Fewestnomials in
determinantal ideals

Jan Draisma (Bern/Eindhoven) CCAAGGS, June 2022
joint with Thomas Kahle and Finn Wiersig farnse



Fewestnomials in ideals

Definition
K afield, | C K|xq, ..., xn| an ideal
~ ¢(I) := min{number of termsin f | f € [\ {0}}

- 1



Fewestnomials in ideals

Definition
K afield, | C K|xq, ..., xn| an ideal
~ ¢(I) := min{number of termsin f | f € [\ {0}}

Example
c(l) =1 < some power of Xy - Xo - - - Xp liesin /.
Can be checked by a Grobner basis computation.



Fewestnomials in ideals

Definition
K afield, | C K|xq, ..., xn| an ideal
~ ¢(I) := min{number of termsin f | f € [\ {0}}

Example
c(l) =1 < some power of Xy - Xo - - - Xp liesin /.
Can be checked by a Grobner basis computation.

Questions

e What is c(/) for your favourite /?

e Is ¢(/) computable from generators of /?
e Why should you care?
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ldeals spanned by binomials have many beautiful properties.
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The curious case of ¢(/) = 2 3

Philosophy [Eisenbud-Sturmfels, 1996]
ldeals spanned by binomials have many beautiful properties.

This condition is much stronger than c(l) = 2.

Example [Jensen-Kahle-Kathan, 2017]
For n € Zsq, In == (x—=2)%nx—-y—(n—1)z) C

Qlx, y, z] has ¢(l) = 2 and x" — yz"~ 1 is the lowest-degree
binomial in /,.

Theorem [Jensen-Kahle-Kathan, 291 7]
3 algorithm that, on input I C Q|xq, ..., xn|, decides c(/) = 2.

Question: Is ¢(/) computable?
Special cases: What if n = 1 or if | is linearly generated?



The curious case of ¢(/) = 2

Outline of the Jensen-Kahle-Kathan algorithm:
e Rule out ¢(/) = 1, pass to | C Q[x{, ..., X; -

o If x* —a-xY c I then Trop(/) C a.

e Compute a basis a1, ...,am € Z" of Trop(/)*.

e After a monomial coordinate change: «; = ¢, SO x% = X;.

e Need to look for binomials in J := Q[x;, ..., x] N /.
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Outline of the Jensen-Kahle-Kathan algorithm:
e Rule out ¢(/) = 1, pass to | C Q[x{, ..., X; -

o If x* —a-x% c I, then Trop(/) C a.

e Compute a basis a1, ...,am € Z" of Trop(/)*.

e After a monomial coordinate change: «; = ¢, SO x% = X;.
e Need to look for binomials in J := Q[x;, ..., x] N /.

e Trop(J) = {0} C R™.

e Hence A := QI[x;", ..., X5;]/J is finite-dimensional.

o Let M; € End(A) be multiplication with x;.

e Thenneedto findaw € Z™s.t. My" --- My" = a-ida.
e This had already been solved in number theory.
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K algebraically closed
X C K" closed subvariety
I(X) C K[Xq,..., Xn| ~ c(X) :=c(/(X))

Theorem 1 [D-Kahle-Wiersig, 2021]
For a very general r-dimensional linear space X C K" we
have ¢(X) =r+1.

Theorem 2 [D-Kahle-Wiersig, 2021]
For X .= {Aec K™ |rk(A) <r} wehave c(X)=(r+1)!

Theorem 3 [D-Kahle-Wiersig, 2021]
For reven, X := {A | AT = —A,rk(A) < r} C KmMim=1)/2

we have ¢(X) = (r+1)!!'=(r+1)(r—1)(r—3)---3-1.

...and in each case we know all f € I(X) with ¢(X) terms.



