Finiteness up to symmetry

Jan Draisma University of Bern Lie-Størmer Colloquium Tromsø, December 2024

Part I: some questions

If $Y_1, ..., Y_n$ independent, then $\mathbb{E}(Y^{\alpha}) = \prod_i \mathbb{E}(Y_i^{\alpha_i})$.

If $Y_1, ..., Y_n$ independent, then $\mathbb{E}(Y^{\alpha}) = \prod_i \mathbb{E}(Y_i^{\alpha_i})$.

If $(X_{k1},...,X_{kn})$ independent for k=1,...,r and $Y:=X_k$ with probability p_k , then $\mathbb{E}(Y^{\alpha})=\sum_{k=1}^r p_k \prod_i \mathbb{E}(X_{ki}^{\alpha_i})$.

If $Y_1, ..., Y_n$ independent, then $\mathbb{E}(Y^{\alpha}) = \prod_i \mathbb{E}(Y_i^{\alpha_i})$.

If $(X_{k1},...,X_{kn})$ independent for k=1,...,r and $Y:=X_k$ with probability p_k , then $\mathbb{E}(Y^{\alpha})=\sum_{k=1}^r p_k \prod_i \mathbb{E}(X_{ki}^{\alpha_i})$.

Question 1

[Alexandr-Kileel-Sturmfels, 2023]

Fix d and r, but allow n to vary. Is the *ideal of polynomial* relations among the $\binom{n+d-1}{d}$ dark red expressions generated by finitely many elements up to S_n ?

Fix
$$S \subseteq \mathbb{C}$$
 finite, and $M_n := \{a \in S^{n \times n} | a^T = a, rk(a) = r\}$.

Fix
$$S \subseteq \mathbb{C}$$
 finite, and $M_n := \{a \in S^{n \times n} | a^T = a, rk(a) = r\}$.

Question 2

How many elements does M_n have up to simultaneous row and column permutations?

Fix
$$S \subseteq \mathbb{C}$$
 finite, and $M_n := \{a \in S^{n \times n} | a^T = a, rk(a) = r\}$.

Question 2

How many elements does M_n have up to simultaneous row and column permutations?

Example

$$S = \{0, 1\}, r = 2$$

$$\begin{bmatrix} J_1 & 0 & 0 \\ 0 & J_2 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & J & 0 \\ J^T & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} J_1 & J_2 & 0 \\ J_2^T & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Fix
$$S \subseteq \mathbb{C}$$
 finite, and $M_n := \{a \in S^{n \times n} | a^T = a, rk(a) = r\}$.

Question 2

How many elements does M_n have up to simultaneous row and column permutations?

Example

$$S = \{0, 1\}, r = 2$$

$$\begin{bmatrix} J_1 & 0 & 0 \\ 0 & J_2 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & J & 0 \\ J^T & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} J_1 & J_2 & 0 \\ J_2^T & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\Rightarrow |M_n/S_n| = 2\lceil \frac{n}{2} \rceil \cdot \lfloor \frac{n}{2} \rfloor + \binom{n}{2}$$

 $T \in V_1 \otimes \cdots \otimes V_d$ has $prank \leq r$ if $T = \sum_{i=1}^r S_i \otimes T_i$ for some $S_i \in \bigotimes_{j \in J_i} V_j$ and $T_i \in \bigotimes_{j \notin J_i} V_j$ and $\emptyset \subsetneq J_i \subsetneq [d]$.

 $T \in V_1 \otimes \cdots \otimes V_d$ has $prank \leq r$ if $T = \sum_{i=1}^r S_i \otimes T_i$ for some $S_i \in \bigotimes_{j \in J_i} V_j$ and $T_i \in \bigotimes_{j \notin J_i} V_j$ and $\emptyset \subsetneq J_i \subsetneq [d]$.

Fix r, d but let $V_1, ..., V_d$ vary; set $X := \{ T \text{ of prank } \le r \}$.

