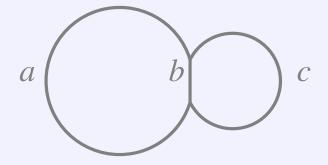
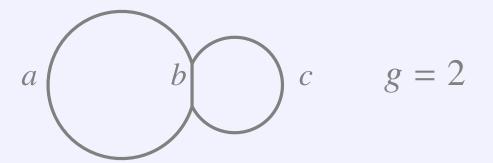
## Metric graphs with prescribed gonality

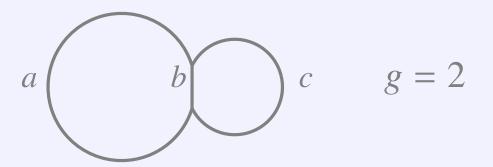
Jan Draisma
TU Eindhoven and VU Amsterdam
j.w.i.p.w. Filip Cools (Cape Town/Leuven)

Daejeon, August 2015





Usually assumed connected; *genus*=*g*=first Betti number.



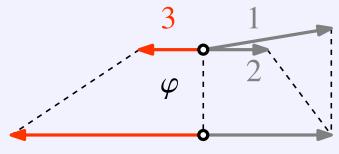
Usually assumed connected; *genus*=*g*=first Betti number.

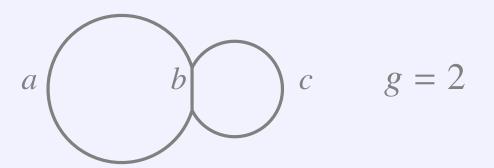
#### **Definition**

[Urakawa, Baker-Norine, Caporaso, ...]

A continuous  $\varphi : \Gamma \to \Sigma$  is *harmonic* if it is piecewise linear with integral slopes and  $\forall v \in \Gamma$  and e, f emanating from  $\varphi(v)$  we have

$$\sum_{e':\varphi(e')=e}(d\varphi)(e')=\sum_{f':\varphi(f')=f}(d\varphi)(f')$$





Usually assumed connected; *genus*=*g*=first Betti number.

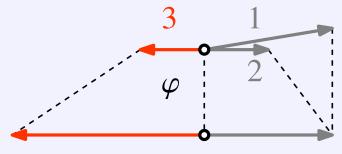
#### **Definition**

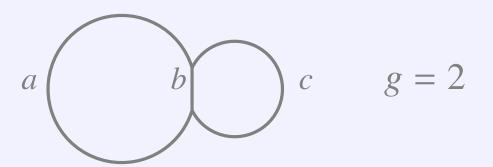
[Urakawa, Baker-Norine, Caporaso, ...]

A continuous  $\varphi : \Gamma \to \Sigma$  is *harmonic* if it is piecewise linear with integral slopes and  $\forall v \in \Gamma$  and e, f emanating from  $\varphi(v)$  we have

$$\sum_{e':\varphi(e')=e}(d\varphi)(e')=\sum_{f':\varphi(f')=f}(d\varphi)(f')$$

 $=: m_{\varphi}(v), local degree$ 





Usually assumed connected; *genus*=*g*=first Betti number.

#### **Definition**

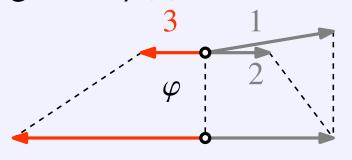
[Urakawa, Baker-Norine, Caporaso, ...]

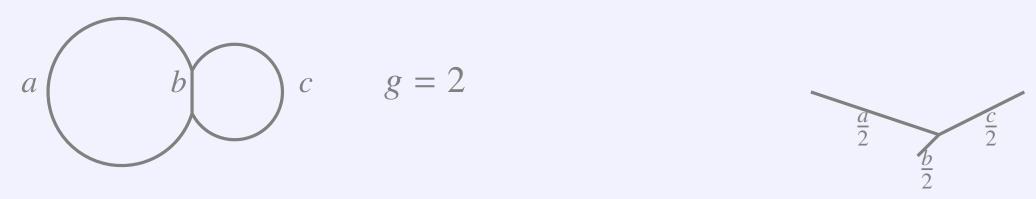
A continuous  $\varphi : \Gamma \to \Sigma$  is *harmonic* if it is piecewise linear with integral slopes and  $\forall v \in \Gamma$  and e, f emanating from  $\varphi(v)$  we have

