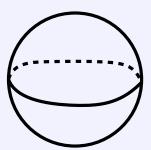
Catalan-many morphisms to trees, part I

Jan Draisma (University of Bern, TU Eindhoven) j.w.w. Alejandro Vargas (Bern)

Frankfurt, TGiZ, April 24, 2020

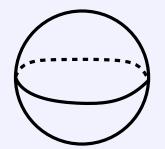
Riemann surface: a compact complex manifold X of dimension 1.

Easiest example: $\mathbb{P}^1 = \mathbb{C} \cup \{\infty\} =$

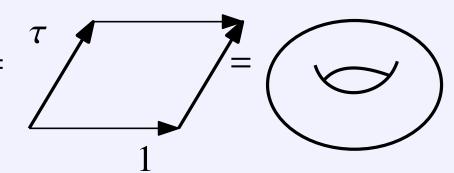


Riemann surface: a compact complex manifold X of dimension 1.

Easiest example: $\mathbb{P}^1 = \mathbb{C} \cup \{\infty\} =$

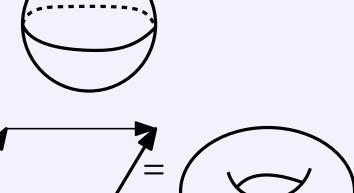


Next easiest examples: $\mathbb{C}/(\mathbb{Z}1 + \mathbb{Z}\tau) =$



Riemann surface: a compact complex manifold X of dimension 1.

Easiest example:
$$\mathbb{P}^1 = \mathbb{C} \cup \{\infty\} =$$



Next easiest examples:
$$\mathbb{C}/(\mathbb{Z}1+\mathbb{Z}\tau)=\frac{\tau}{1}$$

Topologically determined by their genus: the number of holes.

Riemann surface: a compact complex manifold X of dimension 1.

Easiest example:
$$\mathbb{P}^1 = \mathbb{C} \cup \{\infty\} =$$

$$\text{genus 0}$$
Next easiest examples: $\mathbb{C}/(\mathbb{Z}1 + \mathbb{Z}\tau) =$

$$\text{genus 1}$$

Topologically determined by their genus: the number of holes.

Riemann surface: a compact complex manifold X of dimension 1.

Easiest example:
$$\mathbb{P}^1 = \mathbb{C} \cup \{\infty\} =$$

$$\text{genus 0}$$
Next easiest examples: $\mathbb{C}/(\mathbb{Z}1 + \mathbb{Z}\tau) =$

$$\text{genus 1}$$

Topologically determined by their *genus*: the number of holes.

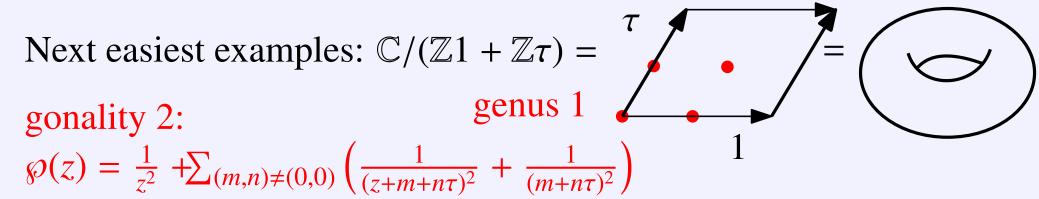
Definition

Gonality of X: minimal degree of a holomorphic map $X \to \mathbb{P}^1$.

Riemann surface: a compact complex manifold X of dimension 1.

Easiest example:
$$\mathbb{P}^1 = \mathbb{C} \cup \{\infty\} =$$

gonality 1 genus 0



Topologically determined by their *genus*: the number of holes.

Definition

Gonality of X: minimal degree of a holomorphic map $X \to \mathbb{P}^1$.

- Any X of genus g has gonality at most $1 + \lceil g/2 \rceil$.
- Equality for *X* sufficiently general.
- For g even, a sufficiently general X has precisely $C_{g/2}$ such holomorphic maps (up to PGL_2).

 $C_{g/2} = 1, 2, 5, \dots$ for $g = 2, 4, 6, \dots$ is the g/2-th Catalan number.

- Any X of genus g has gonality at most $1 + \lceil g/2 \rceil$.
- Equality for *X* sufficiently general.
- For g even, a sufficiently general X has precisely $C_{g/2}$ such holomorphic maps (up to PGL_2).

$$C_{g/2} = 1, 2, 5, \dots$$
 for $g = 2, 4, 6, \dots$ is the $g/2$ -th Catalan number.

Rationale for $1 + \lfloor g/2 \rfloor$: (such a map is a divisor class of rank 1)

- Any X of genus g has gonality at most $1 + \lceil g/2 \rceil$.
- Equality for *X* sufficiently general.
- For g even, a sufficiently general X has precisely $C_{g/2}$ such holomorphic maps (up to PGL₂).

$$C_{g/2} = 1, 2, 5, \dots$$
 for $g = 2, 4, 6, \dots$ is the $g/2$ -th Catalan number.

