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Part I: some questions



Moment varieties of mixtures 3.

Y = (Yi,..., Yn) R-valued random variables ~~ degree-d
moments given by E(Y*) = E([]; Y;") where Y_;a; = d.
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Moment varieties of mixtures 3.

Y = (Yi,..., Yn) R-valued random variables ~~ degree-d
moments given by E(Y*) = E([]; Y;") where Y_;a; = d.

If Yq,..., Y independent, then E(Y%*) =], E(Y:").

/

If (Xk1,..., Xikn) independent for k = 1,...,rand Y := X,
with probability px, then E(Y*) = Y _; pk T E(X,/).

Question 1 [Alexandr-Kileel-Sturmfels, 2023]
Fix d and r, but allow n to vary. |s the ideal of polynomial
relations among the (n + Z B 1) dark red expressions gen-

erated by finitely many elements up to S,?



Counting matrices

Fix S C C finite, and Mp, := {a € S™"|a’ = a,rk(a) = r}.
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Counting matrices ‘-

Fix S C C finite, and Mp, := {a € S™"|a’ = a,rk(a) = r}.

Question 2
How many elements does M, have up to simultaneous row
and column permutations?

Example

S={0,1},r=2

J1 0 0] [0JO] |J O

04k 0| W'O0O U 0o

000 [000] [000O0
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Partition rank

Vi, ..., V4 finite-dimensional vector spaces over K.
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Partition rank .

Vi, ..., V4 finite-dimensional vector spaces over K.

TeViw---@Vghasprank < rif T =Y/ _,S;® T; for
some S; € Qjcy Viand T € Qg . Viand @ C J; C [d].

7 ®¢—I—
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/

Fix r,d but let V4, ..., Vg vary; set X := {T of prank < r}.

Questions 3

Is there an efficient membership test for X?

For K =C,isany T € X equal to lim._,o Y/_; Si(¢) @ T;(¢)
for certain S;, T; € X(C((e))) with bounded exponents of €?



Part Il: some theory,
and some answers



Fl-modules ;.

C a base category ~~ a C-something is a covariant functor
from the C to the category of somethings.
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FI-modules

C a base category ~~ a C-something is a covariant functor
from the C to the category of somethings.

Definition [Church-Ellenberg-Farb, 2015]

Fl is the category of finite sets with injections. An Fl-module
over K is a functor FI — Vecy.

Example: V(l) .= ClI, V(Tl') (Z,‘G/C/i) = Z,’E/C/ﬂ(i); and
W(l) :={Y,cii | ¥;ci = 0} defines an Fl-submodule.

Theorem [Church-Ellenberg-Farb, 2015]
If V is a finitely generated FI-module, then

(a) for n > 0, the Sp-module V(|n]) grows in a
well-understood manner.

(b) every Fl-submodule of V is also finitely generated.




Fl-algebras 5

Theorem [D. Cohen, 1967,1987]
The Fl-algebra A : | — Klx; | i € I] determined by A(7) :
Xj — Xn(j) Is Noetherian: any ideal in A'is finitely generated.
The same holds for A®¢, ¢ € IN.
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Fl-algebras 53

Theorem [D. Cohen, 1967,1987]
The Fl-algebra A : | — Klx; | i € I] determined by A(7) :
Xj — Xn(j) Is Noetherian: any ideal in A'is finitely generated.
The same holds for A®¢, ¢ € IN.

~» much recent research by Hillar-Sullivant, Nagel-Nguyen-
Romer-Van Le, Snowden-Nagpal, Kummer-Riener, . ..

Theorem [Nagel-Rémer, 2017]
Q an ideal in A¥C ~~ the bivariate Hilbert series Hg(s, t) =
Y nd>0diM[A®¢([n])<q/ Q([N])<q]s"t? is rational.

Theorem [D-Eggermont-Farooq, 2022]
# of Sp-orbits on {minimal primes over Q(|n])} is quasipoly-
nomial for n>> 0: ag(n) + - - - + ag(n)n?, a; periodic.



Back to counting matrices

Fix S C C finite, and M, := {a € S"™*"|a’ = a,rk(a) = r}.
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Back to counting matrices 0.

Fix S C C finite, and M, := {a € S™"|a’ = a,rk(a) = r}.

Corollary

In Question 2, M,/ S| is a quasipolynomial in n for n > 0.

Recall for S={0,1},r =2: |[My/Sp| =2[3] - |5] + (g)

Proof
Let yu : C™" — C™" M — MM be the multiplication map,
and X([n]) := u~1(M,). Note that u is Sp-equivariant, and
the irreducible components of X (|n]) correspond bijectively
to the minimal primes over the vanishing ideal Q([n]) C
A®"(In]) of X([n]). Now use the theorem.




Fl-algebras, continued

No Noetherianity for > 2 indices: in B(/) = K|y;;

10 -

i,j €

the ideal (y12 - y21, Yi2-Ye3-ya1, ...)isnotfg. But:
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Fl-algebras, continued f0-

No Noetherianity for > 2 indices: in B(l) = Kly; | i,j € |
the ideal (y12 - y21, Yi2-Ye3-Y31, -...)isnotfg. But:

Theorem [D-Eggermont-Farooqg-Meier, 2022]
Let B be a f.g. Fl-algebra, ¢ € N, and ¢ : B — A%C a

homomorphism. Then ker(¢) = /Q for some f.g. Q C B.
Back to E(Y*) = Y} TT71 E(X/):

Corollary [Alexandr-Kileel-Sturmfels, 2023]
The answer to Question 1 is yes for r = 1 and yes up to
radical for r > 1.

