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Part I: some questions
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Y = (Y1, ... , Yn) R-valued random variables ⇝ degree-d
moments given by E(Y α) = E(∏i Y αi
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Y = (Y1, ... , Yn) R-valued random variables ⇝ degree-d
moments given by E(Y α) = E(∏i Y αi

i ) where ∑i αi = d .

If Y1, ... , Yn independent, then E(Y α) = ∏i E(Y αi
i ).

If (Xk1, ... , Xkn) independent for k = 1, ... , r and Y := Xk
with probability pk , then E(Y α) = ∑r

k=1 pk ∏i E(X αi
ki ).

Question 1 [Alexandr-Kileel-Sturmfels, 2023]
Fix d and r , but allow n to vary. Is the ideal of polynomial

relations among the
(

n + d − 1
d

)
dark red expressions gen-

erated by finitely many elements up to Sn?
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How many elements does Mn have up to simultaneous row
and column permutations?

Example
S = {0, 1}, r = 2

J1
J2

J0
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0
0

0
0
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0 0 0 0 0
0
0 J2J1
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0
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⇝ |Mn/Sn| = 2⌈ n
2⌉ · ⌊

n
2⌋+

(
n
2

)
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V1, ... , Vd finite-dimensional vector spaces over K .

T ∈ V1 ⊗ · · · ⊗ Vd has prank ≤ r if T = ∑r
i=1 Si ⊗ Ti for

some Si ∈
⊗

j∈Ji
Vj and Ti ∈

⊗
j ̸∈Ji

Vj and ∅ ⊊ Ji ⊊ [d ].

= ⊗ + ⊗

Questions 3
Is there an efficient membership test for X?
For K = C, is any T ∈ X equal to limϵ→0 ∑r

i=1 Si (ϵ)⊗ Ti (ϵ)
for certain Si , Ti ∈ X (C((ϵ))) with bounded exponents of ϵ?

Fix r , d but let V1, ... , Vd vary; set X := {T of prank ≤ r}.
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Part II: some theory,
and some answers
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C a base category ⇝ a C-something is a covariant functor
from the C to the category of somethings.

Definition [Church-Ellenberg-Farb, 2015]
FI is the category of finite sets with injections. An FI-module
over K is a functor FI → VecK .

Theorem [Church-Ellenberg-Farb, 2015]
If V is a finitely generated FI-module, then
(a) for n ≫ 0, the Sn-module V ([n]) grows in a
well-understood manner.
(b) every FI-submodule of V is also finitely generated.

Example: V (I) := CI, V (π) (∑i∈I ci i) = ∑i∈I ci π(i); and
W (I) := {∑i ci i | ∑i ci = 0} defines an FI-submodule.
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Theorem [D. Cohen, 1967,1987]
The FI-algebra A : I 7→ K [xi | i ∈ I] determined by A(π) :
xi 7→ xπ(i) is Noetherian: any ideal in A is finitely generated.
The same holds for A⊗c , c ∈ N.

⇝ much recent research by Hillar-Sullivant, Nagel-Nguyen-
Römer-Van Le, Snowden-Nagpal, Kummer-Riener, . . .

Theorem [Nagel-Römer, 2017]
Q an ideal in A⊗c ⇝ the bivariate Hilbert series HQ(s, t) =
∑n,d≥0 dim[A⊗c([n])≤d /Q([n])≤d ]sntd is rational.

Theorem [D-Eggermont-Farooq, 2022]
# of Sn-orbits on {minimal primes over Q([n])} is quasipoly-
nomial for n ≫ 0: a0(n) + · · ·+ ad (n)nd , ai periodic.
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9 - 3Back to counting matrices

Fix S ⊆ C finite, and Mn := {a ∈ Sn×n|aT = a, rk(a) = r}.

Corollary
In Question 2, |Mn/Sn| is a quasipolynomial in n for n ≫ 0.

Proof
Let µ : Cr×n → Cn×n, M 7→ MT M be the multiplication map,
and X ([n]) := µ−1(Mn). Note that µ is Sn-equivariant, and
the irreducible components of X ([n]) correspond bijectively
to the minimal primes over the vanishing ideal Q([n]) ⊆
A⊗r ([n]) of X ([n]). Now use the theorem. □

Recall for S = {0, 1}, r = 2: |Mn/Sn| = 2⌈ n
2⌉ · ⌊

n
2⌋+

(
n
2

)
.
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No Noetherianity for ≥ 2 indices: in B(I) = K [yij | i , j ∈ I]
the ideal (y12 · y21, y12 · y23 · y31, ...) is not f.g. But:

Theorem [D-Eggermont-Farooq-Meier, 2022]
Let B be a f.g. FI-algebra, c ∈ N, and φ : B → A⊗c a
homomorphism. Then ker(φ) =

√
Q for some f.g. Q ⊆ B.

