Metric graphs with prescribed gonality

Jan Draisma
TU Eindhoven and VU Amsterdam
j.w.i.p.w. Filip Cools (Cape Town/Leuven)

Daejeon, August 2015

Usually assumed connected; *genus*=*g*=first Betti number.

Usually assumed connected; *genus*=*g*=first Betti number.

Definition

[Urakawa, Baker-Norine, Caporaso, ...]

A continuous $\varphi : \Gamma \to \Sigma$ is *harmonic* if it is piecewise linear with integral slopes and $\forall v \in \Gamma$ and e, f emanating from $\varphi(v)$ we have

$$\sum_{e':\varphi(e')=e}(d\varphi)(e')=\sum_{f':\varphi(f')=f}(d\varphi)(f')$$

Usually assumed connected; *genus*=*g*=first Betti number.

Definition

[Urakawa, Baker-Norine, Caporaso, ...]

A continuous $\varphi : \Gamma \to \Sigma$ is *harmonic* if it is piecewise linear with integral slopes and $\forall v \in \Gamma$ and e, f emanating from $\varphi(v)$ we have

$$\sum_{e':\varphi(e')=e}(d\varphi)(e')=\sum_{f':\varphi(f')=f}(d\varphi)(f')$$

 $=: m_{\varphi}(v), local degree$

Usually assumed connected; *genus*=*g*=first Betti number.

Definition

[Urakawa, Baker-Norine, Caporaso, ...]

A continuous $\varphi : \Gamma \to \Sigma$ is *harmonic* if it is piecewise linear with integral slopes and $\forall v \in \Gamma$ and e, f emanating from $\varphi(v)$ we have

$$\sum_{e':\varphi(e')=e}(d\varphi)(e')=\sum_{f':\varphi(f')=f}(d\varphi)(f')$$

 $=: m_{\varphi}(v), local degree$

(analogue of holomorphic maps)

Usually assumed connected; *genus*=*g*=first Betti number.

Definition

[Urakawa, Baker-Norine, Caporaso, ...]

A continuous $\varphi : \Gamma \to \Sigma$ is *harmonic* if it is piecewise linear with integral slopes and $\forall v \in \Gamma$ and e, f emanating from $\varphi(v)$ we have

$$\sum_{e':\varphi(e')=e} (d\varphi)(e') = \sum_{f':\varphi(f')=f} (d\varphi)(f')$$
=: $m_{\varphi}(v)$, local degree
(analogue of holomorphic maps)

Usually assumed connected; *genus*=*g*=first Betti number.

Definition

[Urakawa, Baker-Norine, Caporaso, ...]

A continuous $\varphi : \Gamma \to \Sigma$ is *harmonic* if it is piecewise linear with integral slopes and $\forall v \in \Gamma$ and e, f emanating from $\varphi(v)$ we have

$$\sum_{e':\varphi(e')=e}(d\varphi)(e')=\sum_{f':\varphi(f')=f}(d\varphi)(f')$$

 $=: m_{\varphi}(v), local degree$

(analogue of holomorphic maps)

 $\varphi: \Gamma \to \Sigma$ harmonic, non-constant $\rightsquigarrow \deg \varphi := \sum_{v: \varphi(v)=w} m_{\varphi}(v)$ (independent of w)

 $\varphi : \Gamma \to \Sigma$ harmonic, non-constant $\leadsto \deg \varphi := \sum_{v:\varphi(v)=w} m_{\varphi}(v)$ (independent of w)

Definition

[Bertrand-Brugallé-Mikhalkin]

 φ is a *tropical morphism* if all slopes are nonzero and $\forall v \in \Gamma$: $(\text{valency}(v) - 2) - m_{\varphi}(v)(\text{valency}(\varphi(v)) - 2) \ge 0$. (e.g. not allowed:)

 $\varphi : \Gamma \to \Sigma$ harmonic, non-constant $\leadsto \deg \varphi := \sum_{v:\varphi(v)=w} m_{\varphi}(v)$ (independent of w)

Definition

[Bertrand-Brugallé-Mikhalkin]

 φ is a *tropical morphism* if all slopes are nonzero and $\forall v \in \Gamma$: $(\text{valency}(v) - 2) - m_{\varphi}(v)(\text{valency}(\varphi(v)) - 2) \ge 0$. (e.g. not allowed:)

 $r_{\varphi}(v)$

 $\varphi : \Gamma \to \Sigma$ harmonic, non-constant $\leadsto \deg \varphi := \sum_{v:\varphi(v)=w} m_{\varphi}(v)$ (independent of w)

Definition

[Bertrand-Brugallé-Mikhalkin]

 φ is a *tropical morphism* if all slopes are nonzero and $\forall v \in \Gamma$: (valency(v) - 2) – $m_{\varphi}(v)$ (valency $(\varphi(v)) - 2$) ≥ 0 . (e.g. not allowed:)

 $r_{\varphi}(v)$

Definition

[Mikhalkin, Caporaso, Amini, Cornelissen-Kool]

The (geometric) *gonality* of Γ is the minimal degree of any tropical morphism from a *modification* of Γ to a tree.

