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Definition
K a field, I ⊆ K [x1, ... , xn] an ideal
 c(I) := min{number of terms in f | f ∈ I \ {0}}

Questions
• What is c(I) for your favourite I?
• Is c(I) computable from generators of I?
• Why should you care?

Example
c(I) = 1⇔ some power of x1 · x2 · · · xn lies in I.
Can be checked by a Gröbner basis computation.
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Philosophy [Eisenbud-Sturmfels, 1996]
Ideals spanned by binomials have many beautiful properties.

This condition is much stronger than c(I) = 2.

Example [Jensen-Kahle-Kathän, 2017]
For n ∈ Z≥1, In := ((x − z)2, nx − y − (n − 1)z) ⊆
Q[x , y , z] has c(In) = 2 and xn− yzn−1 is the lowest-degree
binomial in In.

Theorem [Jensen-Kahle-Kathän, 2017]
∃ algorithm that, on input I ⊆ Q[x1, ... , xn], decides c(I) = 2.

Question: Is c(I) computable?
Special cases: What if n = 1 or if I is linearly generated?

?



4 - 1The curious case of c(I) = 2

Outline of the Jensen-Kahle-Kathän algorithm:
• Rule out c(I) = 1, pass to I ⊆ Q[x±1 , ... , x±n ].
• If xα − a · x0 ∈ I, then Trop(I) ⊆ α⊥.
• Compute a basis α1, ... , αm ∈ Zn of Trop(I)⊥.
• After a monomial coordinate change: αi = ei , so xαi = xi .
• Need to look for binomials in J := Q[x±1 , ... , x±m ] ∩ I.
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Outline of the Jensen-Kahle-Kathän algorithm:
• Rule out c(I) = 1, pass to I ⊆ Q[x±1 , ... , x±n ].
• If xα − a · x0 ∈ I, then Trop(I) ⊆ α⊥.
• Compute a basis α1, ... , αm ∈ Zn of Trop(I)⊥.
• After a monomial coordinate change: αi = ei , so xαi = xi .
• Need to look for binomials in J := Q[x±1 , ... , x±m ] ∩ I.

• Trop(J) = {0} ⊆ Rm.
• Hence A := Q[x±1 , ... , x±m ]/J is finite-dimensional.
• Let Mi ∈ End(A) be multiplication with xi .
• Then need to find α ∈ Zm s.t. Mα1

1 · · ·M
αm
m = a · idA.

• This had already been solved in number theory.
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K algebraically closed
X ⊆ K n closed subvariety
I(X ) ⊆ K [x1, ... , xn] c(X ) := c(I(X ))

Theorem 1 [D-Kahle-Wiersig, 2021]
For a very general r -dimensional linear space X ⊆ K n we
have c(X ) = r + 1.

Theorem 2 [D-Kahle-Wiersig, 2021]
For X := {A ∈ K m×n | rk(A) ≤ r} we have c(X ) = (r + 1)!

Theorem 3 [D-Kahle-Wiersig, 2021]
For r even, X := {A | AT = −A, rk(A) ≤ r} ⊆ K m(m−1)/2

we have c(X ) = (r + 1)!! = (r + 1)(r − 1)(r − 3) · · · 3 · 1.

. . . and in each case we know all f ∈ I(X ) with c(X ) terms.
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• Induction: assume true for (m− 1, r ) and (m− 1, r − 1).
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To show: c({rk(A) ≤ r}) ≥ (r + 1)!

• Let f ∈ K [xij | i ∈ [m], j ∈ [n]] \ {0} vanish on {rk ≤ r}.

• Expand f (A, xm) = ∑α∈Zn
≥0

fα(A)xα
m where

• If an fα 6= 0 vanishes on all rank-≤ r matrices, done.

• Each fα 6= 0 vanishes on {rk ≤ (r − 1)} ≥ r ! terms.

• Induction: assume true for (m− 1, r ) and (m− 1, r − 1).
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Know: for a very general r -space X ⊆ K n, c(X ) = r + 1.
To show: c({rk(A) ≤ r}) ≥ (r + 1)!

• Let f ∈ K [xij | i ∈ [m], j ∈ [n]] \ {0} vanish on {rk ≤ r}.

• Expand f (A, xm) = ∑α∈Zn
≥0

fα(A)xα
m where

• If an fα 6= 0 vanishes on all rank-≤ r matrices, done.

• Each fα 6= 0 vanishes on {rk ≤ (r − 1)} ≥ r ! terms.

• Take A ∈ K (m−1)×n very general of rank r . Then
fα(A) 6= 0 for all α with fα 6= 0. Theorem 1 applied to the row
space X of A yields that fα 6= 0 for at least (r + 1) distinct α.
 f has at least (r + 1) · r ! = (r + 1)! terms �

• Induction: assume true for (m− 1, r ) and (m− 1, r − 1).