$$\sum_{e':\varphi(e')=e}(d\varphi)(e')=\sum_{f':\varphi(f')=f}(d\varphi)(f')$$

 $=: m_{\varphi}(v), local degree$ 

(analogue of holomorphic maps)





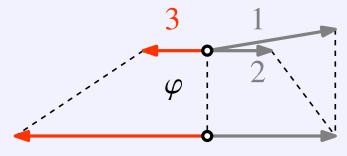
Usually assumed connected; *genus*=*g*=first Betti number.

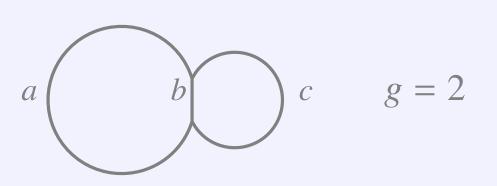
#### **Definition**

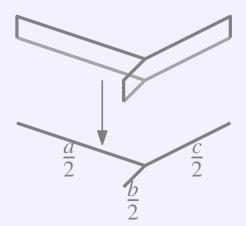
[Urakawa, Baker-Norine, Caporaso, ...]

A continuous  $\varphi : \Gamma \to \Sigma$  is *harmonic* if it is piecewise linear with integral slopes and  $\forall v \in \Gamma$  and e, f emanating from  $\varphi(v)$  we have

$$\sum_{e':\varphi(e')=e} (d\varphi)(e') = \sum_{f':\varphi(f')=f} (d\varphi)(f')$$
=:  $m_{\varphi}(v)$ , local degree
(analogue of holomorphic maps)







Usually assumed connected; *genus*=*g*=first Betti number.

#### **Definition**

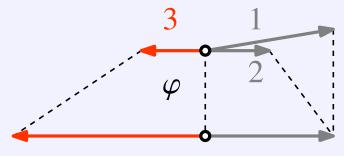
[Urakawa, Baker-Norine, Caporaso, ...]

A continuous  $\varphi : \Gamma \to \Sigma$  is *harmonic* if it is piecewise linear with integral slopes and  $\forall v \in \Gamma$  and e, f emanating from  $\varphi(v)$  we have

$$\sum_{e':\varphi(e')=e}(d\varphi)(e')=\sum_{f':\varphi(f')=f}(d\varphi)(f')$$

 $=: m_{\varphi}(v), local degree$ 

(analogue of holomorphic maps)



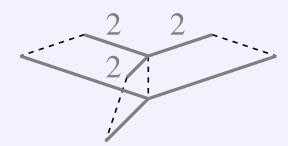
 $\varphi: \Gamma \to \Sigma$  harmonic, non-constant  $\rightsquigarrow \deg \varphi := \sum_{v: \varphi(v)=w} m_{\varphi}(v)$  (independent of w)

 $\varphi : \Gamma \to \Sigma$  harmonic, non-constant  $\leadsto \deg \varphi := \sum_{v:\varphi(v)=w} m_{\varphi}(v)$  (independent of w)

#### **Definition**

[Bertrand-Brugallé-Mikhalkin]

 $\varphi$  is a *tropical morphism* if all slopes are nonzero and  $\forall v \in \Gamma$ :  $(\text{valency}(v) - 2) - m_{\varphi}(v)(\text{valency}(\varphi(v)) - 2) \ge 0$ . (e.g. not allowed:)



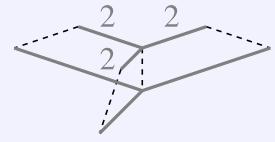
 $\varphi : \Gamma \to \Sigma$  harmonic, non-constant  $\leadsto \deg \varphi := \sum_{v:\varphi(v)=w} m_{\varphi}(v)$  (independent of w)

