Tropical reparameterisations

Jan Draisma

Two ways to describe a line

implicitly, by equations

$$X := \{(x, y) \mid y - x - 1 = 0\} \subset \mathbb{A}^2$$

explicitly, by parameterisation

$$\phi: \mathbb{A}^1 \to \mathbb{A}^2, \quad u \mapsto (u, u+1); \quad X = \operatorname{im} \phi$$

Tropicalising those two ways

by equations

$$X = \{(x,y) \mid y - x - 1 = 0\} \subset \mathbb{A}^2$$

$$\mathcal{T}X = \{(\xi,\eta) \mid \min\{\eta,\xi,0\} \text{ attained} \geq \text{twice}\}$$

$$\subset \mathbb{R}^2_{\infty}$$

by parameterisation

$$\phi: u \mapsto (u, u+1)$$

$$\mathcal{T}\phi: v \mapsto (v, \min\{v, 0\})$$

Reparameterisation for the line

tropicalisation and composition don't commute

$$\alpha: \mathbb{A}^1 \to \mathbb{A}^1, \quad s \mapsto s - 1$$

$$\phi' := \phi \circ \alpha: \mathbb{A}^1 \to \mathbb{A}^2, \quad s \mapsto (s - 1, s)$$

$$\mathcal{T}(\phi'): \mathbb{R}_{\infty} \to \mathbb{R}^2_{\infty}, \quad \sigma \mapsto (\min\{\sigma, 0\}, \sigma)$$

Tropicalising..

polynomials:

$$f = \sum_{\alpha} c_{\alpha} x^{\alpha} \in K[x] \leadsto \mathcal{T} f = \min_{\alpha} v(c_{\alpha}) + \langle \xi, \alpha \rangle$$
 varieties:

$X \subseteq \mathbb{A}^n$ variety

$$\Lambda \subseteq \mathbb{A}^n$$
 variety

$$I = I(X) \subseteq K[x]$$

$$\mathcal{T}X := \{ \xi \in \mathbb{R}^n_\infty \mid \forall f \in I : \mathcal{T}f \text{ not linear at } \xi \}$$
 tropicalisation of X

maps?

easy special case:

$$\phi: \mathbb{A}^m \to X \subseteq \mathbb{A}^n$$

$$\leadsto \operatorname{im}(\mathcal{T}\phi: \mathbb{R}^m_{\infty} \to \mathbb{R}^n_{\infty}) \subseteq \mathcal{T}X$$

Useful?

Theorem (Baur and D)

computed all secant dimensions of $\mathbb{P}^1 \times \mathbb{P}^2$ and $\mathcal{F} := \{ \text{point} \subset \text{line} \subset \mathbb{P}^2 \} \text{ in all } \mathrm{SL}_2 \times \mathrm{SL}_3 \text{ resp. } \mathrm{SL}_3$ equivariant embeddings.

Reparameterisations

four questions

 $\phi: \mathbb{A}^m \to \overline{\operatorname{im} \phi} = X \subseteq \mathbb{A}^n$ polynomial map

 \exists ? finitely many *(or one)* $\alpha_i: \mathbb{A}^{p_i} \to \mathbb{A}^m$

(or rational maps) such that $\cup_i \operatorname{im} \mathcal{T}(\phi \circ \alpha_i) = \mathcal{T}(X)$

remark

Sturmfels-Tevelev-Yu (2007) describe $\mathcal{T}X$ from ϕ in case of generic coefficients; generalisations use Hacking-Keel-Tevelev's geometric tropicalisation (2007).

Two reductions

lemma

If $\phi = (\phi_1, \dots, \phi_n)$ with all ϕ_i homogeneous of same degree, then the four questions are equivalent. (Multiply with common denominator; combine several reparameterisations into one.)

observation

All four questions reduce to the case where $\operatorname{codim} X \in \{0, 1\}$.

(Otherwise choose generic mononomial map

$$\pi: \mathbb{A}^n \to \mathbb{A}^{d+1}$$
 where $d = \dim X$.)

Toric varieties and linear spaces

toric varieties

$$\phi: \mathbb{A}^m \to X \subseteq \mathbb{A}^n$$
 monomial

 $\leadsto \mathcal{T}\phi$ linear and $\operatorname{im} \mathcal{T}\phi = \mathcal{T}X$, a linear space in \mathbb{R}^n_∞ .

linear spaces (Yu-Yuster, 2006)

 $\phi: \mathbb{A}^m \to X \subseteq \mathbb{A}^n$ linear, given by matrix $\phi \leadsto \operatorname{T} \phi = \mathcal{T} X$ iff every $v \in X$ of minimal support (cocircuit) is scalar multiple of a column of ϕ .

(Can be achieved by precomposing ϕ with a linear map.)