A
xm

m− 1

1



7 - 1A subtlety in Theorem 1

Theorem 1
For a very general r -space X ⊆ K n we have c(X ) = r + 1.



7 - 2A subtlety in Theorem 1

Theorem 1
For a very general r -space X ⊆ K n we have c(X ) = r + 1.

Question
X ⊆ K n subspace of dimension r , and no linear polynomial
with < r + 1 terms vanishes on X ⇒ c(X ) = r + 1?



7 - 3A subtlety in Theorem 1

Theorem 1
For a very general r -space X ⊆ K n we have c(X ) = r + 1.

Question
X ⊆ K n subspace of dimension r , and no linear polynomial
with < r + 1 terms vanishes on X ⇒ c(X ) = r + 1?

Answer
NO: Take K 6 =

∧2 K 4, X =
∧2 U ⊆ K 6 with U ⊆ K 4

sufficiently general of dimension 3.



7 - 4A subtlety in Theorem 1

Theorem 1
For a very general r -space X ⊆ K n we have c(X ) = r + 1.

Question
X ⊆ K n subspace of dimension r , and no linear polynomial
with < r + 1 terms vanishes on X ⇒ c(X ) = r + 1?

Answer
NO: Take K 6 =

∧2 K 4, X =
∧2 U ⊆ K 6 with U ⊆ K 4

sufficiently general of dimension 3.

Then X defines the uniform matroid of rank 3 on K 6, but the
4× 4-Pfaffian x12x24 − x13x24 + x14x23 vanishes on X and
has 3 < 4 terms.
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Theorem 1
For a very general r -space X ⊆ K n we have c(X ) = r + 1.

• If F ⊆ K [x1, ... , xn]d is a linear subspace spanned by s
monomials and some nonzero element of F vanishes on X ,
then on each element of Gr(r , K n) some nonzero element of
F vanishes.
• Then gF has the latter property for every g ∈ GLn(K ).

• Then also F ′ := gin�(F ) does, where x1 � x2 � ...

• Hence F ′ contains a monomial x β divisible by some xj ,
j > r , but then (|F | =)|F ′| ≥ r + 1. �

• Hence F ′ 6⊆ K [x1, ... , xr ]d , as no polynomial in x1, ... , xr
vanishes on K r × {0}n−r .
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If f ∈ I ⊆ K [x1, ... , xn], then also:
• c · xα · f ∈ I for all c ∈ K ∗, α ∈ Zn

≥0
• f p ∈ I where p is the char. exp. of K .
and these operations preserve the number of terms.

Theorem 1’ [D-Kahle-Wiersig, 2021]
For r ≥ 2, the only (r + 1)-term polynomials that vanish on
a very general r -space X ⊆ K n are c · xα · `pe

where ` is a
linear form with r + 1 terms.
Theorem 2’ [D-Kahle-Wiersig, 2021]
For r ≥ 2, the only (r + 1)!-term polynomials that vanish on
rank-r matrices are c · xα · detp

e
where det is some (r + 1)×

(r + 1)-minor.

Theorem 3’. (r + 2)-Pfaffians in the skew-symmetric case.
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Theorem [Fløystad, 1999]
If s ≥ 3, char K = 0 and a subspace F ⊆ K [x1, ... , xn]d has
gin�F = xd−1

1 · 〈x1, ... , xs〉, then F = f · 〈`1, ... , `s〉 for some
f ∈ K [x1, ... , xn]d−1 and some linear forms `1, ... , `s.

So xd
1 � xd−1

1 x2 � xd−2
1 x2

2 � ... � xd
2 � xd−1

1 x3 �
xd−2

1 x2x3 � ... � xd−1
2 x3 � xd−2

1 x2
3 � ...

We established a characteristic-p analogue of this, with
pe-th powers of linear forms.

Open problem: the case of symmetric matrices!
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11 - 3Hitting set generators (after Robert Andrews)

Definition
For a family of polynomials S ⊆ K [x1, ... , xn], a hitting set
generator is a polynomial map g : K m → K n such that f ◦
g ∈ K [y1, ... , ym] \ {0} for all f ∈ S \ {0}.

One wants m small compared to n and deg(g) small.

Observation [Robert Andrews]
For S = {polynomials with ≤ t terms}, choose r such that
(r + 1)! ≥ t , Theorem 2 gives a degree-two hitting set gen-
erator g : K

√
n×r × K r×

√
n → K

√
n×
√

n = K n, (A, B) 7→ AB.

The resulting m = c ·
√

n · log(t)/ log(log(t)) is near optimal.
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Thank you!
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