Rationale for $1 + \lfloor g/2 \rfloor$: (such a map is a divisor class of rank 1)

$$S^{d}X$$

$$\bigcup$$

$$W = \{\text{effective deg-}d \text{ divisors of rank 1}\}$$

$$W_{d}^{1}$$

$$\{p = (p_{1}, \dots, p_{d}) \in S^{d}X \mid \text{rk}(d_{p}\varphi) \leq d - 1\}$$

- Any X of genus g has gonality at most $1 + \lceil g/2 \rceil$.
- Equality for *X* sufficiently general.
- For g even, a sufficiently general X has precisely $C_{g/2}$ such holomorphic maps (up to PGL_2).

$$C_{g/2} = 1, 2, 5, \dots$$
 for $g = 2, 4, 6, \dots$ is the $g/2$ -th Catalan number.

Rationale for $1 + \lfloor g/2 \rfloor$: (such a map is a divisor class of rank 1)

$$S^{d}X \quad \text{dimension } d$$

$$\bigcup_{W = \{\text{effective deg-}d \text{ divisors of rank } 1\}} \qquad \qquad \bigvee_{W_{d}} \qquad d$$

$$\{p = (p_{1}, \dots, p_{d}) \in S^{d}X \mid \text{rk}(d_{p}\varphi) \leq d - 1\} \qquad \qquad d_{p}\varphi = \mathcal{G}$$

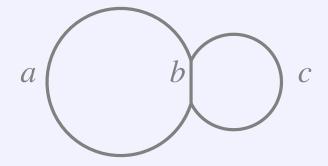
- Any X of genus g has gonality at most $1 + \lceil g/2 \rceil$.
- Equality for X sufficiently general.
- \bullet For g even, a sufficiently general X has precisely $C_{g/2}$ such holomorphic maps (up to PGL₂).

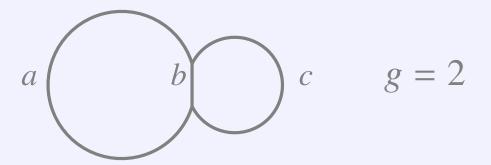
$$C_{g/2} = 1, 2, 5, \dots$$
 for $g = 2, 4, 6, \dots$ is the $g/2$ -th Catalan number.

Rationale for $1 + \lfloor g/2 \rfloor$: (such a map is a divisor class of rank 1)

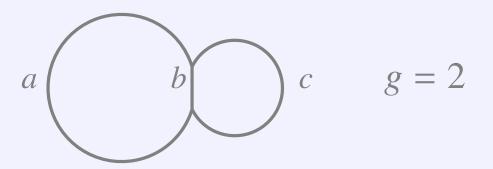
$$S^dX$$
 dimension d
 $W = \{\text{effective deg-}d \text{ divisors of rank 1}\}$
 $W = \{p = (p_1, \dots, p_d) \in S^dX \mid \text{rk}(d_p\varphi) \leq d - 1\}$
 $W = \{p = (d_p, \dots, d_p\varphi) \in S^dX \mid \text{rk}(d_p\varphi) \leq d - 1\}$
 $W = \{p = (d_p, \dots, d_p\varphi) \in S^dX \mid \text{rk}(d_p\varphi) \leq d - 1\}$
 $W = \{p = (d_p, \dots, d_p\varphi) \in S^dX \mid \text{rk}(d_p\varphi) \leq d - 1\}$
 $W = \{p = (d_p, \dots, d_p\varphi) \in S^dX \mid \text{rk}(d_p\varphi) \leq d - 1\}$

Expected dimension of W_d^1 : d - (g - (d - 1)) - 1; want ≥ 0 .





genus:=first Betti number g



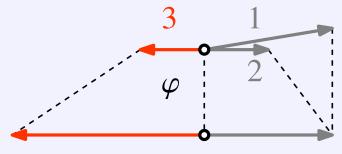
genus:=first Betti number g

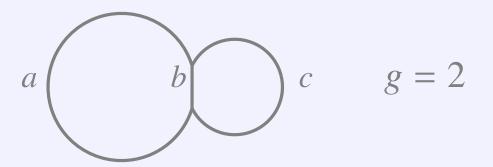
Definition

[Urakawa, Baker-Norine, Caporaso, ...]

