- 3 0 3 1 3 0 3 6 · 6 0 6 2 6 0 1 2 ·

- 3 0 3 1 3 0 3 6 · 6 0 6 2 6 0 1 2 ·

- 3 0 3 1 3 0 3 6
- 6 0 6 2 6 0 1 2

- 3 0 3 1 3 0 3 6
- 6 0 6 2 6 0 1 2

- 3 0 3 1 3 0 3 6
- 6 0 6 2 6 0 1 2

- 3 0 3 1 3 0 3 6 ·
 6 0 6 2 6 0 1 2 ·

What global data properties can be tested locally?

What global data properties can be tested locally?

rank one?

What global data properties can be tested locally?

rank one? no!

What global data properties can be tested locally?

rank one? no!

Jan Draisma
TU Eindhoven

Utrecht, Nov 2013

History: Hilbert's Basis Theorem

David Hilbert

Any polynomial system

$$f_1(x_1,...,x_n) = 0,$$

 $f_2(x_1,...,x_n) = 0,...$
reduces to a *finite* system
(\rightsquigarrow *Noetherianity* of $K[x_1,...,x_n]$)

History: Hilbert's Basis Theorem

David Hilbert

Any polynomial system

$$f_1(x_1,...,x_n) = 0,$$

 $f_2(x_1,...,x_n) = 0,...$
reduces to a *finite* system
(\rightsquigarrow *Noetherianity* of $K[x_1,...,x_n]$)

Das ist nicht Mathematik, das ist Theologie!

History: Hilbert's Basis Theorem

David Hilbert

Any polynomial system

$$f_1(x_1, ..., x_n) = 0,$$

 $f_2(x_1, ..., x_n) = 0,...$
reduces to a *finite* system
(\rightsquigarrow Noetherianity of $K[x_1, ..., x_n]$)

Paul Gordan

Das ist nicht Mathematik, das ist Theologie!

Bruno Buchberger

Gröbner bases, algorithmic methods

1. Model

high-dim data → ∞-dim data space data property → ∞-dim subvariety small window → finite window

→ leave fin-dim commutative algebra

$$\dim \to \infty$$

1. Model

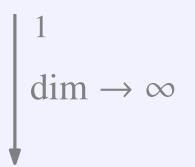
high-dim data → ∞-dim data space data property → ∞-dim subvariety small window → finite window

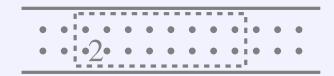
→ leave fin-dim commutative algebra

2. Prove

∞-dim property finitely defined up to symmetry?

 \rightsquigarrow generalise Basis Theorem to ∞ variables





1. Model

high-dim data → ∞-dim data space data property → ∞-dim subvariety small window → finite window

→ leave fin-dim commutative algebra

2. Prove

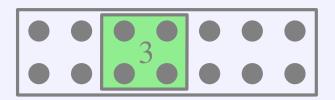
∞-dim property finitely defined up to symmetry?

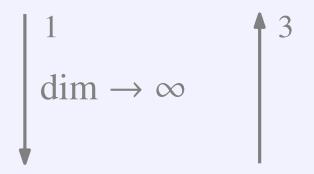
 \rightsquigarrow generalise Basis Theorem to ∞ variables

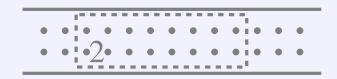
3. Compute

actual windows for fin-dim data

 \rightsquigarrow generalise Buchberger alg to ∞ variables







 $K[x_1, x_2,...]$ is not Noetherian, e.g. $x_1 = 0, x_2 = 0,...$ does not reduce to a finite system.

 $K[x_1, x_2, ...]$ is not Noetherian, e.g. $x_1 = 0, x_2 = 0, ...$ does not reduce to a finite system.

Cohen [J Algebra, 1967]

 $K[x_1, x_2, ...]$ is $Sym(\mathbb{N})$ -Noetherian, i.e., every $Sym(\mathbb{N})$ -stable system reduces to finitely many equations up to $Sym(\mathbb{N})$.

