

K a field, $I \subseteq K[x_1, ..., x_n]$ an ideal $\leadsto c(I) := \min\{\text{number of terms in } f \mid f \in I \setminus \{0\}\}$

K a field, $I \subseteq K[x_1, ..., x_n]$ an ideal $\leadsto c(I) := \min\{\text{number of terms in } f \mid f \in I \setminus \{0\}\}$

Example

 $c(I) = 1 \Leftrightarrow$ some power of $x_1 \cdot x_2 \cdot \cdot \cdot x_n$ lies in I. Can be checked by a Gröbner basis computation.

K a field, $I \subseteq K[x_1, ..., x_n]$ an ideal $\leadsto c(I) := \min\{\text{number of terms in } f \mid f \in I \setminus \{0\}\}$

Example

 $c(I) = 1 \Leftrightarrow$ some power of $x_1 \cdot x_2 \cdot \cdot \cdot x_n$ lies in I. Can be checked by a Gröbner basis computation.

Questions

- What is c(I) for your favourite I?
- Is c(I) computable from generators of I?
- Why should you care?

The curious case of c(I) = 2

Philosophy

[Eisenbud-Sturmfels, 1996]

Ideals spanned by binomials have many beautiful properties.

This condition is much stronger than c(I) = 2.

The curious case of c(I) = 2

Philosophy

[Eisenbud-Sturmfels, 1996]

Ideals spanned by binomials have many beautiful properties.

This condition is much stronger than c(I) = 2.

Example

[Jensen-Kahle-Kathän, 2017]

For $n \in \mathbb{Z}_{\geq 1}$, $I_n := ((x-z)^2, nx - y - (n-1)z) \subseteq \mathbb{Q}[x, y, z]$ has $c(I_n) = 2$ and $x^n - yz^{n-1}$ is the lowest-degree binomial in I_n .

Philosophy

[Eisenbud-Sturmfels, 1996]

Ideals spanned by binomials have many beautiful properties.

This condition is much stronger than c(I) = 2.

Example

[Jensen-Kahle-Kathän, 2017]

For $n \in \mathbb{Z}_{\geq 1}$, $I_n := ((x-z)^2, nx - y - (n-1)z) \subseteq \mathbb{Q}[x, y, z]$ has $c(I_n) = 2$ and $x^n - yz^{n-1}$ is the lowest-degree binomial in I_n .

Theorem

[Jensen-Kahle-Kathän, 2017]

 \exists algorithm that, on input $I \subseteq \mathbb{Q}[x_1, \dots, x_n]$, decides $c(I) \stackrel{?}{=} 2$.

Philosophy

[Eisenbud-Sturmfels, 1996]

Ideals spanned by binomials have many beautiful properties.

This condition is much stronger than c(I) = 2.

Example

[Jensen-Kahle-Kathän, 2017]

For $n \in \mathbb{Z}_{\geq 1}$, $I_n := ((x-z)^2, nx - y - (n-1)z) \subseteq \mathbb{Q}[x, y, z]$ has $c(I_n) = 2$ and $x^n - yz^{n-1}$ is the lowest-degree binomial in I_n .

Theorem

[Jensen-Kahle-Kathän, 2017]

 \exists algorithm that, on input $I \subseteq \mathbb{Q}[x_1, \dots, x_n]$, decides $c(I) \stackrel{?}{=} 2$.

Question: Is c(I) computable?

Special cases: What if n = 1 or if l is linearly generated?

Outline of the Jensen-Kahle-Kathän algorithm:

- Rule out c(I) = 1, pass to $I \subseteq \mathbb{Q}[x_1^{\pm}, \dots, x_n^{\pm}]$.
- If $x^{\alpha} a \cdot x^{0} \in I$, then Trop $(I) \subseteq \alpha^{\perp}$.
- Compute a basis $\alpha_1, \dots, \alpha_m \in \mathbb{Z}^n$ of Trop $(I)^{\perp}$.
- After a monomial coordinate change: $\alpha_i = e_i$, so $x^{\alpha_i} = x_i$.
- Need to look for binomials in $J := \mathbb{Q}[x_1^{\pm}, \dots, x_m^{\pm}] \cap I$.