 $\varphi : \Gamma \to \Sigma$ harmonic, non-constant $\leadsto \deg \varphi := \sum_{v:\varphi(v)=w} m_{\varphi}(v)$ (independent of w)

Definition

[Bertrand-Brugallé-Mikhalkin]

 φ is a *tropical morphism* if all slopes are nonzero and $\forall v \in \Gamma$: (valency(v) - 2) – $m_{\varphi}(v)$ (valency $(\varphi(v)) - 2$) ≥ 0 . (e.g. not allowed:)

 $r_{\varphi}(v)$

Cornelisson Vocali

Definition

[Mikhalkin, Caporaso, Amini, Cornelissen-Kool]

The (geometric) *gonality* of Γ is the minimal degree of any tropical morphism from a *modification* of Γ to a tree.

In the example, the gonality is 2:

Moduli space of genus-g metric graphs

- Let $g \ge 2$.
- For each ordinary genus-g graph G = (V, E) set $C_G := (\mathbb{R}_{>0})^E$.
- For any isomorphism $G \to H$ glue C_G to C_H .
- If contracting e in G yields a genus-g graph H, glue C_H to C_G as the boundary with e-th coordinate 0.
- Identify modifications (ignore dangling trees).
- \rightsquigarrow yields the *moduli space* M_g of genus-g metric graphs.

Moduli space of genus-g metric graphs

- Let $g \ge 2$.
- For each ordinary genus-g graph G = (V, E) set $C_G := (\mathbb{R}_{>0})^E$.
- For any isomorphism $G \to H$ glue C_G to C_H .
- If contracting e in G yields a genus-g graph H, glue C_H to C_G as the boundary with e-th coordinate 0.
- Identify modifications (ignore dangling trees).
- \rightsquigarrow yields the *moduli space* M_g of genus-g metric graphs.

If G trivalent, then dim $C_G = |E| = 3g - 3 \Leftrightarrow \dim M_g = 3g - 3$.

Theorem 1

For $d, g \ge 2$ the gonality-d locus in M_g is locally closed of dim $\min\{3g-3, 2g+2d-5\}$ (perhaps not pure-dim). In particular, the locus where the gonality is $\ge \lceil (g+2)/2 \rceil$ is dense and open.

Theorem 1

For $d, g \ge 2$ the gonality-d locus in M_g is locally closed of dim $\min\{3g-3, 2g+2d-5\}$ (perhaps not pure-dim). In particular, the locus where the gonality is $\ge \lceil (g+2)/2 \rceil$ is dense and open.

Theorem 2

For *each* trivalent combinatorial type G, the preimage in C_G of the gonality- $\lceil (g+2)/2 \rceil$ locus contains an open cone.

Theorem 1

For $d, g \ge 2$ the gonality-d locus in M_g is locally closed of dim $\min\{3g-3, 2g+2d-5\}$ (perhaps not pure-dim). In particular, the locus where the gonality is $\ge \lceil (g+2)/2 \rceil$ is dense and open.

Theorem 2

For *each* trivalent combinatorial type G, the preimage in C_G of the gonality- $\lceil (g+2)/2 \rceil$ locus contains an open cone.

Remarks • Dimension matches the classical count for curves.

• Specialisation lemma and \exists special divisors on curves \Rightarrow the preimage in Thm 2 is *dense* in C_G . But our proof is combinatorial.

Theorem 1

For $d, g \ge 2$ the gonality-d locus in M_g is locally closed of dim $\min\{3g-3, 2g+2d-5\}$ (perhaps not pure-dim). In particular, the locus where the gonality is $\ge \lceil (g+2)/2 \rceil$ is dense and open.

Theorem 2

For *each* trivalent combinatorial type G, the preimage in C_G of the gonality- $\lceil (g+2)/2 \rceil$ locus contains an open cone.

Remarks • Dimension matches the classical count for curves.