#### **Definition**

[Bertrand-Brugallé-Mikhalkin]

 $\varphi$  is a *tropical morphism* if all slopes are nonzero and  $\forall v \in \Gamma$ :  $(\text{valency}(v) - 2) - m_{\varphi}(v)(\text{valency}(\varphi(v)) - 2) \ge 0$ . (e.g. not allowed:)

 $r_{\varphi}(v)$ 



 $\varphi : \Gamma \to \Sigma$  harmonic, non-constant  $\leadsto \deg \varphi := \sum_{v:\varphi(v)=w} m_{\varphi}(v)$  (independent of w)

#### **Definition**

[Bertrand-Brugallé-Mikhalkin]

 $\varphi$  is a *tropical morphism* if all slopes are nonzero and  $\forall v \in \Gamma$ : (valency(v) - 2) –  $m_{\varphi}(v)$ (valency $(\varphi(v)) - 2$ )  $\geq 0$ . (e.g. not allowed:)

 $r_{\varphi}(v)$ 

#### **Definition**

[Mikhalkin, Caporaso, Amini, Cornelissen-Kool]

The (geometric) *gonality* of  $\Gamma$  is the minimal degree of any tropical morphism from a *modification* of  $\Gamma$  to a tree.

 $\varphi : \Gamma \to \Sigma$  harmonic, non-constant  $\leadsto \deg \varphi := \sum_{v:\varphi(v)=w} m_{\varphi}(v)$  (independent of w)

#### **Definition**

[Bertrand-Brugallé-Mikhalkin]

 $\varphi$  is a *tropical morphism* if all slopes are nonzero and  $\forall v \in \Gamma$ : (valency(v) - 2) –  $m_{\varphi}(v)$ (valency $(\varphi(v)) - 2$ )  $\geq 0$ . (e.g. not allowed:)

 $r_{\varphi}(v)$ 

# Cornelisson Vocali

#### **Definition**

[Mikhalkin, Caporaso, Amini, Cornelissen-Kool]

The (geometric) *gonality* of  $\Gamma$  is the minimal degree of any tropical morphism from a *modification* of  $\Gamma$  to a tree.

In the example, the gonality is 2:

### Moduli space of genus-g metric graphs

- Let  $g \ge 2$ .
- For each ordinary genus-g graph G = (V, E) set  $C_G := (\mathbb{R}_{>0})^E$ .
- For any isomorphism  $G \to H$  glue  $C_G$  to  $C_H$ .
- If contracting e in G yields a genus-g graph H, glue  $C_H$  to  $C_G$  as the boundary with e-th coordinate 0.
- Identify modifications (ignore dangling trees).
- $\rightsquigarrow$  yields the *moduli space*  $M_g$  of genus-g metric graphs.

### Moduli space of genus-g metric graphs

- Let  $g \ge 2$ .
- For each ordinary genus-g graph G = (V, E) set  $C_G := (\mathbb{R}_{>0})^E$ .
- For any isomorphism  $G \to H$  glue  $C_G$  to  $C_H$ .
- If contracting e in G yields a genus-g graph H, glue  $C_H$  to  $C_G$  as the boundary with e-th coordinate 0.
- Identify modifications (ignore dangling trees).
- $\rightsquigarrow$  yields the *moduli space*  $M_g$  of genus-g metric graphs.

If G trivalent, then dim  $C_G = |E| = 3g - 3 \Leftrightarrow \dim M_g = 3g - 3$ .



#### Theorem 1

For  $d, g \ge 2$  the gonality-d locus in  $M_g$  is locally closed of dim  $\min\{3g-3, 2g+2d-5\}$  (perhaps not pure-dim). In particular, the locus where the gonality is  $\ge \lceil (g+2)/2 \rceil$  is dense and open.

#### Theorem 1

For  $d, g \ge 2$  the gonality-d locus in  $M_g$  is locally closed of dim  $\min\{3g-3, 2g+2d-5\}$  (perhaps not pure-dim). In particular, the locus where the gonality is  $\ge \lceil (g+2)/2 \rceil$  is dense and open.