Outline of the Jensen-Kahle-Kathän algorithm:

- Rule out c(I) = 1, pass to $I \subseteq \mathbb{Q}[x_1^{\pm}, \dots, x_n^{\pm}]$.
- If $x^{\alpha} a \cdot x^{0} \in I$, then Trop $(I) \subseteq \alpha^{\perp}$.
- Compute a basis $\alpha_1, \dots, \alpha_m \in \mathbb{Z}^n$ of Trop $(I)^{\perp}$.
- After a monomial coordinate change: $\alpha_i = e_i$, so $x^{\alpha_i} = x_i$.
- Need to look for binomials in $J := \mathbb{Q}[x_1^{\pm}, \dots, x_m^{\pm}] \cap I$.
- Trop(J) = {0} $\subseteq \mathbb{R}^m$.
- Hence $A := \mathbb{Q}[x_1^{\pm}, \dots, x_m^{\pm}]/J$ is finite-dimensional.
- Let $M_i \in \text{End}(A)$ be multiplication with x_i .
- Then need to find $\alpha \in \mathbb{Z}^m$ s.t. $M_1^{\alpha_1} \cdots M_m^{\alpha_m} = a \cdot id_A$.
- This had already been solved in number theory.

 $X \subseteq K^n$ closed subvariety

$$I(X) \subseteq K[x_1, ..., x_n] \leadsto c(X) := c(I(X))$$

 $X \subseteq K^n$ closed subvariety

$$I(X) \subseteq K[x_1, ..., x_n] \leadsto c(X) := c(I(X))$$

Theorem 1

[D-Kahle-Wiersig, 2021]

For a very general r-dimensional *linear space* $X \subseteq K^n$ we have c(X) = r + 1.

 $X \subseteq K^n$ closed subvariety

$$I(X) \subseteq K[x_1, ..., x_n] \leadsto c(X) := c(I(X))$$

Theorem 1

[D-Kahle-Wiersig, 2021]

For a very general r-dimensional *linear space* $X \subseteq K^n$ we have c(X) = r + 1.

Theorem 2

[D-Kahle-Wiersig, 2021]

For
$$X := \{A \in K^{m \times n} \mid \operatorname{rk}(A) \leq r\}$$
 we have $c(X) = (r+1)!$

 $X \subseteq K^n$ closed subvariety

$$I(X) \subseteq K[x_1, ..., x_n] \leadsto c(X) := c(I(X))$$

Theorem 1

[D-Kahle-Wiersig, 2021]

For a very general r-dimensional *linear space* $X \subseteq K^n$ we have c(X) = r + 1.

Theorem 2

[D-Kahle-Wiersig, 2021]

For
$$X := \{A \in K^{m \times n} \mid rk(A) \le r\}$$
 we have $c(X) = (r + 1)!$

Theorem 3

[D-Kahle-Wiersig, 2021]

For
$$r$$
 even, $X := \{A \mid A^T = -A, \text{rk}(A) \le r\} \subseteq K^{m(m-1)/2}$ we have $c(X) = (r+1)!! = (r+1)(r-1)(r-3) \cdots 3 \cdot 1$.

 $X \subseteq K^n$ closed subvariety

$$I(X) \subseteq K[x_1, ..., x_n] \leadsto c(X) := c(I(X))$$

Theorem 1

[D-Kahle-Wiersig, 2021]

For a very general r-dimensional *linear space* $X \subseteq K^n$ we have c(X) = r + 1.

Theorem 2

[D-Kahle-Wiersig, 2021]

For
$$X := \{ A \in K^{m \times n} \mid \text{rk}(A) \le r \}$$
 we have $c(X) = (r + 1)!$

Theorem 3

[D-Kahle-Wiersig, 2021]

For
$$r$$
 even, $X := \{A \mid A^T = -A, \text{rk}(A) \le r\} \subseteq K^{m(m-1)/2}$ we have $c(X) = (r+1)!! = (r+1)(r-1)(r-3) \cdots 3 \cdot 1$.

... and in each case we know all $f \in I(X)$ with c(X) terms.

• Induction: assume true for (m-1,r) and (m-1,r-1).

