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Definition
Riemann surface: a compact complex manifold X of dimension 1.

Easiest example: P1 = C ∪ {∞} =
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Topologically determined by their genus: the number of holes.

Definition
Gonality of X: minimal degree of a holomorphic map X → P1.
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gonality 1

gonality 2:
℘(z) = 1

z2 +
∑

(m,n),(0,0)

(
1

(z+m+nτ)2 + 1
(m+nτ)2

)



3 - 1The gonality theorem for Riemann surfaces

Theorem [Riemann,Kempf,Kleiman-Laksov,Griffiths-Harris,. . . ]
• Any X of genus g has gonality at most 1 + dg/2e.
• Equality for X sufficiently general.
• For g even, a sufficiently general X has precisely Cg/2 such
holomorphic maps (up to PGL2).

Cg/2 = 1, 2, 5, . . . for g = 2, 4, 6, . . . is the g/2-th Catalan number.
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• Any X of genus g has gonality at most 1 + dg/2e.
• Equality for X sufficiently general.
• For g even, a sufficiently general X has precisely Cg/2 such
holomorphic maps (up to PGL2).

Cg/2 = 1, 2, 5, . . . for g = 2, 4, 6, . . . is the g/2-th Catalan number.

Rationale for 1 + bg/2c: (such a map is a divisor class of rank 1)
S dX Picd(X)

W = {effective deg-d divisors of rank 1} W1
d

ϕ

{p = (p1, . . . , pd) ∈ S dX | rk(dpϕ) ≤ d − 1}

dimension d dim g

Expected dimension of W1
d : d − (g − (d − 1)) − 1; want ≥ 0.

d
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Definition
ϕ : Γ→ Σ harmonic, non-constant degϕ :=

∑
v:ϕ(v)=w mϕ(v)

(independent of w ∈ Σ)

Definition [Bertrand-Brugallé-Mikhalkin]
ϕ is a tropical morphism if all slopes are nonzero and ∀v ∈ Γ :
valency(v) − 2 ≥ mϕ(v)(valency(ϕ(v)) − 2). (e.g. not allowed:)

2 2
2

Definition [Mikhalkin, Caporaso, Amini, Cornelissen-Kool]
The (geometric) gonality of Γ is the minimal degree of any
tropical morphism to a tree from a modification of Γ.

In the example, the gonality is 2:



6 - 1The gonality theorem for metric graphs

Theorem [Baker,Caporaso,. . . ,D-Vargas]
• Any Γ of genus g has gonality at most 1 + dg/2e.
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• For g even, a sufficiently general Γ has precisely Cg/2 such
tropical morphisms, when counted with multiplicities.
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6 - 3The gonality theorem for metric graphs

Theorem [Baker,Caporaso,. . . ,D-Vargas]
• Any Γ of genus g has gonality at most 1 + dg/2e.
• Equality for Γ sufficiently general.
• For g even, a sufficiently general Γ has precisely Cg/2 such
tropical morphisms, when counted with multiplicities.

Remarks
• First item follows from the gonality theorem for Riemann
surfaces via a form of Baker’s specialisation lemma.
• Second item follows from (first item and) work by Cools-D.
• D-Vargas is independent of these, and completely combinatorial
(but ∼ 80 pages).

Plan for part I: Discuss the relation between two theorems, and
part of Cools-D. Part II (Alejandro): more combinatorics.



7 - 1Approximating metric graphs

(We follow recent work by Lionel Lang, which extends older
work by Mikhalkin.)

Lemma from hyperbolic geometry: given α, β, γ > 0 there
exists a unique right-angled hexagon in the hyperbolic plane with
side lengths α, a, β, b, γ, c.
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Lemma from hyperbolic geometry: given α, β, γ > 0 there
exists a unique right-angled hexagon in the hyperbolic plane with
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Glue two copies to a pair of pants P2α,2β,2γ :

2α

2β

2γ



8 - 1Approximating metric graphs, continued

Fix G = (V(G), E(G)) trivalent graph, genus g ≥ 2, and c ∈ RE(G)
>0 .
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Fix G = (V(G), E(G)) trivalent graph, genus g ≥ 2, and c ∈ RE(G)
>0 .

For each v ∈ V incident to e1, e2, e3, take a copy Pv of
Pc(e1),c(e2),c(e3), and glue these to a Riemann surface Xc of genus g:

e

Ce
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9 - 3Limit of holomorphic maps to P1

Let ` ∈ RE(G)
>0 , so that Γ := (G, `) is a metric graph of genus g.