 $K[x_1, x_2, ...]$ is not Noetherian, e.g. $x_1 = 0, x_2 = 0, ...$ does not reduce to a finite system.

Cohen [J Algebra, 1967]

 $K[x_1, x_2, ...]$ is $Sym(\mathbb{N})$ -Noetherian, i.e., every $Sym(\mathbb{N})$ -stable system reduces to finitely many equations up to $Sym(\mathbb{N})$.

Notion of G-Noetherianity generalises to G-actions on rings or topological spaces.

 $K[x_1, x_2, ...]$ is not Noetherian, e.g. $x_1 = 0, x_2 = 0, ...$ does not reduce to a finite system.

Cohen [J Algebra, 1967]

 $K[x_1, x_2, ...]$ is $Sym(\mathbb{N})$ -Noetherian, i.e., every $Sym(\mathbb{N})$ -stable system reduces to finitely many equations up to $Sym(\mathbb{N})$.

Notion of G-Noetherianity generalises to G-actions on rings or topological spaces.

Eamples

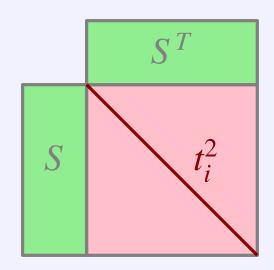
 $K[x_{ij} | i \in \{1, ..., k\}, j \in \mathbb{N}]$ is $Sym(\mathbb{N})$ -Noetherian, but $K[x_{ij} | i, j \in \mathbb{N}]$ is $not Sym(\mathbb{N}) \times Sym(\mathbb{N})$ -Noetherian, but $(K^{\mathbb{N} \times \mathbb{N}})^p$ with Zariski topology is $GL_{\mathbb{N}} \times GL_{\mathbb{N}}$ -Noetherian.

alg statistics

 X_1, \ldots, X_n jointly Gaussian, mean 0 \rightsquigarrow explained well by $k \ll n$ factors? i.e., is $X_i = \sum_j s_{ij} Z_k + t_i \epsilon_i$, with Z_1, \ldots, Z_k , $\epsilon_1, \ldots, \epsilon_n$ independent standard normals?

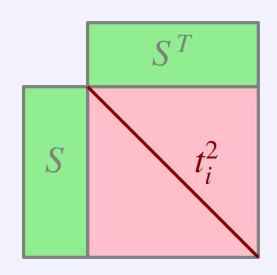
 X_1, \ldots, X_n jointly Gaussian, mean 0 \leadsto explained well by $k \ll n$ factors? i.e., is $X_i = \sum_j s_{ij} Z_k + t_i \epsilon_i$, with Z_1, \ldots, Z_k , $\epsilon_1, \ldots, \epsilon_n$ independent standard normals?

$$\Leftrightarrow \Sigma(X_1,\ldots,X_n) = SS^T + \operatorname{diag}(t_1^2,\ldots,t_n^2)$$



 X_1, \ldots, X_n jointly Gaussian, mean 0 \leadsto explained well by $k \ll n$ factors? i.e., is $X_i = \sum_j s_{ij} Z_k + t_i \epsilon_i$, with Z_1, \ldots, Z_k , $\epsilon_1, \ldots, \epsilon_n$ independent standard normals?

$$\Leftrightarrow \Sigma(X_1,\ldots,X_n) = SS^T + \operatorname{diag}(t_1^2,\ldots,t_n^2)$$

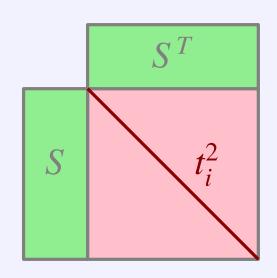


Definition

 $F_{k,n} := \overline{\{SS^T + \operatorname{diag}(t_1^2, \dots, t_n^2) \mid S \in \mathbb{R}^{n \times k}, t_i \in \mathbb{R}\}}$ \rightsquigarrow algebraic variety in $\mathbb{R}^{n \times n}$ called Gaussian k-factor model