 $T \in V_1 \otimes \cdots \otimes V_d$ has $prank \leq r$ if $T = \sum_{i=1}^r S_i \otimes T_i$ for some $S_i \in \bigotimes_{j \in J_i} V_j$ and $T_i \in \bigotimes_{j \notin J_i} V_j$ and $\emptyset \subsetneq J_i \subsetneq [d]$.

Fix r, d but let $V_1, ..., V_d$ vary; set $X := \{ T \text{ of prank } \le r \}$.

Questions 3

Is there an efficient membership test for X?

For $K = \mathbb{C}$, is any $T \in \overline{X}$ equal to $\lim_{\epsilon \to 0} \sum_{i=1}^r S_i(\epsilon) \otimes T_i(\epsilon)$ for certain S_i , $T_i \in X(\mathbb{C}((\epsilon)))$ with bounded exponents of ϵ ?

Part II: some theory, and some answers

Definition

[Church-Ellenberg-Farb, 2015]

FI is the category of finite sets with injections. An **FI**-module over K is a functor $FI \rightarrow Vec_K$.

Definition

[Church-Ellenberg-Farb, 2015]

FI is the category of finite sets with injections. An **FI**-module over K is a functor $FI \rightarrow Vec_K$.

Example: $V(I) := \mathbb{C}I$, $V(\pi) (\sum_{i \in I} c_i i) = \sum_{i \in I} c_i \pi(i)$; and $W(I) := \{\sum_i c_i i \mid \sum_i c_i = 0\}$ defines an **FI**-submodule.

Definition

[Church-Ellenberg-Farb, 2015]

FI is the category of finite sets with injections. An **FI**-module over K is a functor $FI \rightarrow Vec_K$.

Example: $V(I) := \mathbb{C}I$, $V(\pi)(\sum_{i \in I} c_i i) = \sum_{i \in I} c_i \pi(i)$; and $W(I) := \{\sum_i c_i i \mid \sum_i c_i = 0\}$ defines an **FI**-submodule.

Theorem

[Church-Ellenberg-Farb, 2015]

If *V* is a finitely generated **FI**-module, then

(a) for $n \gg 0$, the S_n -module V([n]) grows in a well-understood manner.

(b) every \mathbf{FI} -submodule of V is also finitely generated.

FI-algebras

Theorem [D. Cohen, 1967,1987]

The **FI**-algebra $A: I \mapsto K[x_i \mid i \in I]$ determined by $A(\pi): x_i \mapsto x_{\pi(i)}$ is *Noetherian:* any ideal in A is finitely generated. The same holds for $A^{\otimes c}, c \in \mathbb{N}$.

FI-algebras

Theorem

[D. Cohen, 1967,1987]

The **FI**-algebra $A: I \mapsto K[x_i \mid i \in I]$ determined by $A(\pi): x_i \mapsto x_{\pi(i)}$ is *Noetherian:* any ideal in A is finitely generated. The same holds for $A^{\otimes c}, c \in \mathbb{N}$.

→ much recent research by Hillar-Sullivant, Nagel-Nguyen-Römer-Van Le, Snowden-Nagpal, Kummer-Riener, . . .

Theorem

[Nagel-Römer, 2017]

Q an ideal in $A^{\otimes c} \leadsto$ the bivariate Hilbert series $H_Q(s,t) = \sum_{n,d>0} \dim[A^{\otimes c}([n])_{\leq d}/Q([n])_{\leq d}]s^nt^d$ is rational.

FI-algebras

Theorem

[D. Cohen, 1967,1987]

The **FI**-algebra $A: I \mapsto K[x_i \mid i \in I]$ determined by $A(\pi): x_i \mapsto x_{\pi(i)}$ is *Noetherian:* any ideal in A is finitely generated. The same holds for $A^{\otimes c}, c \in \mathbb{N}$.

→ much recent research by Hillar-Sullivant, Nagel-Nguyen-Römer-Van Le, Snowden-Nagpal, Kummer-Riener, . . .

Theorem

[Nagel-Römer, 2017]

Q an ideal in $A^{\otimes c} \leadsto$ the bivariate Hilbert series $H_Q(s,t) = \sum_{n,d\geq 0} \dim[A^{\otimes c}([n])_{\leq d}/Q([n])_{\leq d}] s^n t^d$ is rational.

