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Definition [Mikhalkin, Caporaso, Amini, Cornelissen-Kool]
The (geometric) gonality of Γ is the minimal degree of any
tropical morphism from a modification of Γ to a tree.

In the example, the gonality is 2:

:=

rϕ(v)



4Moduli space

Moduli space of genus-g metric graphs
• Let g ≥ 2.
• For each ordinary genus-g graph G = (V, E) set CG := (R>0)E .
• For any isomorphism G → H glue CG to CH .
• If contracting e in G yields a genus-g graph H, glue CH to CG as
the boundary with e-th coordinate 0.
• Identify modifications (ignore dangling trees).
 yields the moduli space Mg of genus-g metric graphs.
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• For each ordinary genus-g graph G = (V, E) set CG := (R>0)E .
• For any isomorphism G → H glue CG to CH .
• If contracting e in G yields a genus-g graph H, glue CH to CG as
the boundary with e-th coordinate 0.
• Identify modifications (ignore dangling trees).
 yields the moduli space Mg of genus-g metric graphs.

If G trivalent, then dim CG = |E| = 3g − 3 dim Mg = 3g − 3.
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min{3g − 3, 2g + 2d − 5} (perhaps not pure-dim). In particular,
the locus where the gonality is ≥ d(g + 2)/2e is dense and open.

Theorem 2
For each trivalent combinatorial type G, the preimage in CG

of the gonality-d(g + 2)/2e locus contains an open cone.

Remarks • Dimension matches the classical count for curves.
• Specialisation lemma and ∃ special divisors on curves⇒ the
preimage in Thm 2 is dense in CG. But our proof is combinatorial.
• Via the specialisation lemma, Theorem 1 implies that a general
genus-g curve has gonality (at least) d(g + 2)/2e— no need for a
specific graph to prove this. (Observed by Mikhalkin in 2011.)
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• Start with d copies T1, . . . ,Td of a metric tree T .
• For each v ∈ T let ∼v be an eq relation on [d]; this expresses
which Ti are glued together at their respective copies of v.
• Assume that ∀i, j : Ti j := {v ∈ T | i ∼v j} is a finite union of
disjoint closed intervals (or points).
• Let Γ be the glued object, with edges shrunk by a factor e where
e edges are glued; assume connected.

Proposition
The natural map ϕ : Γ→ T is a degree-d tropical morphism, and
all degree-d morphims to T arise in this manner.

2 ∼ 3
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Proposition
For I ⊆ [d] set TI := {v ∈ T | ∀i, j ∈ I : i ∼v j}. The genus of Γ is∑

I⊆[d](−1)|I|c(TI) where c(.) counts the connected components.

Definition
v ∈ T is called an endpoint if it is an endpoint of some interval in
Ti j for some i, j ∈ [d]. Set E := {endpoints of valency ≤ 2}

Proposition
|E| +

∑
v of valency>2 rϕ(v) ≤ 2g + 2d − 2

This turns out to imply that the edge lengths of only 2g + 2d − 5
of the connected components of T − E − {≥ trivalent vertices}
contribute to the point in Mg represented by Γ. �
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Concentrate on the case of gonality d(g + 2)/2e =: d (Theorem 2).
• Let G = (V, E) be a trivalent graph with |E| − |V | + 1 = g.
• Case 1: G is cactus (any two simple cycles intersect in at most
one point) any point in CG represents Γ of gonality ≤ d.

• Case 2: G has a trivalent vertex v such that G′ = G − v is
connected, of genus g − 2. By induction, CG′ contains an open
cone, of dimension 3g − 9, where the gonality is d − 1.
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v

v
Parameter count:
3 for the gray dots
3 for the orange edges
3g − 9 + 3 + 3 = 3g − 3 �
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• If Γ in the open cone from theorem 2 has integral edge lengths,
then it has a degree-d(g + 2)/2e divisor of rank ≥ 1 supported on
integral points.

• The inductive construction works when the orange edges are
sufficiently long. We do not yet know how to generalise this.

• No new ideas about Brill-Noether theory in higher rank.

• But at least for gonality, the analogy between curves and metric
graphs is now almost perfect.

Thank you.
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