 X_1, \ldots, X_n jointly Gaussian, mean 0 \leadsto explained well by $k \ll n$ factors? i.e., is $X_i = \sum_j s_{ij} Z_k + t_i \epsilon_i$, with Z_1, \ldots, Z_k , $\epsilon_1, \ldots, \epsilon_n$ independent standard normals?

$$\Leftrightarrow \Sigma(X_1,\ldots,X_n) = SS^T + \operatorname{diag}(t_1^2,\ldots,t_n^2)$$



Definition

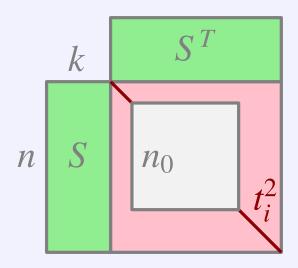
 $F_{k,n} := \overline{\{SS^T + \operatorname{diag}(t_1^2, \dots, t_n^2) \mid S \in \mathbb{R}^{n \times k}, t_i \in \mathbb{R}\}}$ \rightsquigarrow algebraic variety in $\mathbb{R}^{n \times n}$ called Gaussian k-factor model

Example

 $F_{2,5}$ is zero set of $\{\sigma_{ij} - \sigma_{ji} \mid i, j = 1, ..., 5\}$ and the *pentad* $\sum_{\pi \in \text{Sym}(5)} \text{sgn}(\pi) \sigma_{\pi(1)\pi(2)} \sigma_{\pi(2)\pi(3)} \sigma_{\pi(3)\pi(4)} \sigma_{\pi(4)\pi(5)} \sigma_{\pi(5)\pi(1)}$

If $\Sigma \in F_{k,n}$ then any principal $n_0 \times n_0$ submatrix $\Sigma' \in F_{k,n_0}$.

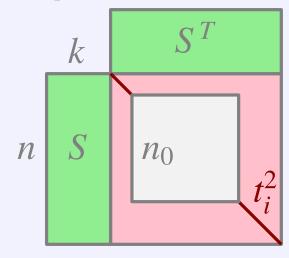
 \rightsquigarrow Is there an $n_0 = n_0(k)$ such that the converse holds for $n \ge n_0$?



If $\Sigma \in F_{k,n}$ then any principal $n_0 \times n_0$ submatrix $\Sigma' \in F_{k,n_0}$. \rightsquigarrow Is there an $n_0 = n_0(k)$ such that the converse holds for $n \ge n_0$?

De Loera-Sturmfels-Thomas [Combinatorica 1995]

yes for k = 1 ($n_0 = 4$)



If $\Sigma \in F_{k,n}$ then any principal $n_0 \times n_0$ submatrix $\Sigma' \in F_{k,n_0}$.

 \rightsquigarrow Is there an $n_0 = n_0(k)$ such that the converse holds for $n \ge n_0$?

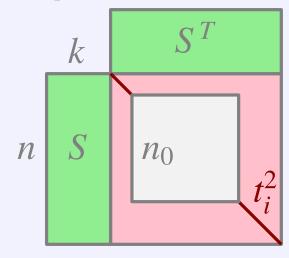
De Loera-Sturmfels-Thomas [Combinatorica 1995]

yes for k = 1 ($n_0 = 4$)

Draisma [Adv Math 2010]

yes for all k ($n_0 = ?$)

 \rightsquigarrow uses $F_{k,\infty}$ and Noetherianity up to $\operatorname{Sym}(\mathbb{N})$



If $\Sigma \in F_{k,n}$ then any principal $n_0 \times n_0$ submatrix $\Sigma' \in F_{k,n_0}$.

 \rightsquigarrow Is there an $n_0 = n_0(k)$ such that the converse holds for $n \ge n_0$?