Theorem

[D-Eggermont-Farooq, 2022]

of S_n -orbits on {minimal primes over Q([n])} is quasipolynomial for $n \gg 0$: $a_0(n) + \cdots + a_d(n)n^d$, a_i periodic.

Back to counting matrices

Fix
$$S \subseteq \mathbb{C}$$
 finite, and $M_n := \{a \in S^{n \times n} | a^T = a, rk(a) = r\}$.

Back to counting matrices

Fix $S \subseteq \mathbb{C}$ finite, and $M_n := \{a \in S^{n \times n} | a^T = a, rk(a) = r\}$.

Corollary

In Question 2, $|M_n/S_n|$ is a quasipolynomial in n for $n \gg 0$.

Recall for
$$S = \{0, 1\}, r = 2$$
: $|M_n/S_n| = 2\lceil \frac{n}{2} \rceil \cdot \lfloor \frac{n}{2} \rfloor + \binom{n}{2}$.

Back to counting matrices

Fix
$$S \subseteq \mathbb{C}$$
 finite, and $M_n := \{a \in S^{n \times n} | a^T = a, rk(a) = r\}$.

Corollary

In Question 2, $|M_n/S_n|$ is a quasipolynomial in n for $n \gg 0$.

Recall for
$$S = \{0, 1\}, r = 2$$
: $|M_n/S_n| = 2\lceil \frac{n}{2} \rceil \cdot \lfloor \frac{n}{2} \rfloor + \binom{n}{2}$.

Proof

Let $\mu: \mathbb{C}^{r \times n} \to \mathbb{C}^{n \times n}$, $M \mapsto M^T M$ be the multiplication map, and $X([n]) := \mu^{-1}(M_n)$. Note that μ is S_n -equivariant, and the irreducible components of X([n]) correspond bijectively to the minimal primes over the vanishing ideal $Q([n]) \subseteq A^{\otimes r}([n])$ of X([n]). Now use the theorem.

No Noetherianity for ≥ 2 indices: in $B(I) = K[y_{ij} \mid i, j \in I]$ the ideal $(y_{12} \cdot y_{21}, y_{12} \cdot y_{23} \cdot y_{31}, \dots)$ is not f.g. But:

No Noetherianity for ≥ 2 indices: in $B(I) = K[y_{ij} \mid i, j \in I]$ the ideal $(y_{12} \cdot y_{21}, y_{12} \cdot y_{23} \cdot y_{31}, \dots)$ is not f.g. But:

Theorem

[D-Eggermont-Farooq-Meier, 2022]

Let *B* be a f.g. **FI**-algebra, $c \in \mathbb{N}$, and $\varphi : B \to A^{\otimes c}$ a homomorphism. Then $\ker(\varphi) = \sqrt{Q}$ for some f.g. $Q \subseteq B$.

No Noetherianity for ≥ 2 indices: in $B(I) = K[y_{ij} \mid i, j \in I]$ the ideal $(y_{12} \cdot y_{21}, y_{12} \cdot y_{23} \cdot y_{31}, \dots)$ is not f.g. But:

Theorem

[D-Eggermont-Farooq-Meier, 2022]

Let B be a f.g. **FI**-algebra, $c \in \mathbb{N}$, and $\varphi : B \to A^{\otimes c}$ a homomorphism. Then $\ker(\varphi) = \sqrt{Q}$ for some f.g. $Q \subseteq B$.

Back to
$$\mathbb{E}(Y^{\alpha}) = \sum_{k=1}^{r} \prod_{i=1}^{n} \mathbb{E}(X_{ki}^{\alpha_i})$$
:

Corollary

[Alexandr-Kileel-Sturmfels, 2023]

The answer to Question 1 is yes for r = 1 and yes up to radical for r > 1.