- Induction: assume true for (m-1,r) and (m-1,r-1).
- Let $f \in K[x_{ij} \mid i \in [m], j \in [n]] \setminus \{0\}$ vanish on $\{rk \leq r\}$.

- Induction: assume true for (m-1,r) and (m-1,r-1).
- Let $f \in K[x_{ij} \mid i \in [m], j \in [n]] \setminus \{0\}$ vanish on $\{rk \leq r\}$.
- Expand $f(A, x_m) = \sum_{\alpha \in \mathbb{Z}_{\geq 0}^n} f_{\alpha}(A) x_m^{\alpha}$ where $A \mid x_m \mid 1$

- Induction: assume true for (m-1,r) and (m-1,r-1).
- Let $f \in K[x_{ij} \mid i \in [m], j \in [n]] \setminus \{0\}$ vanish on $\{rk \leq r\}$.
- Expand $f(A, x_m) = \sum_{\alpha \in \mathbb{Z}_{\geq 0}^n} f_{\alpha}(A) x_m^{\alpha}$ where $A \mid x_m \mid 1$
- Each $f_{\alpha} \neq 0$ vanishes on $\{ rk \leq (r-1) \} \leadsto \geq r!$ terms.

- Induction: assume true for (m-1,r) and (m-1,r-1).
- Let $f \in K[x_{ij} \mid i \in [m], j \in [n]] \setminus \{0\}$ vanish on $\{rk \leq r\}$.
- Expand $f(A, x_m) = \sum_{\alpha \in \mathbb{Z}_{\geq 0}^n} f_{\alpha}(A) x_m^{\alpha}$ where $A \mid x_m \mid 1$
- Each $f_{\alpha} \neq 0$ vanishes on $\{ rk \leq (r-1) \} \leadsto \geq r!$ terms.
- If an $f_{\alpha} \neq 0$ vanishes on all rank- $\leq r$ matrices, done.

- Induction: assume true for (m-1,r) and (m-1,r-1).
- Let $f \in K[x_{ij} \mid i \in [m], j \in [n]] \setminus \{0\}$ vanish on $\{rk \leq r\}$.
- Expand $f(A, x_m) = \sum_{\alpha \in \mathbb{Z}_{\geq 0}^n} f_{\alpha}(A) x_m^{\alpha}$ where $\begin{vmatrix} A & m-1 \\ \hline x_m & 1 \end{vmatrix}$
- Each $f_{\alpha} \neq 0$ vanishes on $\{ rk \leq (r-1) \} \rightsquigarrow \geq r!$ terms.
- If an $f_{\alpha} \neq 0$ vanishes on all rank- $\leq r$ matrices, done.
- Take $A \in K^{(m-1)\times n}$ very general of rank r. Then $f_{\alpha}(A) \neq 0$ for all α with $f_{\alpha} \neq 0$. Theorem 1 applied to the row space X of A yields that $f_{\alpha} \neq 0$ for at least (r+1) distinct α . $\leadsto f$ has at least $(r+1) \cdot r! = (r+1)!$ terms

For a very general *r*-space $X \subseteq K^n$ we have c(X) = r + 1.

Question

 $X \subseteq K^n$ subspace of dimension r, and no *linear* polynomial with < r + 1 terms vanishes on $X \Rightarrow c(X) = r + 1$?

For a very general *r*-space $X \subseteq K^n$ we have c(X) = r + 1.

Question

 $X \subseteq K^n$ subspace of dimension r, and no *linear* polynomial with < r + 1 terms vanishes on $X \Rightarrow c(X) = r + 1$?

Answer

NO: Take $K^6 = \bigwedge^2 K^4$, $X = \bigwedge^2 U \subseteq K^6$ with $U \subseteq K^4$ sufficiently general of dimension 3.

For a very general *r*-space $X \subseteq K^n$ we have c(X) = r + 1.

Question

 $X \subseteq K^n$ subspace of dimension r, and no *linear* polynomial with < r + 1 terms vanishes on $X \Rightarrow c(X) = r + 1$?

Answer

NO: Take $K^6 = \bigwedge^2 K^4$, $X = \bigwedge^2 U \subseteq K^6$ with $U \subseteq K^4$ sufficiently general of dimension 3.