#### Theorem 2

For *each* trivalent combinatorial type G, the preimage in  $C_G$  of the gonality- $\lceil (g+2)/2 \rceil$  locus contains an open cone.

#### Theorem 1

For  $d, g \ge 2$  the gonality-d locus in  $M_g$  is locally closed of dim  $\min\{3g-3, 2g+2d-5\}$  (perhaps not pure-dim). In particular, the locus where the gonality is  $\ge \lceil (g+2)/2 \rceil$  is dense and open.

#### Theorem 2

For *each* trivalent combinatorial type G, the preimage in  $C_G$  of the gonality- $\lceil (g+2)/2 \rceil$  locus contains an open cone.

**Remarks** • Dimension matches the classical count for curves.

• Specialisation lemma and  $\exists$  special divisors on curves  $\Rightarrow$  the preimage in Thm 2 is *dense* in  $C_G$ . But our proof is combinatorial.

#### Theorem 1

For  $d, g \ge 2$  the gonality-d locus in  $M_g$  is locally closed of dim  $\min\{3g-3, 2g+2d-5\}$  (perhaps not pure-dim). In particular, the locus where the gonality is  $\ge \lceil (g+2)/2 \rceil$  is dense and open.

#### Theorem 2

For *each* trivalent combinatorial type G, the preimage in  $C_G$  of the gonality- $\lceil (g+2)/2 \rceil$  locus contains an open cone.

**Remarks** • Dimension matches the classical count for curves.

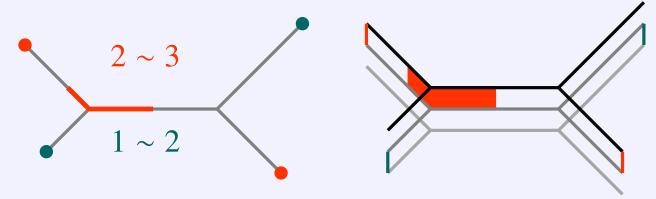
- Specialisation lemma and  $\exists$  special divisors on curves  $\Rightarrow$  the preimage in Thm 2 is *dense* in  $C_G$ . But our proof is combinatorial.
- Via the specialisation lemma, Theorem 1 implies that a general genus-g curve has gonality (at least)  $\lceil (g+2)/2 \rceil$  no need for a *specific* graph to prove this. (Observed by Mikhalkin in 2011.)

## Gluing datum $(T, d, \sim)$

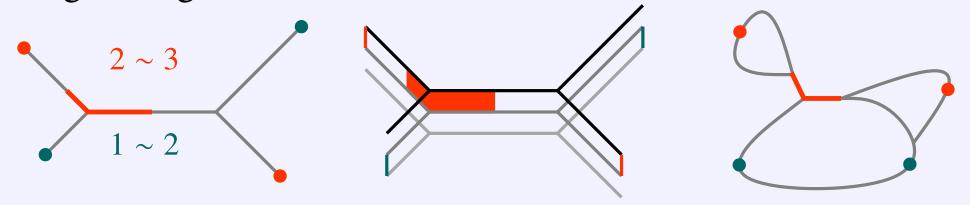
- Start with d copies  $T_1, \ldots, T_d$  of a metric tree T.
- For each  $v \in T$  let  $\sim_v$  be an eq relation on [d]; this expresses which  $T_i$  are glued together at their respective copies of v.
- Assume that  $\forall i, j : T_{ij} := \{v \in T \mid i \sim_v j\}$  is a finite union of disjoint closed *intervals* (or points).
- Let  $\Gamma$  be the glued object, with edges shrunk by a factor e where e edges are glued; assume connected.