A continuous $\varphi : \Gamma \to \Sigma$ is *harmonic* if it is piecewise linear with integral slopes and $\forall v \in \Gamma$ and e, f emanating from $\varphi(v)$ we have

$$\sum_{e':\varphi(e')=e}(d\varphi)(e')=\sum_{f':\varphi(f')=f}(d\varphi)(f')$$





genus:=first Betti number g

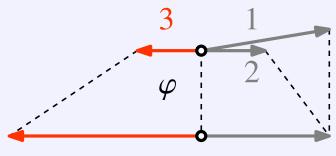
Definition

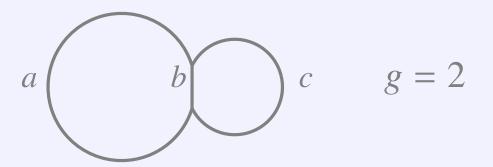
[Urakawa, Baker-Norine, Caporaso, ...]

A continuous $\varphi : \Gamma \to \Sigma$ is *harmonic* if it is piecewise linear with integral slopes and $\forall v \in \Gamma$ and e, f emanating from $\varphi(v)$ we have

$$\sum_{e':\varphi(e')=e}(d\varphi)(e')=\sum_{f':\varphi(f')=f}(d\varphi)(f')$$

 $=: m_{\varphi}(v), local degree$





genus:=first Betti number g

Definition

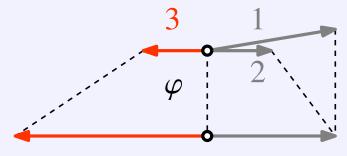
[Urakawa, Baker-Norine, Caporaso, ...]

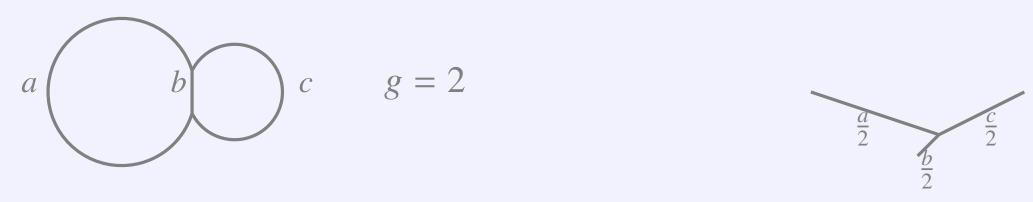
A continuous $\varphi : \Gamma \to \Sigma$ is *harmonic* if it is piecewise linear with integral slopes and $\forall v \in \Gamma$ and e, f emanating from $\varphi(v)$ we have

$$\sum_{e':\varphi(e')=e}(d\varphi)(e')=\sum_{f':\varphi(f')=f}(d\varphi)(f')$$

 $=: m_{\varphi}(v), local degree$

(analogue of holomorphic maps)





genus:=first Betti number g

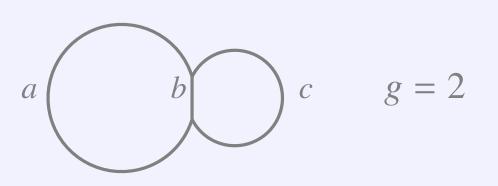
Definition

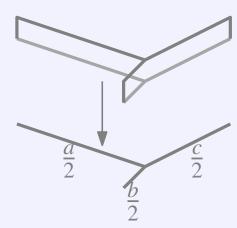
[Urakawa, Baker-Norine, Caporaso, ...]

A continuous $\varphi:\Gamma\to\Sigma$ is harmonic if it is piecewise linear with integral slopes and $\forall v \in \Gamma$ and e, f emanating from $\varphi(v)$ we have

$$\sum_{e':\varphi(e')=e} (d\varphi)(e') = \sum_{f':\varphi(f')=f} (d\varphi)(f')$$
=: $m_{\varphi}(v)$, local degree

(analogue of holomorphic maps)





genus:=first Betti number g

Definition

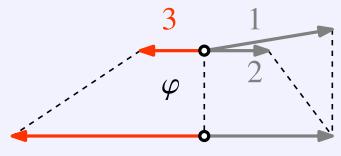
[Urakawa, Baker-Norine, Caporaso, ...]

A continuous $\varphi : \Gamma \to \Sigma$ is *harmonic* if it is piecewise linear with integral slopes and $\forall v \in \Gamma$ and e, f emanating from $\varphi(v)$ we have

$$\sum_{e':\varphi(e')=e}(d\varphi)(e')=\sum_{f':\varphi(f')=f}(d\varphi)(f')$$

 $=: m_{\varphi}(v), local degree$

(analogue of holomorphic maps)



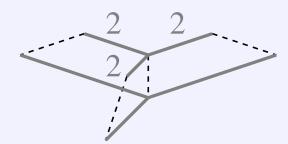
 $\varphi: \Gamma \to \Sigma$ harmonic, non-constant $\leadsto \deg \varphi := \sum_{v: \varphi(v) = w} m_{\varphi}(v)$ (independent of $w \in \Sigma$)

 $\varphi: \Gamma \to \Sigma$ harmonic, non-constant $\leadsto \deg \varphi := \sum_{v: \varphi(v) = w} m_{\varphi}(v)$ (independent of $w \in \Sigma$)