Then X defines the uniform matroid of rank 3 on K^6 , but the 4×4 -Pfaffian $x_{12}x_{24} - x_{13}x_{24} + x_{14}x_{23}$ vanishes on X and has 3 < 4 terms.

For a very general *r*-space $X \subseteq K^n$ we have c(X) = r + 1.

• If $F \subseteq K[x_1, ..., x_n]_d$ is a linear subspace spanned by s monomials and some nonzero element of F vanishes on X, then on *each* element of $Gr(r, K^n)$ some nonzero element of F vanishes.

- If $F \subseteq K[x_1, ..., x_n]_d$ is a linear subspace spanned by s monomials and some nonzero element of F vanishes on X, then on *each* element of $Gr(r, K^n)$ some nonzero element of F vanishes.
- Then gF has the latter property for every $g \in GL_n(K)$.

- If $F \subseteq K[x_1, ..., x_n]_d$ is a linear subspace spanned by s monomials and some nonzero element of F vanishes on X, then on *each* element of $Gr(r, K^n)$ some nonzero element of F vanishes.
- Then gF has the latter property for every $g \in GL_n(K)$.
- Then also $F' := gin_{\succ}(F)$ does, where $x_1 \succ x_2 \succ ...$

- If $F \subseteq K[x_1, ..., x_n]_d$ is a linear subspace spanned by s monomials and some nonzero element of F vanishes on X, then on *each* element of $Gr(r, K^n)$ some nonzero element of F vanishes.
- Then gF has the latter property for every $g \in GL_n(K)$.
- Then also $F' := gin_{\succ}(F)$ does, where $x_1 \succ x_2 \succ ...$
- Hence $F' \not\subseteq K[x_1, ..., x_r]_d$, as no polynomial in $x_1, ..., x_r$ vanishes on $K^r \times \{0\}^{n-r}$.

- If $F \subseteq K[x_1, ..., x_n]_d$ is a linear subspace spanned by s monomials and some nonzero element of F vanishes on X, then on *each* element of $Gr(r, K^n)$ some nonzero element of F vanishes.
- Then gF has the latter property for every $g \in GL_n(K)$.
- Then also $F' := gin_{\succ}(F)$ does, where $x_1 \succ x_2 \succ ...$
- Hence $F' \not\subseteq K[x_1, ..., x_r]_d$, as no polynomial in $x_1, ..., x_r$ vanishes on $K^r \times \{0\}^{n-r}$.
- Hence F' contains a monomial x^{β} divisible by some x_j , j > r, but then $(|F| =)|F'| \ge r + 1$.

Characterisation of equality

If $f \in I \subseteq K[x_1, ..., x_n]$, then also:

• $c \cdot x^{\alpha} \cdot f \in I$ for all $c \in K^*$, $\alpha \in \mathbb{Z}_{\geq 0}^n$

Characterisation of equality

If $f \in I \subseteq K[x_1, ..., x_n]$, then also:

- $c \cdot x^{\alpha} \cdot f \in I$ for all $c \in K^*$, $\alpha \in \mathbb{Z}_{>0}^n$
- $f^p \in I$ where p is the char. exp. of K.

and these operations preserve the number of terms.

Characterisation of equality

If $f \in I \subseteq K[x_1, ..., x_n]$, then also:

- $c \cdot x^{\alpha} \cdot f \in I$ for all $c \in K^*$, $\alpha \in \mathbb{Z}_{>0}^n$
- $f^p \in I$ where p is the char. exp. of K.

and these operations preserve the number of terms.

Theorem 1'

[D-Kahle-Wiersig, 2021]

For $r \ge 2$, the only (r+1)-term polynomials that vanish on a very general r-space $X \subseteq K^n$ are $c \cdot x^{\alpha} \cdot \ell^{p^e}$ where ℓ is a linear form with r+1 terms.

If $f \in I \subseteq K[x_1, ..., x_n]$, then also:

- $c \cdot x^{\alpha} \cdot f \in I$ for all $c \in K^*$, $\alpha \in \mathbb{Z}_{>0}^n$
- $f^p \in I$ where p is the char. exp. of K.

and these operations preserve the number of terms.