## Gluing datum $(T, d, \sim)$

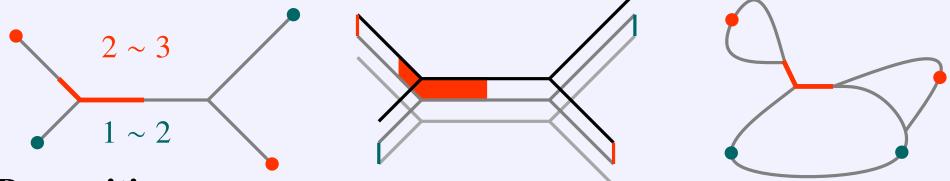
- Start with d copies  $T_1, \ldots, T_d$  of a metric tree T.
- For each  $v \in T$  let  $\sim_v$  be an eq relation on [d]; this expresses which  $T_i$  are glued together at their respective copies of v.
- Assume that  $\forall i, j : T_{ij} := \{v \in T \mid i \sim_v j\}$  is a finite union of disjoint closed *intervals* (or points).
- Let  $\Gamma$  be the glued object, with edges shrunk by a factor e where e edges are glued; assume connected.



- Start with d copies  $T_1, \ldots, T_d$  of a metric tree T.
- For each  $v \in T$  let  $\sim_v$  be an eq relation on [d]; this expresses which  $T_i$  are glued together at their respective copies of v.
- Assume that  $\forall i, j : T_{ij} := \{v \in T \mid i \sim_v j\}$  is a finite union of disjoint closed *intervals* (or points).
- Let  $\Gamma$  be the glued object, with edges shrunk by a factor e where e edges are glued; assume connected.



- Start with d copies  $T_1, \ldots, T_d$  of a metric tree T.
- For each  $v \in T$  let  $\sim_v$  be an eq relation on [d]; this expresses which  $T_i$  are glued together at their respective copies of v.
- Assume that  $\forall i, j : T_{ij} := \{v \in T \mid i \sim_v j\}$  is a finite union of disjoint closed *intervals* (or points).
- Let  $\Gamma$  be the glued object, with edges shrunk by a factor e where e edges are glued; assume connected.



The natural map  $\varphi: \Gamma \to T$  is a degree-d tropical morphism, and all degree-d morphims to T arise in this manner.

For  $I \subseteq [d]$  set  $T_I := \{v \in T \mid \forall i, j \in I : i \sim_v j\}$ . The genus of  $\Gamma$  is  $\sum_{I \subseteq [d]} (-1)^{|I|} c(T_I)$  where c(.) counts the connected components.

For  $I \subseteq [d]$  set  $T_I := \{v \in T \mid \forall i, j \in I : i \sim_v j\}$ . The genus of  $\Gamma$  is  $\sum_{I \subseteq [d]} (-1)^{|I|} c(T_I)$  where c(.) counts the connected components.

#### **Definition**

 $v \in T$  is called an *endpoint* if it is an endpoint of some interval in  $T_{ij}$  for some  $i, j \in [d]$ . Set  $E := \{\text{endpoints of valency } \leq 2\}$ 

For  $I \subseteq [d]$  set  $T_I := \{v \in T \mid \forall i, j \in I : i \sim_v j\}$ . The genus of  $\Gamma$  is  $\sum_{I \subseteq [d]} (-1)^{|I|} c(T_I)$  where c(.) counts the connected components.

#### **Definition**

 $v \in T$  is called an *endpoint* if it is an endpoint of some interval in  $T_{ij}$  for some  $i, j \in [d]$ . Set  $E := \{\text{endpoints of valency } \leq 2\}$ 

#### **Proposition**

$$|E| + \sum_{v \text{ of valency} > 2} r_{\varphi}(v) \le 2g + 2d - 2$$

For  $I \subseteq [d]$  set  $T_I := \{v \in T \mid \forall i, j \in I : i \sim_v j\}$ . The genus of  $\Gamma$  is  $\sum_{I \subseteq [d]} (-1)^{|I|} c(T_I)$  where c(.) counts the connected components.