Definition

[Bertrand-Brugallé-Mikhalkin]

 φ is a *tropical morphism* if all slopes are nonzero and $\forall v \in \Gamma$: valency $(v) - 2 \ge m_{\varphi}(v)$ (valency $(\varphi(v)) - 2$). (e.g. not allowed:)

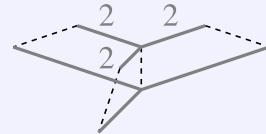


 $\varphi: \Gamma \to \Sigma$ harmonic, non-constant $\leadsto \deg \varphi := \sum_{v:\varphi(v)=w} m_{\varphi}(v)$ (independent of $w \in \Sigma$)

Definition

[Bertrand-Brugallé-Mikhalkin]

 φ is a *tropical morphism* if all slopes are nonzero and $\forall v \in \Gamma$: valency $(v) - 2 \ge m_{\varphi}(v)$ (valency $(\varphi(v)) - 2$). (e.g. not allowed:)



Definition

[Mikhalkin, Caporaso, Amini, Cornelissen-Kool]

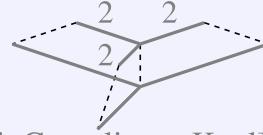
The (geometric) *gonality* of Γ is the minimal degree of any tropical morphism to a tree from a *modification* of Γ .

 $\varphi: \Gamma \to \Sigma$ harmonic, non-constant $\leadsto \deg \varphi := \sum_{v: \varphi(v) = w} m_{\varphi}(v)$ (independent of $w \in \Sigma$)

Definition

[Bertrand-Brugallé-Mikhalkin]

 φ is a *tropical morphism* if all slopes are nonzero and $\forall v \in \Gamma$: valency $(v) - 2 \ge m_{\varphi}(v)$ (valency $(\varphi(v)) - 2$). (e.g. not allowed:)



Definition

[Mikhalkin, Caporaso, Amini, Cornelissen-Kool]

The (geometric) *gonality* of Γ is the minimal degree of any tropical morphism to a tree from a *modification* of Γ .

In the example, the gonality is 2:

Theorem

[Baker, Caporaso, ..., D-Vargas]

- Any Γ of genus g has gonality at most $1 + \lceil g/2 \rceil$.
- Equality for Γ sufficiently general.
- For g even, a sufficiently general Γ has precisely $C_{g/2}$ such tropical morphisms, when counted with multiplicities.

Theorem

[Baker, Caporaso, ..., D-Vargas]

- Any Γ of genus g has gonality at most $1 + \lceil g/2 \rceil$.
- Equality for Γ sufficiently general.
- For g even, a sufficiently general Γ has precisely $C_{g/2}$ such tropical morphisms, when counted with multiplicities.

Remarks

- First item follows from the gonality theorem for Riemann surfaces via a form of Baker's *specialisation lemma*.
- Second item follows from (first item and) work by Cools-D.
- \bullet D-Vargas is independent of these, and completely combinatorial (but ~ 80 pages).

Theorem

[Baker, Caporaso, ..., D-Vargas]

- Any Γ of genus g has gonality at most $1 + \lceil g/2 \rceil$.
- Equality for Γ sufficiently general.
- For g even, a sufficiently general Γ has precisely $C_{g/2}$ such tropical morphisms, when counted with multiplicities.

Remarks

- First item follows from the gonality theorem for Riemann surfaces via a form of Baker's *specialisation lemma*.
- Second item follows from (first item and) work by Cools-D.
- D-Vargas is independent of these, and completely combinatorial (but ~ 80 pages).

Plan for part I: Discuss the relation between two theorems, and part of Cools-D. Part II (Alejandro): more combinatorics.

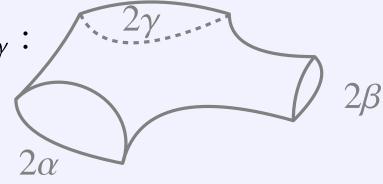
(We follow recent work by Lionel Lang, which extends older work by Mikhalkin.)

Lemma from hyperbolic geometry: given $\alpha, \beta, \gamma > 0$ there exists a unique right-angled hexagon in the hyperbolic plane with side lengths $\alpha, a, \beta, b, \gamma, c$.

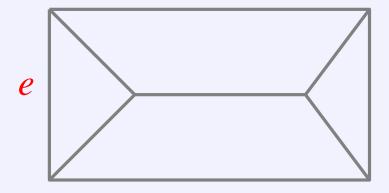
(We follow recent work by Lionel Lang, which extends older work by Mikhalkin.)

Lemma from hyperbolic geometry: given $\alpha, \beta, \gamma > 0$ there exists a unique right-angled hexagon in the hyperbolic plane with side lengths $\alpha, a, \beta, b, \gamma, c$.