Set ct(e) :=
2π2

`(e) log(t)
and Xt := Xct .

For t → ∞ the Riemann surface Xt degenerates into a union of
P1s, each neighbouring three others.

Let ψt : Xt → P
1; can be chosen to depend continuously on t.

Theorem [Mikhalkin,. . . ,Lang]
The ψt converge in a well-defined sense to a tropical morphism
from a modification of Γ to a tree.
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P1 \

⋃
e∈E(G) C̃e; an edge if they have a common C̃e in their

boundary. Since P1 is simply connected, T is a tree.

Each pre-image ψ−1(C̃e) contains Ce and possibly further
topological circles Ce′ . This yields a modification
G′ = (V(G′), E(G′)) of G (with e′ ∈ E(G′)).

In the limit, we find a tropical morphism from a modification Γ′

of Γ with combinatorial type G′ to a metric tree with
combinatorial type T .
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Pick a vertex v ∈ V(G′); this corresponds to a connected
component U of Xt \

⋃
e∈E(G′) Ce.

Assume no loops at v. Then U is P1 minus k discs corresponding
to the edges incident to v; Euler characteristic: 2 − k.
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map Ce′ → C̃e. These are the slopes in our tropical morphism;
mϕ(v) is the degree of the branched cover ψt |U : U → W.
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Pick a vertex v ∈ V(G′); this corresponds to a connected
component U of Xt \

⋃
e∈E(G′) Ce.

Assume no loops at v. Then U is P1 minus k discs corresponding
to the edges incident to v; Euler characteristic: 2 − k.

Let W := ψt(U); so W is P1 minus l discs; Euler char. 2 − l.

For each C̃e, e ∈ E(G) in the boundary of W and Ce′ , e′ ∈ E(G′) in
the boundary of U mapping onto C̃e, let me′ be the degree of that
map Ce′ → C̃e. These are the slopes in our tropical morphism;
mϕ(v) is the degree of the branched cover ψt |U : U → W.

R-H formula: 2 − k = mϕ(v)(2 − l) −
∑

p∈U(ep − 1); so
(k − 2) ≥ mϕ(v) · (l − 2)
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Moduli space of genus-g metric graphs
• Let g ≥ 2.
• For each ordinary genus-g graph G = (V, E) set CG := (R>0)E .
• For any isomorphism G → H glue CG to CH .
• If contracting e in G yields a genus-g graph H, glue CH to CG as
the boundary with e-th coordinate 0.
• Identify modifications (ignore dangling trees).
 yields the moduli space Mg of genus-g metric graphs.



12 - 2Moduli space of genus-g metric graphs

Moduli space of genus-g metric graphs
• Let g ≥ 2.
• For each ordinary genus-g graph G = (V, E) set CG := (R>0)E .
• For any isomorphism G → H glue CG to CH .
• If contracting e in G yields a genus-g graph H, glue CH to CG as
the boundary with e-th coordinate 0.
• Identify modifications (ignore dangling trees).
 yields the moduli space Mg of genus-g metric graphs.

If G trivalent, then dim CG = |E| = 3g − 3 dim Mg = 3g − 3.

Caporaso: Mg connected
in codimension 1.
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Theorem
For d, g ≥ 2 the gonality-d locus in Mg is locally closed of dim
min{3g − 3, 2g + 2d − 5} (perhaps not pure-dim). In particular,
the locus where the gonality is ≥ 1 + dg/2e is dense and open.



13 - 2Older combinatorial results by Cools-D

Theorem
For d, g ≥ 2 the gonality-d locus in Mg is locally closed of dim
min{3g − 3, 2g + 2d − 5} (perhaps not pure-dim). In particular,
the locus where the gonality is ≥ 1 + dg/2e is dense and open.

Theorem
For each trivalent combinatorial type G, the preimage in CG

of the gonality-1 + dg/2e locus contains an open cone.



13 - 3Older combinatorial results by Cools-D

Theorem
For d, g ≥ 2 the gonality-d locus in Mg is locally closed of dim
min{3g − 3, 2g + 2d − 5} (perhaps not pure-dim). In particular,
the locus where the gonality is ≥ 1 + dg/2e is dense and open.

Theorem
For each trivalent combinatorial type G, the preimage in CG

of the gonality-1 + dg/2e locus contains an open cone.

Remarks • Dimension matches the classical count for curves.
• Via approximation, the first Theorem implies that a general
genus-g Riemann surface has gonality (at least) 1 + dg/2e— no
need for a specific graph to prove this. (Observed by Mikhalkin in
2011.)
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Concentrate on the case of gonality 1 + dg/2e =: d (2nd Theorem).
• Let G = (V, E) be a trivalent graph with |E| − |V | + 1 = g.
• Case 1: G is cactus (any two simple cycles intersect in at most
one point) any point Γ in CG has gonality ≤ d.