#### **Definition**

 $v \in T$  is called an *endpoint* if it is an endpoint of some interval in  $T_{ij}$  for some  $i, j \in [d]$ . Set  $E := \{\text{endpoints of valency } \leq 2\}$ 

#### **Proposition**

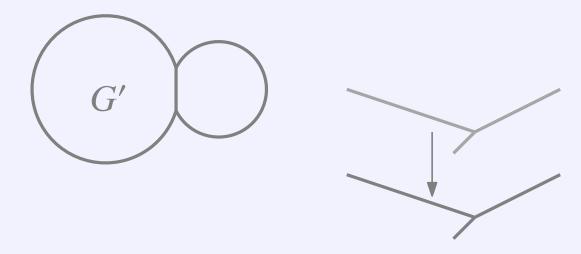
$$|E| + \sum_{v \text{ of valency} > 2} r_{\varphi}(v) \le 2g + 2d - 2$$

This turns out to imply that the edge lengths of only 2g + 2d - 5 of the connected components of  $T - E - \{ \geq \text{trivalent vertices} \}$  contribute to the point in  $M_g$  represented by  $\Gamma$ .

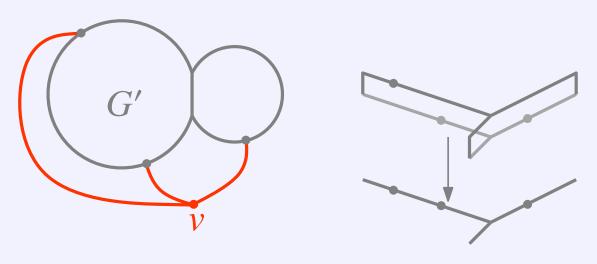
- Let G = (V, E) be a trivalent graph with |E| |V| + 1 = g.
- Case 1: G is cactus (any two simple cycles intersect in at most one point)  $\rightsquigarrow$  any point in  $C_G$  represents  $\Gamma$  of gonality  $\leq d$ .

- Let G = (V, E) be a trivalent graph with |E| |V| + 1 = g.
- Case 1: G is *cactus* (any two simple cycles intersect in at most one point)  $\rightsquigarrow$  any point in  $C_G$  represents  $\Gamma$  of gonality  $\leq d$ .
- Case 2: G has a trivalent vertex v such that G' = G v is connected, of genus g 2. By induction,  $C_{G'}$  contains an open cone, of dimension 3g 9, where the gonality is d 1.

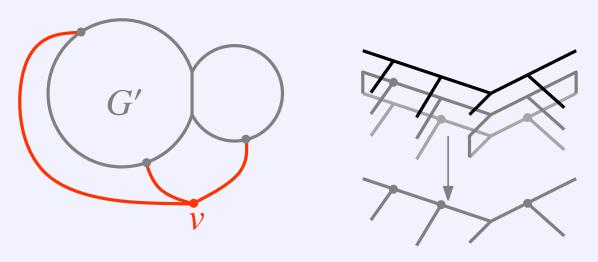
- Let G = (V, E) be a trivalent graph with |E| |V| + 1 = g.
- Case 1: G is *cactus* (any two simple cycles intersect in at most one point)  $\rightsquigarrow$  any point in  $C_G$  represents  $\Gamma$  of gonality  $\leq d$ .
- Case 2: G has a trivalent vertex v such that G' = G v is connected, of genus g 2. By induction,  $C_{G'}$  contains an open cone, of dimension 3g 9, where the gonality is d 1.



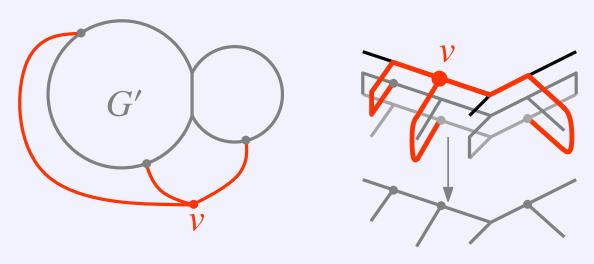
- Let G = (V, E) be a trivalent graph with |E| |V| + 1 = g.
- Case 1: G is *cactus* (any two simple cycles intersect in at most one point)  $\rightsquigarrow$  any point in  $C_G$  represents  $\Gamma$  of gonality  $\leq d$ .
- Case 2: G has a trivalent vertex v such that G' = G v is connected, of genus g 2. By induction,  $C_{G'}$  contains an open cone, of dimension 3g 9, where the gonality is d 1.