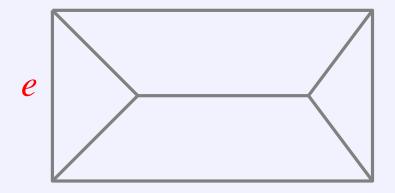
Glue two copies to a pair of pants $P_{2\alpha,2\beta,2\gamma}$:



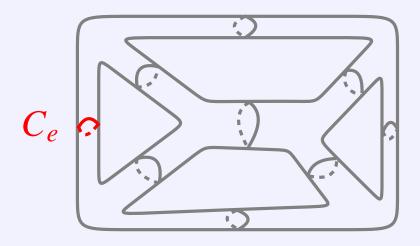
Fix G = (V(G), E(G)) trivalent graph, genus $g \ge 2$, and $c \in \mathbb{R}^{E(G)}_{>0}$.



Fix G = (V(G), E(G)) trivalent graph, genus $g \ge 2$, and $c \in \mathbb{R}_{>0}^{E(G)}$.



For each $v \in V$ incident to e_1, e_2, e_3 , take a copy P_v of $P_{c(e_1),c(e_2),c(e_3)}$, and glue these to a Riemann surface X_c of genus g:



Let $\ell \in \mathbb{R}^{E(G)}_{>0}$, so that $\Gamma := (G, \ell)$ is a metric graph of genus g.

Let $\ell \in \mathbb{R}^{E(G)}_{>0}$, so that $\Gamma := (G, \ell)$ is a metric graph of genus g.

Set
$$c_t(e) := \frac{2\pi^2}{\ell(e)\log(t)}$$
 and $X_t := X_{c_t}$.

For $t \to \infty$ the Riemann surface X_t degenerates into a union of \mathbb{P}^1 s, each neighbouring three others.

Let $\ell \in \mathbb{R}^{E(G)}_{>0}$, so that $\Gamma := (G, \ell)$ is a metric graph of genus g.

Set
$$c_t(e) := \frac{2\pi^2}{\ell(e)\log(t)}$$
 and $X_t := X_{c_t}$.

For $t \to \infty$ the Riemann surface X_t degenerates into a union of \mathbb{P}^1 s, each neighbouring three others.

Let $\psi_t : X_t \to \mathbb{P}^1$; can be chosen to depend continuously on t.

Theorem

[Mikhalkin,...,Lang]

The ψ_t converge in a well-defined sense to a tropical morphism from a modification of Γ to a tree.

Why tree and modification?

For $t \gg 0$, the images $\psi_t(C_e) =: \tilde{C}_e$ in \mathbb{P}^1 are disjoint.

Simplifying assumption: they are topological circles in \mathbb{P}^1 .

Why tree and modification?

For $t \gg 0$, the images $\psi_t(C_e) =: \tilde{C}_e$ in \mathbb{P}^1 are disjoint.

Simplifying assumption: they are topological circles in \mathbb{P}^1 .

Create graph T with V(T) =connected components of $\mathbb{P}^1 \setminus \bigcup_{e \in E(G)} \tilde{C}_e$; an edge if they have a common \tilde{C}_e in their boundary. Since \mathbb{P}^1 is simply connected, T is a tree.

For $t \gg 0$, the images $\psi_t(C_e) =: \tilde{C}_e$ in \mathbb{P}^1 are disjoint.

Simplifying assumption: they are topological circles in \mathbb{P}^1 .

Create graph T with V(T) =connected components of $\mathbb{P}^1 \setminus \bigcup_{e \in E(G)} \tilde{C}_e$; an edge if they have a common \tilde{C}_e in their boundary. Since \mathbb{P}^1 is simply connected, T is a tree.

Each pre-image $\psi^{-1}(\tilde{C}_e)$ contains C_e and possibly further topological circles $C_{e'}$. This yields a modification G' = (V(G'), E(G')) of G (with $e' \in E(G')$).

For $t \gg 0$, the images $\psi_t(C_e) =: \tilde{C}_e$ in \mathbb{P}^1 are disjoint.

Simplifying assumption: they are topological circles in \mathbb{P}^1 .

Create graph T with V(T) =connected components of $\mathbb{P}^1 \setminus \bigcup_{e \in E(G)} \tilde{C}_e$; an edge if they have a common \tilde{C}_e in their boundary. Since \mathbb{P}^1 is simply connected, T is a tree.

Each pre-image $\psi^{-1}(\tilde{C}_e)$ contains C_e and possibly further topological circles $C_{e'}$. This yields a modification G' = (V(G'), E(G')) of G (with $e' \in E(G')$).

In the limit, we find a tropical morphism from a modification Γ' of Γ with combinatorial type G' to a metric tree with combinatorial type T.

Why balancing and Riemann-Hurwitz?

