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implicitly, by equations
X := {(x, y) | y − x− 1 = 0} ⊂ A2

explicitly, by parameterisation
φ : A1→ A2, u 7→ (u, u + 1); X = imφ

Two ways to describe a line
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by equations
X = {(x, y) | y − x− 1 = 0} ⊂ A2

T X = {(ξ, η) | min{η, ξ, 0} attained≥ twice}
⊂ R2

∞
by parameterisation

φ : u 7→ (u, u + 1)
T φ : υ 7→ (υ,min{υ, 0})

(  ,min(  ,0))υ υ

0

Tropicalising those two ways
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tropicalisation and composition don’t commute
α : A1→ A1, s 7→ s− 1
φ′ := φ ◦ α : A1→ A2, s 7→ (s− 1, s)
T (φ′) : R∞→ R2

∞, σ 7→ (min{σ, 0}, σ)

(  ,min(  ,0))υ υ

0 0

σ σ(min(   ,0),   )

Reparameterisation for the line
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polynomials:
f =

∑
α cαx

α ∈ K[x] T f = minα v(cα) + 〈ξ, α〉
varieties:
X ⊆ An variety
I = I(X) ⊆ K[x]
T X := {ξ ∈ Rn

∞ | ∀f ∈ I : T f not linear at ξ}
tropicalisation ofX
maps?
easy special case:
φ : Am→ X ⊆ An

 im(T φ : Rm
∞→ Rn

∞) ⊆ T X

Tropicalising..
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Theorem (Baur and D)
computed all secant dimensions of P1 × P2 and
F := {point ⊂ line ⊂ P2} in all SL2× SL3 resp. SL3

equivariant embeddings.

Useful?
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four questions
φ : Am→ imφ = X ⊆ An polynomial map
∃? finitely many (or one) αi : Api → Am

(or rational maps) such that∪i im T (φ◦αi) = T (X)

remark
Sturmfels-Tevelev-Yu (2007) describe T X from φ
in case of generic coefficients; generalisations
use Hacking-Keel-Tevelev’s geometric tropicalisa-
tion (2007).

Reparameterisations
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lemma
If φ = (φ1, . . . , φn) with all φi homogeneous of same
degree, then the four questions are equivalent.
(Multiply with common denominator;
combine several reparameterisations into one.)
observation
All four questions reduce to the case where
codimX ∈ {0, 1}.
(Otherwise choose generic mononomial map
π : An→ Ad+1 where d = dimX.)

Two reductions
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toric varieties
φ : Am→ X ⊆ An monomial
 T φ linear and im T φ = T X,
a linear space in Rn

∞.

linear spaces (Yu-Yuster, 2006)
φ : Am→ X ⊆ An linear, given by matrix φ
 im T φ = T X iff every v ∈ X of minimal support
(cocircuit) is scalar multiple of a column of φ.

(Can be achieved by precomposing φ with a linear
map.)

Toric varieties and linear spaces
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φ =

t 0
0 1
1 t

 over C((t)); X = {x + t2y − tz = 0}

T X = C1 ∪ C2 ∪ C3 with
C1 = {(ξ, ξ − 2, ζ) | ζ ≥ ξ − 1}
C2 = {(ξ, η, ξ − 1) | η ≥ ξ − 2}
C3 = {(ξ, η, η + 1) | ξ ≥ η + 2}
T φ : (α, β) 7→ (α + 1, β,min{α, β + 1})
im T φ = C2 ∪ C3

Example
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φ ◦
[
1 0 t
0 1 −1

]
=

t 0
0 1
1 t

 ◦ [1 0 t
0 1 −1

]
=

t 0 t2

0 1 −1
1 t 0


The last matrix contains all cocircuits of X, so

im T
(
φ ◦
[
1 0 t
0 1 −1

])
= C1 ∪ C2 ∪ C3 = T X

by Yu and Yuster’s theorem.

Example, continued
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another example
φ : (Am)2× (An)2→Mm,n, (x, y, z, u)→ xzT +yuT

X := imφ = {rank-two matrices}
X = TmY Tn, where
Y := {1yT + z1T}
 T X parameterised by

1 1 1

−1

−1

0

0

0

0

0

0

0

γ11γ12γ13γ14

γ22γ21 γ23γ24

γ34γ33γ32γ31

ξ1
ξ2
ξ3

ν1 ν2 ν3 ν4

γij+ ξ2 + ν2

a co-circuit:

min

Rank two matrices
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parameterisation by splits

ψ : An→ X ⊆ A(n2), (x1, . . . , xn) 7→ (xi − xj)i<j
zero patterns in the image! partitions of [n]
cocircuits! partitions into two parts

 α : A2n−1−1→ An:
im T (ψ ◦ α) = T X = T G2,n up to lineality

Space of trees
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Theorem
φ : Am→ An polynomial map in characteristic zero
X := imφ algebraic variety of dimension d
Then ∃α : Td→ Am such that
dim im T (φ ◦ α) = d(= dim T X).
proof sketch
1. T X pure d-dimensional complex, rationally de-

fined over v(K∗) ∃ξ ∈ T X such that
dim(〈ξ1, . . . , ξn〉Q + v(K∗))/v(K∗) = d;
µ1, . . . , µd ∈ R a basis

Local tropical reparameterisations
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2. L := K(t1, . . . , td) with valuation v(ti) = µi

3. take a point p of Am with coordinates in L̂ such
that v(φ(p)) = ξ; exists

4. approximate p with q ∈ K[t
±1/N
1 , . . . , t

±1/N
d ]

such that v(φ(q)) = ξ
(multivariate Puiseux theorem)

5. set ui := t
1/N
i

6. q(u1, . . . , ud) is the required reparameterisation;
hits a d-dimensional neighbourhood of ξ.

Proof sketch, continued



16

/ department of mathematics and computer science

• If all φi homogeneous of the same degree, k such
local reparameterisations can be combined to a
reparameterisation Akd→ Am.

• Not yet very constructive, but I’m collaborating
with Anders Jenssen to make it so.

• Not clear that finitely many suffice to cover T X.

Some remarks


