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R :=C[xq,...,x,]Jand R.; :={p € R|degp < d}
Definition

A determinantal representation of p € R of size N 1s a matrix
M e R]S\’fN with det(M) = p.

A bivariate example

X —1
det y 1 |=a+bx+cy+dx*+exy+ fy*
a+bx+cy dx+ey fy

Determinantal representations always exist, but how small?
~» the determinantal complexity dc(p) 1s the smallest V.



Why?
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can be evaluated efficiently using Gaussian elimination.”
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Motivation I: permanent versus determinant 4

“If p has a determinantal representation M of small size N, then p
can be evaluated efficiently using Gaussian elimination.”

Definition
perm,, := > cs  Xig(1) " Xmaom) 1S the m X m permanent.

Example

1 1 0
perm;| 1 1 1 | =3 counts perfect matchingszw
0 1 1

Counting matchings in bipartite graphs 1s believed hard, so
dc(perm,,) should be large!
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Conjecture [Valiant, 70s]
dc(perm,,) grows faster with m than any polynomial.

Best known bounds [Mignon-Ressayre 04, Grenet 12]
2
- < dc(perm,,) < 2™ —1 [Alper-Bogart-Velasco 15: = 7 for m = 3]

Proof sketch of lower bound
If  : C™m — CN*VN affine-linear with dety(¥(A)) = perm, (A),
Cem+1l 1 - 1

1 1 - 1 ] — X
/= : : : ( \ \
i 1 1 perm, = () Qlﬁ(])
_ _ detN =0
g1(X) := quadratic part of perm_(J + X), form of rank m*

q>(Y) := quadratic part of dety(¥(J) + Y), form of rank < 2N
Now ¢1(X) = g2(L(X)) where L linear part of , som* <2N. O




Grenet’s 2™ — 1 construction

0 =123

0=1231 2 3 12 13 23

0) 0) 0) 0) X33 X372 X31
xp I 0 0 O O O
X12 0 1 0) 0 0 0)
X13 0) 0 1 0 0 0
0 X272 X921 0 | 0 0
0 X723 0 X21 0 1 0
_O 0) X23 X922 0) 0 1 N

123 =0

x;; labels an arrow from an (i — 1)-set to an i-set by adding ;.
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Theorem [Landsberg-Ressayre, 15]
Grenet’s representation 1s optimal among representations that pre-
serve left multiplication with permutation and diagonal matrices.

GCT Programme [Mulmuley-Sohoni, 01-]
Compare orbit closures X;, X, of ¥ "perm, and dety inside the
space of degree-N polynomials in N? variables under G = GLj»;
try to show that X; € X, by showing that multiplicities of certain
G-representations are higher in C[X;] than in C[X;] unless N 1s
super-polynomial 1n m.

Theorem [Biirgisser-Ikenmeyer-Panova, 16]
This approach does not work if higher than is restricted to 1 > 0
(so-called occurrence obstructions).
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In numerics, solving a univariate equation p(x) = 0 1s often done
by finding the eigenvalues of the companion matrix of p.

Proposal [Plestenjak-Hochstenbach, 16]
To solve p(x,y) = g(x,y) = 0 write p = det(Ag + xA; + yA,) and
g = det(By + xB1x + yB,) and solve the two-parameter eigenvalue
problem (Ag + xA| + yAy)u = 0 and (By + xB; + yBy)v = 0.

~» translates to a joint pair of generalised eigenvalue problems:
(A — xAp)w = 0 and (A, — yAg)w = 0 where w = u ® v and
Ao = A19B,—A>®B1, A1 = A,QBy—Ag®B>, Ay = Ag®B1—A1®B)

If the sizes are N, then A, have size N2, and solving takes (N?)? ...
(plane curves have det rep of size = deg, but harder to compute).
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R_; has dc(p) > C;d"? and any p € R, has dc(p) < Cod™?.
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Determinantal complexity of general polynomials

Theorem [Boralevi-v Doornmalen-D-Hochstenbach-Plestenjak, 16]

For n fixed, there exist Ci, C, such that a sufficiently general p €
R, has dc(p) > C1d"? and any p € R, has dc(p) < Cod™?.

For the upper bound, the determinantal representation can be cho-
sen to depend bi-affine-linearly on xi,...,x, and on the coeffi-
cients of p; these are uniform determinantal representations.