Theorem 1'

[D-Kahle-Wiersig, 2021]

For $r \ge 2$, the only (r+1)-term polynomials that vanish on a very general r-space $X \subseteq K^n$ are $c \cdot x^{\alpha} \cdot \ell^{p^e}$ where ℓ is a linear form with r+1 terms.

Theorem 2'

[D-Kahle-Wiersig, 2021]

For $r \ge 2$, the only (r+1)!-term polynomials that vanish on rank-r matrices are $c \cdot x^{\alpha} \cdot \det^{p^e}$ where det is some $(r+1) \times (r+1)$ -minor.

If $f \in I \subseteq K[x_1, ..., x_n]$, then also:

- $c \cdot x^{\alpha} \cdot f \in I$ for all $c \in K^*$, $\alpha \in \mathbb{Z}_{>0}^n$
- $f^p \in I$ where p is the char. exp. of K.

and these operations preserve the number of terms.

Theorem 1'

[D-Kahle-Wiersig, 2021]

For $r \ge 2$, the only (r+1)-term polynomials that vanish on a very general r-space $X \subseteq K^n$ are $c \cdot x^{\alpha} \cdot \ell^{p^e}$ where ℓ is a linear form with r+1 terms.

Theorem 2'

[D-Kahle-Wiersig, 2021]

For $r \ge 2$, the only (r+1)!-term polynomials that vanish on rank-r matrices are $c \cdot x^{\alpha} \cdot \det^{p^e}$ where det is some $(r+1) \times (r+1)$ -minor.

Theorem 3'. (r+2)-Pfaffians in the skew-symmetric case.

Key proof ingredient

Definition

reverse lexicographic order \succ defined by $x^{\alpha} \succ x^{\beta}$ if the largest i with $\alpha_i \neq \beta_i$ satisfies $\alpha_i < \beta_i$.

Key proof ingredient

Definition

reverse lexicographic order \succ defined by $x^{\alpha} \succ x^{\beta}$ if the largest i with $\alpha_i \neq \beta_i$ satisfies $\alpha_i < \beta_i$.

So
$$x_1^d > x_1^{d-1}x_2 > x_1^{d-2}x_2^2 > ... > x_2^d > x_1^{d-1}x_3 > x_1^{d-2}x_2x_3 > ... > x_2^{d-1}x_3 > x_1^{d-2}x_2x_3 > ...$$

reverse lexicographic order \succ defined by $x^{\alpha} \succ x^{\beta}$ if the largest i with $\alpha_i \neq \beta_i$ satisfies $\alpha_i < \beta_i$.

So
$$x_1^d > x_1^{d-1}x_2 > x_1^{d-2}x_2^2 > ... > x_2^d > x_1^{d-1}x_3 > x_1^{d-2}x_2x_3 > ... > x_2^{d-1}x_3 > x_1^{d-2}x_2x_3 > ...$$

Theorem

[Fløystad, 1999]

If $s \ge 3$, char K = 0 and a subspace $F \subseteq K[x_1, ..., x_n]_d$ has $gin_{\succ} F = x_1^{d-1} \cdot \langle x_1, ..., x_s \rangle$, then $F = f \cdot \langle \ell_1, ..., \ell_s \rangle$ for some $f \in K[x_1, ..., x_n]_{d-1}$ and some linear forms $\ell_1, ..., \ell_s$.

reverse lexicographic order \succ defined by $x^{\alpha} \succ x^{\beta}$ if the largest i with $\alpha_i \neq \beta_i$ satisfies $\alpha_i < \beta_i$.

So
$$x_1^d > x_1^{d-1}x_2 > x_1^{d-2}x_2^2 > ... > x_2^d > x_1^{d-1}x_3 > x_1^{d-2}x_2x_3 > ... > x_2^{d-1}x_3 > x_1^{d-2}x_2x_3 > ...$$

Theorem

[Fløystad, 1999]

If $s \ge 3$, char K = 0 and a subspace $F \subseteq K[x_1, ..., x_n]_d$ has $gin_{\succ} F = x_1^{d-1} \cdot \langle x_1, ..., x_s \rangle$, then $F = f \cdot \langle \ell_1, ..., \ell_s \rangle$ for some $f \in K[x_1, ..., x_n]_{d-1}$ and some linear forms $\ell_1, ..., \ell_s$.