Back to E(Y α) = ∑r
k=1 ∏n

i=1 E(X αi
ki ):

Proof. Take B(I) := K [yα|α ∈ {0, ... , d}I with ∑i αi = d ] and
c := rd . Variables in A⊗c(I): xkei , k = 1, ... , r ,e = 1, ... , d ,
i ∈ I. Apply thm to φ : yα 7→ ∑r

k=1 ∏i ,αi>0 xkαi i . □

Corollary [Alexandr-Kileel-Sturmfels, 2023]
The answer to Question 1 is yes for r = 1 and yes up to
radical for r > 1.
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Write VecK for the category of fin.-dim. vector spaces.

Definition
A functor P : VecK → VecK is polynomial of degree ≤ d if
∀U, V : P : Hom(U, V ) → Hom(P(U), P(V )) is polynomial
of degree ≤ d .

Examples: V 7→ V⊗d , V 7→ Sd V , V 7→ U (deg 0), Schur.

Polynomial functors are to GLn what FI-modules are to Sn.

Definition
A subset X ⊆ P is the data (X (V ) ⊆ P(V ))V∈VecK

such that
∀V , W , φ : V → W : P(φ)(X (V )) ⊆ X (W ). It is Zariski-
closed if each X (V ) is.



12 - 1Example: Veronese and its secants

Take K = C, P(V ) = Sd , and X (V ) = {ℓd | ℓ ∈ V}; so
X (C2) = {ae2

1 + be1e2 + ce2
2 | b2 − 4ac = 0}.

X ⊆ P is closed, and its ideal is generated by ∆ = b2 − 4ac:
I(X (V )) = ({P(φ)♯(∆) | φ ∈ Hom(V , C2)}).
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X (C2) = {ae2

1 + be1e2 + ce2
2 | b2 − 4ac = 0}.

X ⊆ P is closed, and its ideal is generated by ∆ = b2 − 4ac:
I(X (V )) = ({P(φ)♯(∆) | φ ∈ Hom(V , C2)}).

Define σr X ⊆ P via (σr X )(V ) := {ℓd
1 + · · ·+ ℓd

r | ℓi ∈ V}.

Proposition [Landsberg-Ottaviani 2013]
I(σr (X )) is generated by I(σr (X ))(Cr+1).

(Eqs for (σr X )(Cr+1): finitely many, but not easy to find.)

Remark: Closure is needed:
limϵ→0(ϵ

−1e1 + ϵ2e2)
3 + (−ϵ−1e1 + ϵ2e2)

3 = 6e2
1e2.
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Theorem [D, 2019] and [D-Blatter-Rupniewski, 2023]
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Then there exists a U ∈ Vec such that for all V ∈ Vec :
X (V ) =

⋂
φ∈Hom(V ,U) P(φ)−1(X (U)).
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Theorem [D, 2019] and [D-Blatter-Rupniewski, 2023]
Let P be a polynomial functor and X ⊆ P be a closed subset.
Then there exists a U ∈ Vec such that for all V ∈ Vec :
X (V ) =

⋂
φ∈Hom(V ,U) P(φ)−1(X (U)).

Corollary: There exists n0 such that for all n ≥ n0, T ∈
P(K n) lies in X (K n) iff T |I ∈ X (K I) for all n0-element sub-
sets I ⊆ [n]. (⇝ X has a poly time membership test).

Proof of Corollary: by the theorem, I(X ) is the radical
of some ideal generated in degree ≤ some d . Now I 7→
{polynomials on P(K I) of degree ≤ d} is a finitely gener-
ated FI-module. Hence so is I(X )≤d by Church-Ellenberg-
Farb. Take n0 big enough to see all generators. □
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Theorem [Bik-D-Eggermont-Snowden, 2023]
Assume K = C, let α : P → Q be a polynomial transforma-
tion, i.e., αV : P(V ) → Q(V ) is a polynomial map and for all
φ : V → W the following commutes:

P(V ) Q(V )

P(W ) Q(W )

P(φ) Q(φ)

αV
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p(ϵ) ∈ P(V )(C((ϵ))) with exponents of ϵ all ≥ −N and
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Theorem [Bik-D-Eggermont-Snowden, 2023]
Assume K = C, let α : P → Q be a polynomial transforma-
tion, i.e., αV : P(V ) → Q(V ) is a polynomial map and for all
φ : V → W the following commutes:

P(V ) Q(V )

P(W ) Q(W )

P(φ) Q(φ)

αV

αW

Then ∃N: for all V and all q ∈ im(αV ) there exists
p(ϵ) ∈ P(V )(C((ϵ))) with exponents of ϵ all ≥ −N and
limϵ→0 αV (p(ϵ)) = q.

⇝ positive answers to Questions 3 about partition rank!
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• Symmetry of a sequence of structures is often captured by
a base category.

• For FI-structures and polynomial functors, the theory is
quite well developed.

• There are also results for algebraic representations of
other classical groups, and for combinatorial categories such
as FS.

• A little is known about larger representations of infinite-
dimensional groups, such as the infinite wedge and the infi-
nite half-spin representation. But no general theory yet!

Thank you!
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