No Noetherianity for ≥ 2 indices: in $B(I) = K[y_{ij} \mid i, j \in I]$ the ideal $(y_{12} \cdot y_{21}, y_{12} \cdot y_{23} \cdot y_{31}, \dots)$ is not f.g. But:

Theorem

[D-Eggermont-Farooq-Meier, 2022]

Let B be a f.g. **FI**-algebra, $c \in \mathbb{N}$, and $\varphi : B \to A^{\otimes c}$ a homomorphism. Then $\ker(\varphi) = \sqrt{Q}$ for some f.g. $Q \subseteq B$.

Back to
$$\mathbb{E}(Y^{\alpha}) = \sum_{k=1}^{r} \prod_{i=1}^{n} \mathbb{E}(X_{ki}^{\alpha_i})$$
:

Corollary

[Alexandr-Kileel-Sturmfels, 2023]

The answer to Question 1 is yes for r = 1 and yes up to radical for r > 1.

Proof. Take $B(I) := K[y_{\alpha} | \alpha \in \{0, ..., d\}^I \text{ with } \sum_i \alpha_i = d]$ and c := rd. Variables in $A^{\otimes c}(I)$: x_{kei} , k = 1, ..., r, e = 1, ..., d, $i \in I$. Apply thm to $\varphi : y_{\alpha} \mapsto \sum_{k=1}^r \prod_{i,\alpha_i > 0} x_{k\alpha_i i}$.

Polynomial functors

Write \mathbf{Vec}_K for the category of *fin.-dim.* vector spaces.

Definition

A functor $P : \mathbf{Vec}_K \to \mathbf{Vec}_K$ is *polynomial* of degree $\leq d$ if $\forall U, V : P : \mathsf{Hom}(U, V) \to \mathsf{Hom}(P(U), P(V))$ is polynomial of degree $\leq d$.

Write $\mathbf{Vec}_{\mathcal{K}}$ for the category of *fin.-dim.* vector spaces.

Definition

A functor $P : \mathbf{Vec}_K \to \mathbf{Vec}_K$ is *polynomial* of degree $\leq d$ if $\forall U, V : P : \mathsf{Hom}(U, V) \to \mathsf{Hom}(P(U), P(V))$ is polynomial of degree $\leq d$.

Examples: $V \mapsto V^{\otimes d}$, $V \mapsto S^d V$, $V \mapsto U$ (deg 0), Schur.

Polynomial functors are to GL_n what **FI**-modules are to S_n .

Write \mathbf{Vec}_K for the category of *fin.-dim.* vector spaces.

Definition

A functor $P : \mathbf{Vec}_K \to \mathbf{Vec}_K$ is *polynomial* of degree $\leq d$ if $\forall U, V : P : \mathsf{Hom}(U, V) \to \mathsf{Hom}(P(U), P(V))$ is polynomial of degree $\leq d$.

Examples: $V \mapsto V^{\otimes d}$, $V \mapsto S^d V$, $V \mapsto U$ (deg 0), Schur.

Polynomial functors are to GL_n what **FI**-modules are to S_n .

Definition

A subset $X \subseteq P$ is the data $(X(V) \subseteq P(V))_{V \in \mathbf{Vec}_K}$ such that $\forall V, W, \varphi : V \to W : P(\varphi)(X(V)) \subseteq X(W)$. It is *Zariski-closed* if each X(V) is.

Example: Veronese and its secants

Take $K = \mathbb{C}$, $P(V) = S^d$, and $X(V) = \{\ell^d \mid \ell \in V\}$; so $X(\mathbb{C}^2) = \{ae_1^2 + be_1e_2 + ce_2^2 \mid b^2 - 4ac = 0\}$.

 $X \subseteq P$ is closed, and its ideal is generated by $\Delta = b^2 - 4ac$: $\mathcal{I}(X(V)) = (\{P(\varphi)^{\sharp}(\Delta) \mid \varphi \in \operatorname{Hom}(V, \mathbb{C}^2)\}).$

Example: Veronese and its secants

Take
$$K = \mathbb{C}$$
, $P(V) = S^d$, and $X(V) = \{\ell^d \mid \ell \in V\}$; so $X(\mathbb{C}^2) = \{ae_1^2 + be_1e_2 + ce_2^2 \mid b^2 - 4ac = 0\}$.

