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K a field, σ an automorphism of K, E a finite set
ZE acts on KE via αv := (σαivi)i∈E

Definition
V : ZE → {d-dimensional subspaces of KE}, α 7→ Vα

is a vector space flock on E over (K, σ) of rank d if
(VF1) Vα/i = Vα+ei \i and
(VF2) Vα+1 = 1Vα.

W\i := image of W in KE−i

W/i := image of e⊥i ∩W in KE−i

1 = the all-one vector
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3Example

E = {1, 2}, V0 = 〈(1, a)〉, a , 0

〈(1, a)〉

(VF1) Vα/i = Vα+ei \i (VF2) Vα+1 = 1Vα

V0/1 = {0} = Ve1 \1, so Ve1 = 〈(1, 0)〉

〈(0, 1)〉

〈(1, 0)〉

= Vke1 for k ≥ 1
similarly Vke2 = 〈(0, 1)〉 for k ≥ 1

VF2 yields:

〈(1, 0)〉 〈(1, 0)〉

〈(1, σ2(a))〉
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4Matroids from flocks

For W ⊆ KE linear subspace, M(W) matroid on E defined by W.

Theorem
For a flock V on E, call I ⊆ E independent if ∃α ∈ ZE : I indepen-
dent in M(Vα). This defines a matroid M(V) on E.

Question
Which matroids are flock-representable?

Theorem
Certainly all algebraic matroids over algebraically closed K of
characteristic p > 0 with σ(a) = a1/p—so-called Frobenius flocks.

But, (unfortunately?) many more.
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Duality
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(K, σ−1), and it satisfies M(V∗) = M(V)∗.
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5Operations on flocks

For a flock V on E, α ∈ ZE , i ∈ E,
• i is a coloop in M(Vα+kei ) for k � 0 unless it is a loop in M(V);
• i is a loop in M(Vα+kei ) for k � 0 unless it is a coloop in M(V).

Duality
If V is a flock over (K, σ), then V∗ : α 7→ V⊥−α is a flock over
(K, σ−1), and it satisfies M(V∗) = M(V)∗.

Minors
V/i : α ∈ ZE−i → Vβ/i for β|E−i = α and βi � 0; and
V \i : α ∈ ZE−i → Vβ\i for β|E−i = α and βi � 0
are flocks on E − i, satisfying
M(V/i) = M(V)/i,M(V \i) = M(V)\i, and V∗/i = (V \i)∗.
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6Flocks from non-Archimedean fields

σ : K → K trivial, W ⊆ K((t))E a linear subspace
for α ∈ ZE set tαW := {(tαi wi)i | w ∈ W} ⊆ K((t))E

Construction
V : α 7→ Vα := image in KE of t−αW ∩ K[[t]]E

is a vector space flock of rank dim W over (K, 1K).

M(Vα) has no loops if and only if α ∈ Trop(W).

This suggests a tropical connection.
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Ingleton’s observation
If charK = 0, then M(X) = M(TvX) for v ∈ X general, so
{matroids algebraically representable over K}
= {matroids linearly representable over K}.

v

Example
This is not true in char, say, 2:
X = {(x, y, z, xy, xz, yz, xzy) | x, y, z ∈ F2

3
}

represents the non-Fano matroid, which is
not linearly representable over F2. x y

z

xz yz

xy

xyz
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8Flocks from algebraic matroids

K algebraically closed of char p, σ : K → K, a 7→ a1/p

ZE acts on KE by homeomorphisms in the Zariski topology.

Theorem
For X ⊆ KE irreducible and v ∈ X general, V : α 7→ TαvαX is a
Frobenius flock over (K, σ) satisfying M(V) = M(X).

Conditions (*)
v should satisfy the the following conditions for all α ∈ ZE :
• αX is smooth at αv, and
• M(TαvαX) = M(TξααX), where ξ is the generic point of αX.

To reduce from very general to just general we establish finiteness
properties of flocks.
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X = {(x, y, x + y, x + y(pg)) | (x, y) ∈ K2} ⊆ K4, g > 1,M(X) = U2,4
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X = {(x, y, x + y, x + y(pg)) | (x, y) ∈ K2} ⊆ K4, g > 1,M(X) = U2,4

T0X = row space of
[

1 0 1 1
0 1 1 0

]
, so 1, 4 parallel in M(T0X).

(−e2 − e3)X = {(x, y, xp + y, x + y(pg−1)) | (x, y) ∈ K2}

T0(−e2 − e3)X = row space of
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; also 2, 3 parallel.



9Example

X = {(x, y, x + y, x + y(pg)) | (x, y) ∈ K2} ⊆ K4, g > 1,M(X) = U2,4

T0X = row space of
[

1 0 1 1
0 1 1 0

]
, so 1, 4 parallel in M(T0X).

(−e2 − e3)X = {(x, y, xp + y, x + y(pg−1)) | (x, y) ∈ K2}

T0(−e2 − e3)X = row space of
[

1 0 0 1
0 1 1 0

]
; also 2, 3 parallel.