/ department of mathematics and computer science

Example

$$\phi = \begin{bmatrix} t & 0 \\ 0 & 1 \\ 1 & t \end{bmatrix} \text{ over } \mathbb{C}((t)); X = \{x + t^2y - tz = 0\}$$

$$\mathcal{T}X = C_1 \cup C_2 \cup C_3 \text{ with }$$

$$C_1 = \{(\xi, \xi - 2, \zeta) \mid \zeta \ge \xi - 1\}$$

$$C_2 = \{(\xi, \eta, \xi - 1) \mid \eta \ge \xi - 2\}$$

$$C_3 = \{(\xi, \eta, \eta + 1) \mid \xi \ge \eta + 2\}$$

$$\mathcal{T}\phi : (\alpha, \beta) \mapsto (\alpha + 1, \beta, \min\{\alpha, \beta + 1\})$$

$$\operatorname{im} \mathcal{T}\phi = C_2 \cup C_3$$

Example, continued

$$\phi \circ \begin{bmatrix} 1 & 0 & t \\ 0 & 1 & -1 \end{bmatrix} = \begin{bmatrix} t & 0 \\ 0 & 1 \\ 1 & t \end{bmatrix} \circ \begin{bmatrix} 1 & 0 & t \\ 0 & 1 & -1 \end{bmatrix} = \begin{bmatrix} t & 0 & t^2 \\ 0 & 1 & -1 \\ 1 & t & 0 \end{bmatrix}$$

The last matrix contains all cocircuits of X, so

$$\operatorname{im} \mathcal{T} \left(\phi \circ \begin{bmatrix} 1 & 0 & t \\ 0 & 1 & -1 \end{bmatrix} \right) = C_1 \cup C_2 \cup C_3 = \mathcal{T} X$$
by Yu and Yuster's theorem

by Yu and Yuster's theorem.

Rank two matrices

another example

$$\phi: (\mathbb{A}^m)^2 \times (\mathbb{A}^n)^2 \to M_{m,n}, (x, y, z, u) \to xz^T + yu^T$$

$$X := \underline{\operatorname{im} \phi} = \{ \text{rank-two matrices} \}$$

$$X=\mathbb{T}^mY\mathbb{T}^n$$
, where

$$Y := \{\mathbf{1}y^T + z\mathbf{1}^T\}$$

$$\leadsto \mathcal{T}X$$
 parameterised by

a co-circuit:

0	0	-1	0
1	1	0	1
0	0	$\overline{-1}$	0

 $\min \gamma_{ij} + \xi_2 + \nu_2$

Space of trees

parameterisation by splits

 $\psi: \mathbb{A}^n \to X \subseteq \mathbb{A}^{\binom{n}{2}}, \quad (x_1, \dots, x_n) \mapsto (x_i - x_j)_{i < j}$ zero patterns in the image \longleftrightarrow partitions of [n] cocircuits \longleftrightarrow partitions into two parts

$$\sim \alpha : \mathbb{A}^{2^{n-1}-1} \to \mathbb{A}^n$$
:
 $\operatorname{im} \mathcal{T}(\psi \circ \alpha) = \mathcal{T}X = \mathcal{T}G_{2,n}$ up to lineality

Local tropical reparameterisations

Theorem

 $\phi: \mathbb{A}^m \longrightarrow \mathbb{A}^n$ polynomial map in characteristic zero $X:=\overline{\operatorname{im} \phi}$ algebraic variety of dimension d Then $\exists \alpha: \mathbb{T}^d \longrightarrow \mathbb{A}^m$ such that $\dim \operatorname{Im} \mathcal{T}(\phi \circ \alpha) = d (= \dim \mathcal{T} X)$.

proof sketch

1. $\mathcal{T}X$ pure d-dimensional complex, rationally defined over $v(K^*) \leadsto \exists \xi \in \mathcal{T}X$ such that $\dim(\langle \xi_1, \dots, \xi_n \rangle_{\mathbb{Q}} + v(K^*))/v(K^*) = d$; $\mu_1, \dots, \mu_d \in \mathbb{R}$ a basis

Proof sketch, continued

- **2.** $L:=K(t_1,\ldots,t_d)$ with valuation $v(t_i)=\mu_i$
- 3. take a point p of \mathbb{A}^m with coordinates in $\overline{\widehat{L}}$ such that $v(\phi(p))=\xi$; exists
- 4. approximate p with $q \in K[t_1^{\pm 1/N}, \dots, t_d^{\pm 1/N}]$ such that $v(\phi(q)) = \xi$ (multivariate Puiseux theorem)
- 5. set $u_i := t_i^{1/N}$
- 6. $q(u_1, \ldots, u_d)$ is the required reparameterisation; hits a d-dimensional neighbourhood of ξ .

Some remarks

- If all ϕ_i homogeneous of the same degree, k such local reparameterisations can be combined to a reparameterisation $\mathbb{A}^{kd} \to \mathbb{A}^m$.
- Not yet very constructive, but I'm collaborating with Anders Jenssen to make it so.
- Not clear that finitely many suffice to cover TX.