Theorem 1 = Theorem 2

Know: for a very general r-space X C K", ¢(X) =r+1.
To show: c({rk(A) <r}) > (r+1)!

e Induction: assume true for (m—1,r)and (m—1,r—1).
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Theorem 1 = Theorem 2 6-

Know: for a very general r-space X C K", ¢(X) =r+1.
To show: c({rk(A) <r}) > (r+1)!

e Induction: assume true for (m—1,r)and (m—1,r—1).

eletfe Klx;|ic|[m|,je [n]]\{0} vanishon {rk < r}.

o Expand f(A, xm) = Luezn, fu(A)X% where | A | M—1
> Xm | 1

e Each f, # 0 vanisheson {rk < (r —1)} ~» > r! terms.

e If an f, # 0 vanishes on all rank-< r matrices, done.

o Take A € K(m=1)xn very general of rank r. Then
fx(A) # 0 for all & with f, # 0. Theorem 1 applied to the row
space X of Ayields that f, # 0 for at least (r 4+ 1) distinct a.
~ fhasatleast (r+1)-rl = (r+1)!terms




A subtlety in Theorem A

Theorem 1
For a very general r-space X C K" we have ¢(X) =r + 1.
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A subtlety in Theorem 1 7.

Theorem 1
For a very general r-space X C K" we have ¢(X) =r + 1.

Question

X C K™ subspace of dimension r, and no linear polynomial
with < r + 1 terms vanishes on X = c(X)=r+1?
Answer

NO: Take K& = A° K4, X = N\? U C K® with U C K*
sufficiently general of dimension 3.

Then X defines the uniform matroid of rank 3 on K®, but the
4 x 4-Pfaffian X1oXo4 — X13Xo4 + X14Xo3 Vanishes on X and
has 3 < 4 terms.



Proof of Theorem 1

Theorem 1
For a very general r-space X C K" we have ¢(X) =r + 1.
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Proof of Theorem 1 g

Theorem 1
For a very general r-space X C K" we have ¢(X) =r + 1.

o If F C K|Xq,...,Xn]q IS a linear subspace spanned by s
monomials and some nonzero element of F vanishes on X,
then on each element of Gr(r, K"") some nonzero element of
F vanishes.

e Then gF has the latter property for every g € GL,(K).
e Then also F’ := gin_(F) does, where xy > xo > ...

e Hence F' Z K|[xq, ..., Xr]4, @s no polynomial in xq, ..., X;
vanishes on K™ x {0}"~".

e Hence F’ contains a monomial x? divisible by some x;,
j > r,butthen (|F| =)|F'| > r+1.




Characterisation of equality

If fe I C K|xq,..., Xn], then also:
eC X*-fc IforaIICEK*,zxezgo
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Characterisation of equality 0.

If fe I C K|xq,..., Xn], then also:
ec-x"-felforallce K*,a € Z7,,
e fP € | where p is the char. exp. of K.

and these operations preserve the number of terms.

Theorem 1’ [D-Kahle-Wiersig, 2021]
For r > 2, the only (r + 1)-term polynomials that vanish on

a very general r-space X C K" are c- x* - ¢P° where / is a
linear form with r + 1 terms.

Theorem 2’ [D-Kahle-Wiersig, 2021]
For r > 2, the only (r + 1)!-term polynomials that vanish on
rank-r matrices are c- x* - det®” where det is some (r4+1) x
(r+1)-minor.

Theorem 3. (r + 2)-Pfaffians in the skew-symmetric case.
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Definition
reverse lexicographic order > defined by x* = xP if the

largest | with a; #= (; satisfies a; < (.
d  ,d—1 d—2,2 d
SO X{ = X7 'Xo = X{ X5 = .= X5 =X

a—2 a—1 a—-2,2
X1 X2X3 >' .u >' X2 X3 >' X1 X3 >' _us

d—1X3 -

Theorem [Floystad, 1999]

If s > 3, char K = 0 and a subspace F C K|xq, ..., Xn|g has
gin_F = x%7 1. (xq, ..., xs), then F = f- (¢4, ..., £s) for some

fe K|Xq,..., Xn]g_1 and some linear forms ¢4, ..., {s.

We established a characteristic-p analogue of this, with
p®-th powers of linear forms.

Open problem: the case of symmetric matrices!
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Hitting set generators (after Robert Andrews)

Definition
For a family of polynomials S C K|xq, ..., Xs|, a hitting set
generator is a polynomial map g : K™ — K" such that f o

gecKlyi,....,yml \ {0} forall f € S\ {0}.

One wants m small compared to n and deg(g) small.

Observation [Robert Andrews]
For S = {polynomials with < t terms}, choose r such that
(r+1)! > t, Theorem 2 gives a degree-two hitting set gen-

erator g : KVM<I x KM<Vn _ KVn=<vn — Kn (A B) — AB.
The resulting m = ¢-/n-log(t)/ log(log(t)) is near optimal.
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Thank you!
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