- Specialisation lemma and \exists special divisors on curves \Rightarrow the preimage in Thm 2 is *dense* in C_G . But our proof is combinatorial.
- Via the specialisation lemma, Theorem 1 implies that a general genus-g curve has gonality (at least) $\lceil (g+2)/2 \rceil$ no need for a *specific* graph to prove this. (Observed by Mikhalkin in 2011.)

Gluing datum (T, d, \sim)

- Start with d copies T_1, \ldots, T_d of a metric tree T.
- For each $v \in T$ let \sim_v be an eq relation on [d]; this expresses which T_i are glued together at their respective copies of v.
- Assume that $\forall i, j : T_{ij} := \{v \in T \mid i \sim_v j\}$ is a finite union of disjoint closed *intervals* (or points).
- Let Γ be the glued object, with edges shrunk by a factor e where e edges are glued; assume connected.

Gluing datum (T, d, \sim)

- Start with d copies T_1, \ldots, T_d of a metric tree T.
- For each $v \in T$ let \sim_v be an eq relation on [d]; this expresses which T_i are glued together at their respective copies of v.
- Assume that $\forall i, j : T_{ij} := \{v \in T \mid i \sim_v j\}$ is a finite union of disjoint closed *intervals* (or points).
- Let Γ be the glued object, with edges shrunk by a factor e where e edges are glued; assume connected.

- Start with d copies T_1, \ldots, T_d of a metric tree T.
- For each $v \in T$ let \sim_v be an eq relation on [d]; this expresses which T_i are glued together at their respective copies of v.
- Assume that $\forall i, j : T_{ij} := \{v \in T \mid i \sim_v j\}$ is a finite union of disjoint closed *intervals* (or points).
- Let Γ be the glued object, with edges shrunk by a factor e where e edges are glued; assume connected.

- Start with d copies T_1, \ldots, T_d of a metric tree T.
- For each $v \in T$ let \sim_v be an eq relation on [d]; this expresses which T_i are glued together at their respective copies of v.
- Assume that $\forall i, j : T_{ij} := \{v \in T \mid i \sim_v j\}$ is a finite union of disjoint closed *intervals* (or points).
- Let Γ be the glued object, with edges shrunk by a factor e where e edges are glued; assume connected.

The natural map $\varphi: \Gamma \to T$ is a degree-d tropical morphism, and all degree-d morphims to T arise in this manner.

For $I \subseteq [d]$ set $T_I := \{v \in T \mid \forall i, j \in I : i \sim_v j\}$. The genus of Γ is $\sum_{I \subseteq [d]} (-1)^{|I|} c(T_I)$ where c(.) counts the connected components.

For $I \subseteq [d]$ set $T_I := \{v \in T \mid \forall i, j \in I : i \sim_v j\}$. The genus of Γ is $\sum_{I \subseteq [d]} (-1)^{|I|} c(T_I)$ where c(.) counts the connected components.

Definition

 $v \in T$ is called an *endpoint* if it is an endpoint of some interval in T_{ij} for some $i, j \in [d]$. Set $E := \{\text{endpoints of valency } \leq 2\}$

For $I \subseteq [d]$ set $T_I := \{v \in T \mid \forall i, j \in I : i \sim_v j\}$. The genus of Γ is $\sum_{I \subseteq [d]} (-1)^{|I|} c(T_I)$ where c(.) counts the connected components.

Definition

 $v \in T$ is called an *endpoint* if it is an endpoint of some interval in T_{ij} for some $i, j \in [d]$. Set $E := \{\text{endpoints of valency } \leq 2\}$

Proposition

$$|E| + \sum_{v \text{ of valency} > 2} r_{\varphi}(v) \le 2g + 2d - 2$$

For $I \subseteq [d]$ set $T_I := \{v \in T \mid \forall i, j \in I : i \sim_v j\}$. The genus of Γ is $\sum_{I \subseteq [d]} (-1)^{|I|} c(T_I)$ where c(.) counts the connected components.

Definition

 $v \in T$ is called an *endpoint* if it is an endpoint of some interval in T_{ij} for some $i, j \in [d]$. Set $E := \{\text{endpoints of valency } \leq 2\}$

Proposition

$$|E| + \sum_{v \text{ of valency} > 2} r_{\varphi}(v) \le 2g + 2d - 2$$

This turns out to imply that the edge lengths of only 2g + 2d - 5 of the connected components of $T - E - \{ \geq \text{trivalent vertices} \}$ contribute to the point in M_g represented by Γ .