14 - 2Constructing metric graphs with prescribed gonality

Concentrate on the case of gonality 1 + dg/2e =: d (2nd Theorem).
• Let G = (V, E) be a trivalent graph with |E| − |V | + 1 = g.
• Case 1: G is cactus (any two simple cycles intersect in at most
one point) any point Γ in CG has gonality ≤ d.

• Case 2: G has a trivalent vertex v such that G′ = G − v is
connected, of genus g − 2. By induction, CG′ contains an open
cone, of dimension 3g − 9, where the gonality is d − 1. We glue in
a tripod, as follows:



14 - 3Constructing metric graphs with prescribed gonality

Concentrate on the case of gonality 1 + dg/2e =: d (2nd Theorem).
• Let G = (V, E) be a trivalent graph with |E| − |V | + 1 = g.
• Case 1: G is cactus (any two simple cycles intersect in at most
one point) any point Γ in CG has gonality ≤ d.

• Case 2: G has a trivalent vertex v such that G′ = G − v is
connected, of genus g − 2. By induction, CG′ contains an open
cone, of dimension 3g − 9, where the gonality is d − 1. We glue in
a tripod, as follows:

G′



14 - 4Constructing metric graphs with prescribed gonality

Concentrate on the case of gonality 1 + dg/2e =: d (2nd Theorem).
• Let G = (V, E) be a trivalent graph with |E| − |V | + 1 = g.
• Case 1: G is cactus (any two simple cycles intersect in at most
one point) any point Γ in CG has gonality ≤ d.

• Case 2: G has a trivalent vertex v such that G′ = G − v is
connected, of genus g − 2. By induction, CG′ contains an open
cone, of dimension 3g − 9, where the gonality is d − 1. We glue in
a tripod, as follows:

G′

v



14 - 5Constructing metric graphs with prescribed gonality

Concentrate on the case of gonality 1 + dg/2e =: d (2nd Theorem).
• Let G = (V, E) be a trivalent graph with |E| − |V | + 1 = g.
• Case 1: G is cactus (any two simple cycles intersect in at most
one point) any point Γ in CG has gonality ≤ d.

• Case 2: G has a trivalent vertex v such that G′ = G − v is
connected, of genus g − 2. By induction, CG′ contains an open
cone, of dimension 3g − 9, where the gonality is d − 1. We glue in
a tripod, as follows:

G′

v



14 - 6Constructing metric graphs with prescribed gonality

Concentrate on the case of gonality 1 + dg/2e =: d (2nd Theorem).
• Let G = (V, E) be a trivalent graph with |E| − |V | + 1 = g.
• Case 1: G is cactus (any two simple cycles intersect in at most
one point) any point Γ in CG has gonality ≤ d.

• Case 2: G has a trivalent vertex v such that G′ = G − v is
connected, of genus g − 2. By induction, CG′ contains an open
cone, of dimension 3g − 9, where the gonality is d − 1. We glue in
a tripod, as follows:

G′

v

v
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Concentrate on the case of gonality 1 + dg/2e =: d (2nd Theorem).
• Let G = (V, E) be a trivalent graph with |E| − |V | + 1 = g.
• Case 1: G is cactus (any two simple cycles intersect in at most
one point) any point Γ in CG has gonality ≤ d.

• Case 2: G has a trivalent vertex v such that G′ = G − v is
connected, of genus g − 2. By induction, CG′ contains an open
cone, of dimension 3g − 9, where the gonality is d − 1. We glue in
a tripod, as follows:

G′

v

v
Parameter count:
3 for the gray dots
3 for the orange edges
3g − 9 + 3 + 3 = 3g − 3 �



15 - 1The Cools-Draisma method: remarks and limitations

G′

v

v

• The morphism on the right moves in a family of dimension
3g − 3: the map from edge lengths of the tree to edge lengths in G
is a linear bijection.
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we change the morphism so that the red edge can shrink further?
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G′

v

v

• The morphism on the right imposes certain lower bounds on the
red edges: if they are all sufficiently long, the construction works.

• The morphism on the right moves in a family of dimension
3g − 3: the map from edge lengths of the tree to edge lengths in G
is a linear bijection.

•What happens when we shrink one of the new leaf edges? Can
we change the morphism so that the red edge can shrink further?

Answer: YES, see Alejandro’s talk next!
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