmannian ⊆ dual infinite wedge.)
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R = K[x1, . . . , xN]
f1, . . . , fk homogeneous polynomials of degrees d1, . . . , dk in R
I := ( f1, . . . , fk) the ideal they generate

Conjecture [Stillman]
Fixing d1, . . . , dk but not N or the fi, algebraic invariants of R/I
such as its projective dimension should be uniformly bounded.

Theorem [Hochster-Ananyan 2016]
This is indeed true for projective dimension.

Related question
Is the functor V 7→ S d1 V ⊕ · · · ⊕ S dk V topologically Noetherian?

Theorem [Derksen-Eggermont-Snowden 2017]
Yes for k = 1 and d1 = 3.



11Stabilisation in other areas

Algebraic statistics
families of graphical models where the graph grows
[Hillar-Sullivant, Takemura, Yoshida, D-Eggermont,
D-Oosterhof,. . . ]



11Stabilisation in other areas

Algebraic statistics
families of graphical models where the graph grows
[Hillar-Sullivant, Takemura, Yoshida, D-Eggermont,
D-Oosterhof,. . . ]

Commutative algebra and representation theory
higher syzygies, sequences of modules
[Sam-Snowden, Church-Ellenberg-Farb, D-Krone-Leykin]



11Stabilisation in other areas

Algebraic statistics
families of graphical models where the graph grows
[Hillar-Sullivant, Takemura, Yoshida, D-Eggermont,
D-Oosterhof,. . . ]

Commutative algebra and representation theory
higher syzygies, sequences of modules
[Sam-Snowden, Church-Ellenberg-Farb, D-Krone-Leykin]

Thank you.


	Central question
	(Non-)Noetherianity of rings
	Topological Noetherianity
	Topic 2: bounded-rank tensors
	Topic 3: Markov bases
	Topic 4: homological stability
	Topic 5: Pl\"ucker varieties
	Topic 6: Stillman's conjecture
	Stabilisation in other areas