- Let G = (V, E) be a trivalent graph with |E| |V| + 1 = g.
- Case 1: G is cactus (any two simple cycles intersect in at most one point) \rightsquigarrow any point in C_G represents Γ of gonality $\leq d$.

- Let G = (V, E) be a trivalent graph with |E| |V| + 1 = g.
- Case 1: G is *cactus* (any two simple cycles intersect in at most one point) \rightsquigarrow any point in C_G represents Γ of gonality $\leq d$.
- Case 2: G has a trivalent vertex v such that G' = G v is connected, of genus g 2. By induction, $C_{G'}$ contains an open cone, of dimension 3g 9, where the gonality is d 1.

- Let G = (V, E) be a trivalent graph with |E| |V| + 1 = g.
- Case 1: G is *cactus* (any two simple cycles intersect in at most one point) \rightsquigarrow any point in C_G represents Γ of gonality $\leq d$.
- Case 2: G has a trivalent vertex v such that G' = G v is connected, of genus g 2. By induction, $C_{G'}$ contains an open cone, of dimension 3g 9, where the gonality is d 1.

- Let G = (V, E) be a trivalent graph with |E| |V| + 1 = g.
- Case 1: G is *cactus* (any two simple cycles intersect in at most one point) \rightsquigarrow any point in C_G represents Γ of gonality $\leq d$.
- Case 2: G has a trivalent vertex v such that G' = G v is connected, of genus g 2. By induction, $C_{G'}$ contains an open cone, of dimension 3g 9, where the gonality is d 1.

- Let G = (V, E) be a trivalent graph with |E| |V| + 1 = g.
- Case 1: G is cactus (any two simple cycles intersect in at most one point) \rightsquigarrow any point in C_G represents Γ of gonality $\leq d$.
- Case 2: G has a trivalent vertex v such that G' = G v is connected, of genus g-2. By induction, $C_{G'}$ contains an open cone, of dimension 3g - 9, where the gonality is d - 1.

- Let G = (V, E) be a trivalent graph with |E| |V| + 1 = g.
- Case 1: G is *cactus* (any two simple cycles intersect in at most one point) \rightsquigarrow any point in C_G represents Γ of gonality $\leq d$.
- Case 2: G has a trivalent vertex v such that G' = G v is connected, of genus g 2. By induction, $C_{G'}$ contains an open cone, of dimension 3g 9, where the gonality is d 1.

- Let G = (V, E) be a trivalent graph with |E| |V| + 1 = g.
- Case 1: G is *cactus* (any two simple cycles intersect in at most one point) \rightsquigarrow any point in C_G represents Γ of gonality $\leq d$.
- Case 2: G has a trivalent vertex v such that G' = G v is connected, of genus g 2. By induction, $C_{G'}$ contains an open cone, of dimension 3g 9, where the gonality is d 1.

Parameter count:

3 for the gray dots

3 for the orange edges

$$3g - 9 + 3 + 3 = 3g - 3$$

• If Γ in the open cone from theorem 2 has integral edge lengths, then it has a degree- $\lceil (g+2)/2 \rceil$ divisor of rank ≥ 1 supported on integral points.

- If Γ in the open cone from theorem 2 has integral edge lengths, then it has a degree- $\lceil (g+2)/2 \rceil$ divisor of rank ≥ 1 supported on integral points.
- The inductive construction works when the orange edges are sufficiently long. We do not yet know how to generalise this.

- If Γ in the open cone from theorem 2 has integral edge lengths, then it has a degree- $\lceil (g+2)/2 \rceil$ divisor of rank ≥ 1 supported on integral points.
- The inductive construction works when the orange edges are sufficiently long. We do not yet know how to generalise this.
- No new ideas about Brill-Noether theory in higher rank.

- If Γ in the open cone from theorem 2 has integral edge lengths, then it has a degree- $\lceil (g+2)/2 \rceil$ divisor of rank ≥ 1 supported on integral points.
- The inductive construction works when the orange edges are sufficiently long. We do not yet know how to generalise this.
- No new ideas about Brill-Noether theory in higher rank.
- But at least for gonality, the analogy between curves and metric graphs is now almost perfect.

- If Γ in the open cone from theorem 2 has integral edge lengths, then it has a degree- $\lceil (g+2)/2 \rceil$ divisor of rank ≥ 1 supported on integral points.
- The inductive construction works when the orange edges are sufficiently long. We do not yet know how to generalise this.
- No new ideas about Brill-Noether theory in higher rank.
- But at least for gonality, the analogy between curves and metric graphs is now almost perfect.

Thank you.