Proof. Take B(/) := K|y,|a € {0, ...,d} with};a; = d] and
¢ := rd. Variables in A¥¢(1): Xygj, Kk = 1,...,r,e =1,...,d,
i€ I. Apply thmto ¢ : yu — Y [Tj >0 Xkai
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Polynomial functors -

Write Vec for the category of fin.-dim. vector spaces.

Definition

A functor P : Vecx — Vecy is polynomial of degree < d if
vU,V : P:Hom(U, V) — Hom(P(U), P(V)) is polynomial
of degree < d.

Examples: V — V&9 Vi S9V, V — U (deg 0), Schur.
Polynomial functors are to GL, what FI-modules are to S;,.

Definition

A subset X C Pisthe data (X (V) C P(
VW W,p: V- W: Ple)(X(V)) C
closed if each X (V) is.

V) vevec, such that
X(W). It is Zariski-



Example: Veronese and its secants f2-

Take K = C, P(V) = 8% and X(V) = {¢? | ¢ € V}; so
X(C?) = {ae? + bejes + ce3 | b* — 4ac = 0}.

X C Pis closed, and its ideal is generated by A = b? — 4ac:
Z(X(V)) = ({P(¢)*(A) | ¢ € Hom(V,C?)}).
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Example: Veronese and its secants 2.3

Take K = C, P(V) = 8% and X(V) = {¢? | ¢ € V}; so
X(C?) = {ae? + bejes + ce3 | b* — 4ac = 0}.

X C Pis closed, and its ideal is generated by A = b? — 4ac:
Z(X(V)) = ({P(¢)*(A) | ¢ € Hom(V,C?)}).

Define o:X C Pvia (o X)(V) := {¢9+---+49 | £; € V}.

Remark: Closure is needed:

lime_o(e e +€2e2)° + (—e ey + €2e0)° = 667 es.
Proposition [Landsberg-Ottaviani 2013]
Z(cr(X)) is generated by Z (o (X)) (C™+1).

(Egs for (o X)(C"1): finitely many, but not easy to find.)



Noetherianity of polynomial functors 13-

Theorem [D, 2019] and [D-Blatter-Rupniewski, 2023]
Let P be a polynomial functor and X C P be a closed subset.
Then there exists a U € Vec such that for all V € Vec :

X(V) = Ngerom(v.u) P(e) " (X(U)).
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Noetherianity of polynomial functors 13-

Theorem [D, 2019] and [D-Blatter-Rupniewski, 2023]
Let P be a polynomial functor and X C P be a closed subset.
Then there exists a U € Vec such that for all V € Vec :

X(V) = Nperom(v,u) P(e) 1 (X(U)).

Corollary: There exists ng such that for all n > ng, T €
P(K") lies in X(K™) iff T|; € X(K') for all ny-element sub-
sets | C [n]. (~~ X has a poly time membership test).

Proof of Corollary: by the theorem, Z(X) is the radical
of some ideal generated in degree < some d. Now |/ —
{polynomials on P(K') of degree < d} is a finitely gener-
ated Fl-module. Hence so is Z(X) 4 by Church-Ellenberg-
Farb. Take ng big enough to see all generators.




Uniform limits of tensors

Theorem [Bik-D-Eggermont-Snowden, 2023]
Assume K = C, leta : P — Q be a polynomial transforma-
tion, i.e., ay : P(V) — Q(V) is a polynomial map and for all
@ : V — W the following commutes:

P(V) 2 » Q(V)
P(9) | eIty
P(W) - Q(W)

14 -
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Theorem [Bik-D-Eggermont-Snowden, 2023]
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Then dN: for all V and all g € im(ay/) there exists
p(e) € P(V)(C((e))) with exponents of € all > —N and
im0 06\/(,0(6)) = (q.



Uniform limits of tensors 14-

Theorem [Bik-D-Eggermont-Snowden, 2023]
Assume K = C, leta : P — Q be a polynomial transforma-
tion, i.e., ay : P(V) — Q(V) is a polynomial map and for all
@ : V — W the following commutes:

P(V) 2 » QV

)
P(9) | eIty
P(W) - Q(W)

Then dN: for all V and all g € im(ay/) there exists
p(e) € P(V)(C((e))) with exponents of € all > —N and
im0 06\/(,0(6)) = (q.

~ positive answers to Questions 3 about partition rank!
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e Symmetry of a sequence of structures is often captured by
a base category.
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Conclusions .

e Symmetry of a sequence of structures is often captured by
a base category.

e For Fl-structures and polynomial functors, the theory is
quite well developed.

e There are also results for algebraic representations of
other classical groups, and for combinatorial categories such
as FS.

e A little is known about larger representations of infinite-
dimensional groups, such as the infinite wedge and the infi-
nite half-spin representation. But no general theory yet!

Thank you!



	Moment varieties of mixtures
	Counting matrices
	Partition rank
	$\FI$-modules
	$\FI$-algebras
	Back to counting matrices
	$\FI$-algebras, continued
	Polynomial functors
	Example: Veronese and its secants
	Noetherianity of polynomial functors
	Uniform limits of tensors