Proof of lower bound
If sufficiently general p € R.; have dc(p) < N, then the map det :

RY*N — R_y contains R, in the closure of its image. Comparing
. . . n+d
dimensions, find N° - (n + 1) > dim¢c Ry = ( ; ) O
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Spaces connected to 1 10

Definition
Given a nonzero subspace V C R write Vo; ;= VN Ry V 1s
connectedto 1 1t V4.1 C R« - V4 torall d > 0.

Example B ¥

For n :.2, V spanned by these B - B
monomials 1S connected to 1: N 2> BB
Lemma | Py By o P

V connected to 1, with basis 1 = fi, f2,..., fin of ascending de-
grees, write f; = Z’j;ll tiifiwith €;; € R<;. Then V = the span of the
[ (-1 _

(m—1)Xx(m—1)-subdeterminants of

M(V) .= s fml £m2 T gm,m—l -1 i
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V 2 R.;. Then there 1s a uniform determinantal representation of
size m for the polynomials in R-.
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First construction 11

Proposition

Let V C R be connected to 1, of dimension m, and such that Ry -
V 2 R.;. Then there 1s a uniform determinantal representation of
size m for the polynomials in R-.

Example b .
— X —1 “ M(V) &
det y —1 1
a+bx+cy dx+ey fy . y
=a+ bx +cy+dx*+exy + fy* 2 xy
Theorem [Hochstenbach-Plestenjak 16]

For n = 2 there exist uniform det

. . 2
representations of size ~ dz. /
/ /
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n+d
n

|
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Analysis of first construction

V connected to 1 and R<; - V 2 R.; imply dim V > %(” + d)

n

Proposition
dn

For fixed n, 4 uniform determinantal representation of size ~ -

Construction uses the lattice of type A,_;
with generating matrix
o i

-1 2

. —1
-1 2

But the exponent of d 1s n rather than n/2.

S

(David Madore, YouTube)
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Then there 1s a uniform det representation of degree-d polynomials
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Second construction: divide and conquer! 13

Proposition

Suppose Vi, Vo, C R connected to 1 such that R<; - V-V, 2 Ry.
Then there 1s a uniform det representation of degree-d polynomials
of size —1 + dim V; + dim V5.

MV

Example reas V1)

Cx —1 |

x -1
det| coo cio c20 |[Y = Dirj<2 CijX'y
Clo0 C11 -1y T
M(V-

| C20 —1 d'\/ ( 2)

Can we find Vi, V,, connected to 1, of dim ~ vdim R.,; such that
(R1-)V1 - Va2 2 R,?
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Can we find V4, V,, connected to 1, of dim growing like vdim R,
such that (R;-)V; - Vo, 2 R;?

n/2+d)

e For n even, split variables ~» V|, V, of dimension ( n/2

e For odd n, find subsets Ag, A; C (Z-p)", connected to O, of

¢ 1 * Y N — n .
dimension” 5 such that Ag + A} = 2]

- start with By := 3, 2{0, 1} - 2%/;
- By := 2By so that By + B; = Z>y;
- Ai = B?,

- connect to 0.
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A fractal 14

Can we find V4, V,, connected to 1, of dim growing like vdim R,
such that (R;-)V; - Vo, 2 R;?

n/2+d)

e For n even, split variables ~» V|, V, of dimension ( n/2

e For odd n, find subsets Ag, A; C (Z-p)", connected to O, of

¢ 1 * Y N — n .
dimension” 5 such that Ag + A} = 2]

- start with By := 3, 2{0, 1} - 2%/;
- By := 2By so that By + B; = Z>y;
- Ai = B?,

- connect to 0.

Take V; spanned by the monomials
with exponent vectors 1n A;. O
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Theorem [Boralevi-v Doornmalen-D-Hochstenbach-Plestenjak, 16]
For n fixed, there exist Ci, C, such that a sufficiently general p €
R, has dc(p) > C1d"? and any p € R, has dc(p) < Cod™?.

Many questions remain:

e what are the best constants C, C»?

e what about the regime where d 1s fixed and n runs?
e symmetric determinantal representations?
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Many questions remain:

e what are the best constants C, C»?

e what about the regime where d 1s fixed and » runs?
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Thank you!

Motivation III: hyperbolic polynomials

If p = det(Ag+ >, x;4;) with A; € RVY symmetric and A positive
definite, then the restriction of p to any line through O has only real
roots. For n = 2 the converse also holds (Helton-Vinnikov).
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