Pick a vertex $v \in V(G')$; this corresponds to a connected component U of $X_t \setminus \bigcup_{e \in E(G')} C_e$.

Assume no loops at v. Then \overline{U} is \mathbb{P}^1 minus k discs corresponding to the edges incident to v; Euler characteristic: 2 - k.

Pick a vertex $v \in V(G')$; this corresponds to a connected component U of $X_t \setminus \bigcup_{e \in E(G')} C_e$.

Assume no loops at v. Then \overline{U} is \mathbb{P}^1 minus k discs corresponding to the edges incident to v; Euler characteristic: 2 - k.

Let $W := \psi_t(U)$; so \overline{W} is \mathbb{P}^1 minus l discs; Euler char. 2 - l.

Pick a vertex $v \in V(G')$; this corresponds to a connected component U of $X_t \setminus \bigcup_{e \in E(G')} C_e$.

Assume no loops at v. Then \overline{U} is \mathbb{P}^1 minus k discs corresponding to the edges incident to v; Euler characteristic: 2 - k.

Let $W := \psi_t(U)$; so \overline{W} is \mathbb{P}^1 minus l discs; Euler char. 2 - l.

For each \tilde{C}_e , $e \in E(G)$ in the boundary of \overline{W} and $C_{e'}$, $e' \in E(G')$ in the boundary of \overline{U} mapping onto \tilde{C}_e , let $m_{e'}$ be the degree of that map $C_{e'} \to \tilde{C}_e$. These are the slopes in our tropical morphism; $m_{\varphi}(v)$ is the degree of the branched cover $\psi_t|_{\overline{U}}: \overline{U} \to \overline{W}$.

Pick a vertex $v \in V(G')$; this corresponds to a connected component U of $X_t \setminus \bigcup_{e \in E(G')} C_e$.

Assume no loops at v. Then \overline{U} is \mathbb{P}^1 minus k discs corresponding to the edges incident to v; Euler characteristic: 2 - k.

Let $W := \psi_t(U)$; so \overline{W} is \mathbb{P}^1 minus l discs; Euler char. 2 - l.

For each \tilde{C}_e , $e \in E(G)$ in the boundary of \overline{W} and $C_{e'}$, $e' \in E(G')$ in the boundary of \overline{U} mapping onto \tilde{C}_e , let $m_{e'}$ be the degree of that map $C_{e'} \to \tilde{C}_e$. These are the slopes in our tropical morphism; $m_{\varphi}(v)$ is the degree of the branched cover $\psi_t|_{\overline{U}}: \overline{U} \to \overline{W}$.

R-H formula:
$$2 - k = m_{\varphi}(v)(2 - l) - \sum_{p \in U} (e_p - 1)$$
; so $(k - 2) \ge m_{\varphi}(v) \cdot (l - 2)$

Moduli space of genus-g metric graphs

- Let $g \ge 2$.
- For each ordinary genus-g graph G = (V, E) set $C_G := (\mathbb{R}_{>0})^E$.
- For any isomorphism $G \to H$ glue C_G to C_H .
- If contracting e in G yields a genus-g graph H, glue C_H to C_G as the boundary with e-th coordinate 0.
- Identify modifications (ignore dangling trees).
- \rightsquigarrow yields the *moduli space* M_g of genus-g metric graphs.

Moduli space of genus-g metric graphs

- Let $g \ge 2$.
- For each ordinary genus-g graph G = (V, E) set $C_G := (\mathbb{R}_{>0})^E$.
- For any isomorphism $G \to H$ glue C_G to C_H .
- If contracting e in G yields a genus-g graph H, glue C_H to C_G as the boundary with e-th coordinate 0.
- Identify modifications (ignore dangling trees).
- \rightsquigarrow yields the *moduli space* M_g of genus-g metric graphs.

If G trivalent, then dim $C_G = |E| = 3g - 3 \Leftrightarrow \dim M_g = 3g - 3$.

Caporaso: M_g connected in codimension 1.

Theorem

For $d, g \ge 2$ the gonality-d locus in M_g is locally closed of dim $\min\{3g-3, 2g+2d-5\}$ (perhaps not pure-dim). In particular, the locus where the gonality is $\ge 1 + \lceil g/2 \rceil$ is dense and open.

Theorem

For $d, g \ge 2$ the gonality-d locus in M_g is locally closed of dim $\min\{3g-3, 2g+2d-5\}$ (perhaps not pure-dim). In particular, the locus where the gonality is $\ge 1 + \lceil g/2 \rceil$ is dense and open.

Theorem

For *each* trivalent combinatorial type G, the preimage in C_G of the gonality-1 + $\lceil g/2 \rceil$ locus contains an open cone.

Theorem

For $d, g \ge 2$ the gonality-d locus in M_g is locally closed of dim $\min\{3g-3, 2g+2d-5\}$ (perhaps not pure-dim). In particular, the locus where the gonality is $\ge 1 + \lceil g/2 \rceil$ is dense and open.