 $X \subseteq P$ is closed, and its ideal is generated by $\Delta = b^2 - 4ac$: $\mathcal{I}(X(V)) = (\{P(\varphi)^{\sharp}(\Delta) \mid \varphi \in \operatorname{Hom}(V, \mathbb{C}^2)\}).$

Define
$$\sigma_r X \subseteq P$$
 via $(\sigma_r X)(V) := \overline{\{\ell_1^d + \cdots + \ell_r^d \mid \ell_i \in V\}}$.

Remark: Closure is needed:

$$\lim_{\epsilon \to 0} (\epsilon^{-1}e_1 + \epsilon^2 e_2)^3 + (-\epsilon^{-1}e_1 + \epsilon^2 e_2)^3 = 6e_1^2 e_2.$$

Example: Veronese and its secants

Take
$$K = \mathbb{C}$$
, $P(V) = S^d$, and $X(V) = \{\ell^d \mid \ell \in V\}$; so $X(\mathbb{C}^2) = \{ae_1^2 + be_1e_2 + ce_2^2 \mid b^2 - 4ac = 0\}$.

 $X \subseteq P$ is closed, and its ideal is generated by $\Delta = b^2 - 4ac$: $\mathcal{I}(X(V)) = (\{P(\varphi)^{\sharp}(\Delta) \mid \varphi \in \operatorname{Hom}(V, \mathbb{C}^2)\}).$

Define
$$\sigma_r X \subseteq P$$
 via $(\sigma_r X)(V) := \{\ell_1^d + \cdots + \ell_r^d \mid \ell_i \in V\}.$

Remark: Closure is needed:

$$\lim_{\epsilon \to 0} (\epsilon^{-1}e_1 + \epsilon^2 e_2)^3 + (-\epsilon^{-1}e_1 + \epsilon^2 e_2)^3 = 6e_1^2 e_2.$$

Proposition

[Landsberg-Ottaviani 2013]

$$\mathcal{I}(\sigma_r(X))$$
 is generated by $\mathcal{I}(\sigma_r(X))(\mathbb{C}^{r+1})$.

(Eqs for $(\sigma_r X)(\mathbb{C}^{r+1})$: finitely many, but not easy to find.)

Theorem [D, 2019] and [D-Blatter-Rupniewski, 2023]

Let P be a polynomial functor and $X \subseteq P$ be a closed subset. Then there exists a $U \in \mathbf{Vec}$ such that for all $V \in \mathbf{Vec}$: $X(V) = \bigcap_{\varphi \in \mathsf{Hom}(V,U)} P(\varphi)^{-1}(X(U))$.

Theorem [D, 2019] and [D-Blatter-Rupniewski, 2023] Let P be a polynomial functor and $X \subseteq P$ be a closed subset. Then there exists a $U \in \mathbf{Vec}$ such that for all $V \in \mathbf{Vec}$: $X(V) = \bigcap_{\varphi \in \mathsf{Hom}(V,U)} P(\varphi)^{-1}(X(U))$.

Corollary: There exists n_0 such that for all $n \ge n_0$, $T \in P(K^n)$ lies in $X(K^n)$ iff $T|_I \in X(K^I)$ for all n_0 -element subsets $I \subseteq [n]$. $(\rightsquigarrow X \text{ has a poly time membership test})$.

Theorem [D, 2019] and [D-Blatter-Rupniewski, 2023] Let P be a polynomial functor and $X \subseteq P$ be a closed subset. Then there exists a $U \in \mathbf{Vec}$ such that for all $V \in \mathbf{Vec}$: $X(V) = \bigcap_{\varphi \in \mathsf{Hom}(V,U)} P(\varphi)^{-1}(X(U))$.

Corollary: There exists n_0 such that for all $n \ge n_0$, $T \in P(K^n)$ lies in $X(K^n)$ iff $T|_I \in X(K^I)$ for all n_0 -element subsets $I \subseteq [n]$. $(\rightsquigarrow X \text{ has a poly time membership test)}$.