T0(−ge2 − ge3)X = row space of
[

1 0 0 1
0 1 1 1

]
; 1, 4 indep.

(−ge2 − ge3)X = {(x, y, x(pg) + y, x + y) | (x, y) ∈ K2}



10Example, continued

Cells where M(T0(αX)) = M(TξααX) is constant:

These cells are alcoved polytopes: max-plus and min-plus closed.



11Matroid flocks from valuations and vice versa

Definition (Dress-Wenzel)
A matroid valuation is a map ν : {d-sets in E} → R ∪ {∞} such
that ν(B) , ∞ for some B and ∀B, B′, i ∈ B \ B′ ∃ j ∈ B′ \ B :
ν(B) + ν(B′) ≥ ν(B − i + j) + ν(B′ + i − j).

(ν then lies in the Dressian)
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11Matroid flocks from valuations and vice versa

Definition (Dress-Wenzel)
A matroid valuation is a map ν : {d-sets in E} → R ∪ {∞} such
that ν(B) , ∞ for some B and ∀B, B′, i ∈ B \ B′ ∃ j ∈ B′ \ B :
ν(B) + ν(B′) ≥ ν(B − i + j) + ν(B′ + i − j).

(ν then lies in the Dressian)

Observations
ν two matroids: Mν := {B | ν(B) < ∞} and {B | ν(B) minimal};
and ν′(B) := ν(B) − α · eB is a valuation for each α ∈ RE .

Theorem
Given a Z ∪ {∞}-valued ν, set Mν

α := {B | ν(B) − α · eB minimal}
for each α ∈ ZE . This satisfies matroid analogues of VF1,VF2.
Conversely, each such matroid flock arises in this manner.
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12Overview

{algebraic varieties X ⊆ KE} {Frobenius flocks V : α 7→ Vα}

{Matroid flocks M : α 7→ Mα}

{Z ∪ {∞}-valued matroid valuations}

{Matroids on E}

Murota–thanks to Yu!

X 7→ M(X)

(X, v) 7→ (α 7→ TαvαX)

V 7→ (α 7→ M(Vα))

M 7→
⋃
α{bases of Mα}

ν 7→ Mν

So to a d-dimensional algebraic variety X ⊆ KE in char p we
associate the Lindstrom valuation νX : {d-subsets of E} → Z∪{∞}.
Cartwright found a direct construction of νX .



13Cell decomposition

Proposition
ν a Z ∪ {∞}-valued valuation and α, β ∈ RE . Then Mν

α ⊇ Mν
β iff

∀i , j ∀B ∈ Mν
β : αi − α j ≥ ν(B) − ν(B − i + j).

This gives a finite polyhedral complex with alcoved polyhedra, in
the relative interior of which Mν

α is constant.
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Proposition
ν a Z ∪ {∞}-valued valuation and α, β ∈ RE . Then Mν

α ⊇ Mν
β iff

∀i , j ∀B ∈ Mν
β : αi − α j ≥ ν(B) − ν(B − i + j).

This gives a finite polyhedral complex with alcoved polyhedra, in
the relative interior of which Mν

α is constant.

Consequences:
• A vector space flock can be specified by a finite amount of data.
• Conditions (*) on v are satisfied by general v: if αv satisfies it for
αX, and if MνX

α = MνX
α+eJ

, then (eJ + α)v satisfies it at (α + eJ)X.



14Rigidity

Definition (Dress-Wenzel)
A matroid M is rigid if every valuation ν with Mν = M is of the
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14Rigidity

Definition (Dress-Wenzel)
A matroid M is rigid if every valuation ν with Mν = M is of the
form M → R, B 7→ α · eB for some α ∈ RE .

Theorem
A rigid matroid is algebraically representable over an algebraically
closed field K of positive characteristic if and only if it is linearly
representable over K.

Proof
If X is an algebraic representation, then the Lindström valuation
νX : M(X)→ Z sends B 7→ α·eB for some α ∈ RE . Then Mν

α = Mν,
and the cell where this happens also contains an integral α. Now
M(X) = M(TαvαX) for v ∈ X general. �



15(Non-)examples

Using this theorem, we can re-prove several existing results, such
as: the projective plane over Fp is algebraically representable only
over fields of characteristic p (Lindström).

To extend the applicability of this method, we are trying to relax
the condition that the matroid be rigid.



15(Non-)examples

Using this theorem, we can re-prove several existing results, such
as: the projective plane over Fp is algebraically representable only
over fields of characteristic p (Lindström).

To extend the applicability of this method, we are trying to relax
the condition that the matroid be rigid.

However, using Frobenius flocks alone one cannot reprove all non-
algebraicity results:

Theorem-in-progress
If M has a flock representation over (K, σ), and H is a circuit hy-
perplane in M, then the matroid obtained by turning H into a basis
again has a flock representation over (K, σ).
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16Vamos

Vamos has a flock realisation; but it is non-algebraic.
Questions/projects
• Compute the Lindström valuation from a prime ideal? (Bollen)
• Bounds on the Lindström locus in the Dressian? (No idea.)
• . . .

Thanks!

The missing diagonal plane is independent:
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