Theorem

For *each* trivalent combinatorial type G, the preimage in C_G of the gonality-1 + $\lceil g/2 \rceil$ locus contains an open cone.

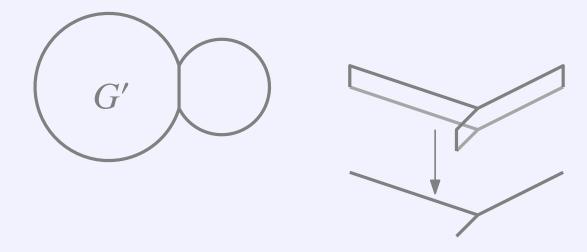
Remarks • Dimension matches the classical count for curves.

• Via approximation, the first Theorem implies that a general genus-g Riemann surface has gonality (at least) $1 + \lceil g/2 \rceil$ — no need for a *specific* graph to prove this. (*Observed by Mikhalkin in 2011*.)

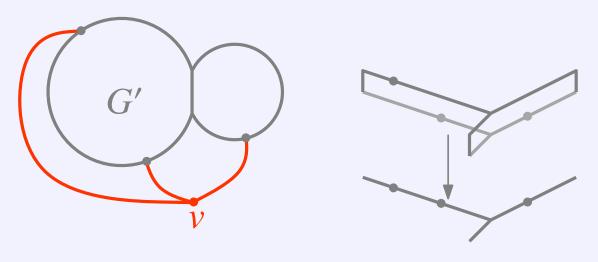
- Let G = (V, E) be a trivalent graph with |E| |V| + 1 = g.
- Case 1: G is *cactus* (any two simple cycles intersect in at most one point) \rightsquigarrow any point Γ in C_G has gonality $\leq d$.

- Let G = (V, E) be a trivalent graph with |E| |V| + 1 = g.
- Case 1: G is cactus (any two simple cycles intersect in at most one point) \rightsquigarrow any point Γ in C_G has gonality $\leq d$.
- Case 2: G has a trivalent vertex v such that G' = G v is connected, of genus g 2. By induction, $C_{G'}$ contains an open cone, of dimension 3g 9, where the gonality is d 1. We glue in a tripod, as follows:

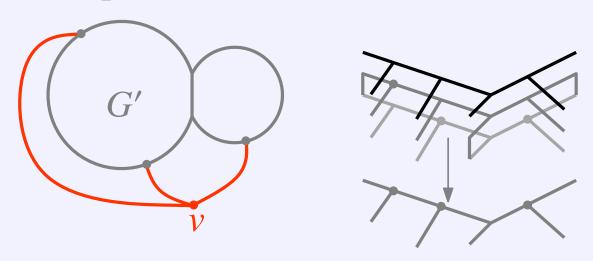
- Let G = (V, E) be a trivalent graph with |E| |V| + 1 = g.
- Case 1: G is cactus (any two simple cycles intersect in at most one point) \rightsquigarrow any point Γ in C_G has gonality $\leq d$.
- Case 2: G has a trivalent vertex v such that G' = G v is connected, of genus g 2. By induction, $C_{G'}$ contains an open cone, of dimension 3g 9, where the gonality is d 1. We glue in a tripod, as follows:



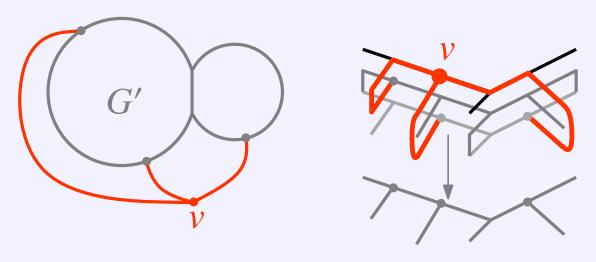
- Let G = (V, E) be a trivalent graph with |E| |V| + 1 = g.
- Case 1: G is cactus (any two simple cycles intersect in at most one point) \rightsquigarrow any point Γ in C_G has gonality $\leq d$.
- Case 2: G has a trivalent vertex v such that G' = G v is connected, of genus g 2. By induction, $C_{G'}$ contains an open cone, of dimension 3g 9, where the gonality is d 1. We glue in a tripod, as follows:



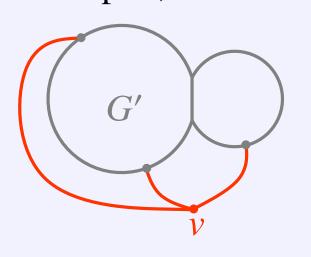
- Let G = (V, E) be a trivalent graph with |E| |V| + 1 = g.
- Case 1: G is cactus (any two simple cycles intersect in at most one point) \rightsquigarrow any point Γ in C_G has gonality $\leq d$.
- Case 2: G has a trivalent vertex v such that G' = G v is connected, of genus g 2. By induction, $C_{G'}$ contains an open cone, of dimension 3g 9, where the gonality is d 1. We glue in a tripod, as follows:

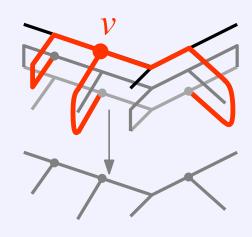


- Let G = (V, E) be a trivalent graph with |E| |V| + 1 = g.
- Case 1: G is cactus (any two simple cycles intersect in at most one point) \rightsquigarrow any point Γ in C_G has gonality $\leq d$.
- Case 2: G has a trivalent vertex v such that G' = G v is connected, of genus g 2. By induction, $C_{G'}$ contains an open cone, of dimension 3g 9, where the gonality is d 1. We glue in a tripod, as follows:



- Let G = (V, E) be a trivalent graph with |E| |V| + 1 = g.
- Case 1: G is cactus (any two simple cycles intersect in at most one point) \rightsquigarrow any point Γ in C_G has gonality $\leq d$.
- Case 2: G has a trivalent vertex v such that G' = G v is connected, of genus g 2. By induction, $C_{G'}$ contains an open cone, of dimension 3g 9, where the gonality is d 1. We glue in a tripod, as follows:





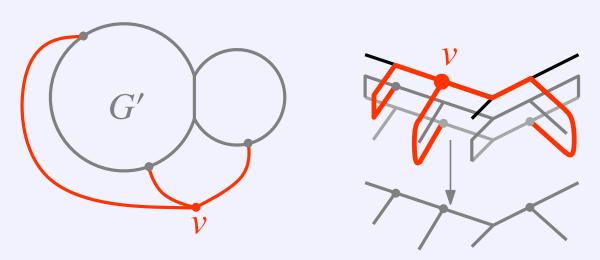
Parameter count:

3 for the gray dots

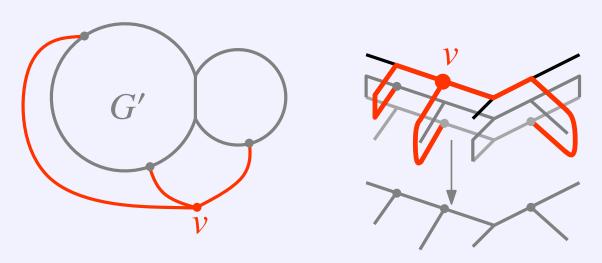
3 for the orange edges

$$3g - 9 + 3 + 3 = 3g - 3$$

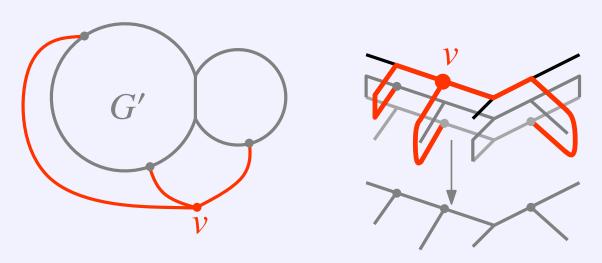
The Cools-Draisma method: remarks and limitations 15-1



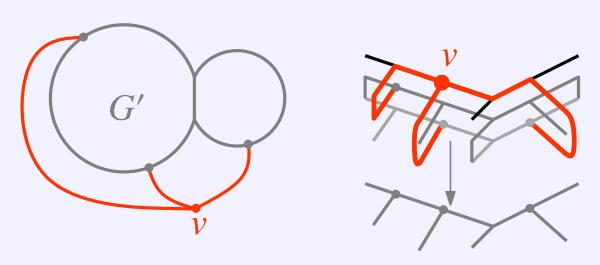
• The morphism on the right moves in a family of dimension 3g - 3: the map from edge lengths of the tree to edge lengths in G is a linear bijection.



- The morphism on the right moves in a family of dimension 3g - 3: the map from edge lengths of the tree to edge lengths in G is a linear bijection.
- The morphism on the right imposes certain lower bounds on the red edges: if they are all sufficiently long, the construction works.



- The morphism on the right moves in a family of dimension 3g - 3: the map from edge lengths of the tree to edge lengths in G is a linear bijection.
- The morphism on the right imposes certain lower bounds on the red edges: if they are all sufficiently long, the construction works.
- What happens when we shrink one of the new leaf edges? Can we change the morphism so that the red edge can shrink further?



- The morphism on the right moves in a family of dimension 3g - 3: the map from edge lengths of the tree to edge lengths in G is a linear bijection.
- The morphism on the right imposes certain lower bounds on the red edges: if they are all sufficiently long, the construction works.
- What happens when we shrink one of the new leaf edges? Can we change the morphism so that the red edge can shrink further?

Answer: YES, see Alejandro's talk next!