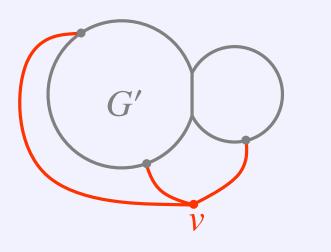
- Let G = (V, E) be a trivalent graph with |E| |V| + 1 = g.
- Case 1: G is cactus (any two simple cycles intersect in at most one point)  $\rightsquigarrow$  any point in  $C_G$  represents  $\Gamma$  of gonality  $\leq d$ .
- Case 2: G has a trivalent vertex v such that G' = G v is connected, of genus g-2. By induction,  $C_{G'}$  contains an open cone, of dimension 3g - 9, where the gonality is d - 1.

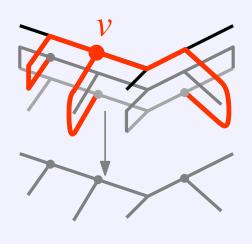


- Let G = (V, E) be a trivalent graph with |E| |V| + 1 = g.
- Case 1: G is *cactus* (any two simple cycles intersect in at most one point)  $\rightsquigarrow$  any point in  $C_G$  represents  $\Gamma$  of gonality  $\leq d$ .
- Case 2: G has a trivalent vertex v such that G' = G v is connected, of genus g 2. By induction,  $C_{G'}$  contains an open cone, of dimension 3g 9, where the gonality is d 1.



- Let G = (V, E) be a trivalent graph with |E| |V| + 1 = g.
- Case 1: G is *cactus* (any two simple cycles intersect in at most one point)  $\rightsquigarrow$  any point in  $C_G$  represents  $\Gamma$  of gonality  $\leq d$ .
- Case 2: G has a trivalent vertex v such that G' = G v is connected, of genus g 2. By induction,  $C_{G'}$  contains an open cone, of dimension 3g 9, where the gonality is d 1.





Parameter count:

3 for the gray dots

3 for the orange edges

$$3g - 9 + 3 + 3 = 3g - 3$$

• If  $\Gamma$  in the open cone from theorem 2 has integral edge lengths, then it has a degree- $\lceil (g+2)/2 \rceil$  divisor of rank  $\geq 1$  supported on integral points.

- If  $\Gamma$  in the open cone from theorem 2 has integral edge lengths, then it has a degree- $\lceil (g+2)/2 \rceil$  divisor of rank  $\geq 1$  supported on integral points.
- The inductive construction works when the orange edges are sufficiently long. We do not yet know how to generalise this.

- If  $\Gamma$  in the open cone from theorem 2 has integral edge lengths, then it has a degree- $\lceil (g+2)/2 \rceil$  divisor of rank  $\geq 1$  supported on integral points.
- The inductive construction works when the orange edges are sufficiently long. We do not yet know how to generalise this.
- No new ideas about Brill-Noether theory in higher rank.

- If  $\Gamma$  in the open cone from theorem 2 has integral edge lengths, then it has a degree- $\lceil (g+2)/2 \rceil$  divisor of rank  $\geq 1$  supported on integral points.
- The inductive construction works when the orange edges are sufficiently long. We do not yet know how to generalise this.
- No new ideas about Brill-Noether theory in higher rank.
- But at least for gonality, the analogy between curves and metric graphs is now almost perfect.

- If  $\Gamma$  in the open cone from theorem 2 has integral edge lengths, then it has a degree- $\lceil (g+2)/2 \rceil$  divisor of rank  $\geq 1$  supported on integral points.
- The inductive construction works when the orange edges are sufficiently long. We do not yet know how to generalise this.
- No new ideas about Brill-Noether theory in higher rank.
- But at least for gonality, the analogy between curves and metric graphs is now almost perfect.

## Thank you.