We established a characteristic-p analogue of this, with p^e -th powers of linear forms.

reverse lexicographic order \succ defined by $x^{\alpha} \succ x^{\beta}$ if the largest i with $\alpha_i \neq \beta_i$ satisfies $\alpha_i < \beta_i$.

So
$$x_1^d > x_1^{d-1}x_2 > x_1^{d-2}x_2^2 > ... > x_2^d > x_1^{d-1}x_3 > x_1^{d-2}x_2x_3 > ... > x_2^{d-1}x_3 > x_1^{d-2}x_2^2 > ...$$

Theorem

[Fløystad, 1999]

If $s \ge 3$, char K = 0 and a subspace $F \subseteq K[x_1, ..., x_n]_d$ has $gin_{\succ} F = x_1^{d-1} \cdot \langle x_1, ..., x_s \rangle$, then $F = f \cdot \langle \ell_1, ..., \ell_s \rangle$ for some $f \in K[x_1, ..., x_n]_{d-1}$ and some linear forms $\ell_1, ..., \ell_s$.

We established a characteristic-p analogue of this, with p^e -th powers of linear forms.

Open problem: the case of symmetric matrices!

For a family of polynomials $S \subseteq K[x_1, ..., x_n]$, a *hitting set* generator is a polynomial map $g: K^m \to K^n$ such that $f \circ g \in K[y_1, ..., y_m] \setminus \{0\}$ for all $f \in S \setminus \{0\}$.

For a family of polynomials $S \subseteq K[x_1, ..., x_n]$, a *hitting set* generator is a polynomial map $g: K^m \to K^n$ such that $f \circ g \in K[y_1, ..., y_m] \setminus \{0\}$ for all $f \in S \setminus \{0\}$.

One wants m small compared to n and deg(g) small.

For a family of polynomials $S \subseteq K[x_1, ..., x_n]$, a *hitting set* generator is a polynomial map $g: K^m \to K^n$ such that $f \circ g \in K[y_1, ..., y_m] \setminus \{0\}$ for all $f \in S \setminus \{0\}$.

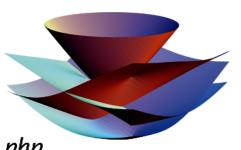
One wants m small compared to n and deg(g) small.

Observation

[Robert Andrews]

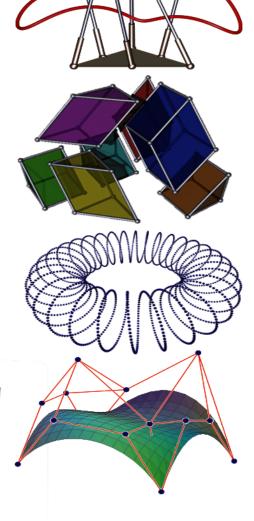
For $S = \{\text{polynomials with} \leq t \text{ terms}\}$, choose r such that $(r+1)! \geq t$, Theorem 2 gives a degree-two hitting set generator $g: K^{\sqrt{n} \times r} \times K^{r \times \sqrt{n}} \to K^{\sqrt{n} \times \sqrt{n}} = K^n$, $(A, B) \mapsto AB$.

The resulting $m = c \cdot \sqrt{n} \cdot \log(t) / \log(\log(t))$ is near optimal.

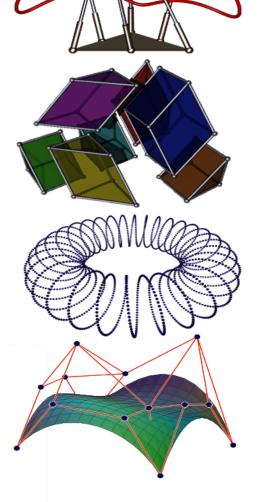


http://www.siam.org/journals/siaga.php

SIAM Journal on Applied Algebra and Geometry



SIAM Journal on Applied Algebra and Geometry



Thank you!