Proof of Corollary: by the theorem, $\mathcal{I}(X)$ is the radical of some ideal generated in degree \leq some d. Now $l \mapsto \{\text{polynomials on } P(K^l) \text{ of degree } \leq d\}$ is a finitely generated **FI**-module. Hence so is $\mathcal{I}(X)_{\leq d}$ by Church-Ellenberg-Farb. Take n_0 big enough to see all generators.

Theorem

[Bik-D-Eggermont-Snowden, 2023]

Assume $K = \mathbb{C}$, let $\alpha : P \to Q$ be a *polynomial transformation*, i.e., $\alpha_V : P(V) \to Q(V)$ is a polynomial map and for all $\varphi : V \to W$ the following commutes:

$$P(V) \xrightarrow{\alpha_{V}} Q(V)$$

$$P(\varphi) \downarrow \qquad \qquad \downarrow Q(\varphi)$$

$$P(W) \xrightarrow{\alpha_{W}} Q(W)$$

Theorem

[Bik-D-Eggermont-Snowden, 2023]

Assume $K = \mathbb{C}$, let $\alpha : P \to Q$ be a *polynomial transformation*, i.e., $\alpha_V : P(V) \to Q(V)$ is a polynomial map and for all $\varphi : V \to W$ the following commutes:

$$P(V) \xrightarrow{\alpha_{V}} Q(V)$$

$$P(\varphi) \downarrow \qquad \qquad \downarrow Q(\varphi)$$

$$P(W) \xrightarrow{\alpha_{W}} Q(W)$$

Then $\exists N$: for all V and all $q \in \overline{\operatorname{im}(\alpha_V)}$ there exists $p(\epsilon) \in P(V)(\mathbb{C}((\epsilon)))$ with exponents of ϵ all $\geq -N$ and $\lim_{\epsilon \to 0} \alpha_V(p(\epsilon)) = q$.

Theorem

[Bik-D-Eggermont-Snowden, 2023]

Assume $K = \mathbb{C}$, let $\alpha : P \to Q$ be a *polynomial transformation*, i.e., $\alpha_V : P(V) \to Q(V)$ is a polynomial map and for all $\varphi : V \to W$ the following commutes:

$$P(V) \xrightarrow{\alpha_{V}} Q(V)$$

$$P(\varphi) \downarrow \qquad \qquad \downarrow Q(\varphi)$$

$$P(W) \xrightarrow{\alpha_{W}} Q(W)$$

Then $\exists N$: for all V and all $q \in \overline{\operatorname{im}(\alpha_V)}$ there exists $p(\epsilon) \in P(V)(\mathbb{C}((\epsilon)))$ with exponents of ϵ all $\geq -N$ and $\lim_{\epsilon \to 0} \alpha_V(p(\epsilon)) = q$.

→ positive answers to Questions 3 about partition rank!

 Symmetry of a sequence of structures is often captured by a base category.

15 - 2

 Symmetry of a sequence of structures is often captured by a base category.

• For **FI**-structures and polynomial functors, the theory is quite well developed.

- Symmetry of a sequence of structures is often captured by a base category.
- For **FI**-structures and polynomial functors, the theory is quite well developed.
- There are also results for algebraic representations of other classical groups, and for combinatorial categories such as FS.

- Symmetry of a sequence of structures is often captured by a base category.
- For **FI**-structures and polynomial functors, the theory is quite well developed.
- There are also results for algebraic representations of other classical groups, and for combinatorial categories such as **FS**.
- A little is known about larger representations of infinitedimensional groups, such as the infinite wedge and the infinite half-spin representation. But no general theory yet!

- Symmetry of a sequence of structures is often captured by a base category.
- For **FI**-structures and polynomial functors, the theory is quite well developed.
- There are also results for algebraic representations of other classical groups, and for combinatorial categories such as FS.
- A little is known about larger representations of infinitedimensional groups, such as the infinite wedge and the infinite half-spin representation. But no general theory yet!

Thank you!