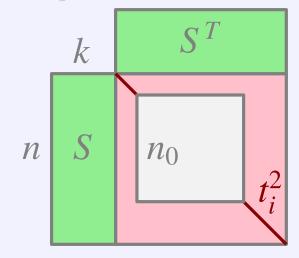
De Loera-Sturmfels-Thomas [Combinatorica 1995]

yes for k = 1 ($n_0 = 4$)

Draisma [Adv Math 2010]

yes for all k ($n_0 = ?$)

 \rightsquigarrow uses $F_{k,\infty}$ and Noetherianity up to $\operatorname{Sym}(\mathbb{N})$



Brouwer-Draisma [Math Comp 2011]

yes for k = 2: pentads and 3×3 -minors define $F_{2,n}, n \ge n_0 := 6$

 \rightsquigarrow uses $Sym(\mathbb{N})$ -Buchberger algorithm (+ a weekend on 20 computers)

 \rightsquigarrow a single computation proves this for all n

multilin alg

Tensor rank

A wrong-titled movie

tensor T=multi-indexed array of numbers matrices=two-way tensors this picture=three-way tensor, . . .

Tensor rank

A wrong-titled movie

tensor T=multi-indexed array of numbers matrices=two-way tensors this picture=three-way tensor, ...

Pure tensor P

has entries $P_{i,j,...,k} = x_i y_j \cdots z_k$ for vectors x, ..., z \rightsquigarrow for a matrix: xy^T , rank one

Tensor rank

A wrong-titled movie

tensor T=multi-indexed array of numbers matrices=two-way tensors this picture=three-way tensor, ...

Pure tensor P

has entries $P_{i,j,...,k} = x_i y_j \cdots z_k$ for vectors x, ..., z \rightsquigarrow for a matrix: xy^T , rank one

Tensor rank of T

is minimal k in $T = \sum_{j=1}^{k} P^{(j)}$ with each $P^{(j)}$ pure

→ generalises matrix rank

→ useful for MRI data, communication complexity, phylogenetics etc.

Matrix rank

efficiently computable field independent can only go down in limit

Tensor rank

NP-hard field dependent can also go up

Matrix rank

efficiently computable field independent can only go down in limit

Tensor rank

NP-hard field dependent can also go up

is smallest rank of T' arbitrarily close to T

→ also extremely useful

→ for matrices coincides with rank

Matrix rank

efficiently computable field independent can only go down in limit

Tensor rank

NP-hard field dependent can also go up

Border rank of T

is smallest rank of T' arbitrarily close to T

→ also extremely useful

→ for matrices coincides with rank

Matrix rank < k

given by $k \times k$ -subdets efficiently checkable

Matrix rank

efficiently computable field independent can only go down in limit

Tensor rank

NP-hard field dependent can also go up

Border rank of T

is smallest rank of T' arbitrarily close to T

→ also extremely useful

→ for matrices coincides with rank

Matrix rank < k given by $k \times k$ -subdets efficiently checkable

Draisma-Kuttler [*Duke 2014*] **Border rank** < *k*

finitely many equations up to *symmetry* polynomial-time checkable

 \rightsquigarrow uses space of ∞ -way tensors

Matrix rank

efficiently computable field independent can only go down in limit

Tensor rank

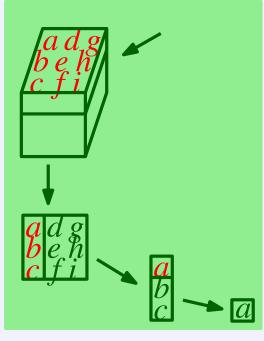
NP-hard field dependent can also go up

Border rank of T

is smallest rank of T' arbitrarily close to T

→ also extremely useful

→ for matrices coincides with rank



 $\bigcup_{n=0}^{\infty} \operatorname{Sym}(n) \ltimes \operatorname{GL}_{3}^{n}$

Matrix rank < k

given by $k \times k$ -subdets efficiently checkable

Draisma-Kuttler [*Duke 2014*] **Border rank** < *k*

finitely many equations up to *symmetry* polynomial-time checkable

 \rightsquigarrow uses space of ∞ -way tensors

The Commutative Algebra of Highly Symmetric Data

alg geometry

Grassmannians: functoriality and duality

V a fin-dim vector space over an infinite field K $\leadsto \mathbf{Gr}_p(V) := \{v_1 \land \cdots \land v_p \mid v_i \in V\} \subseteq \bigwedge^p V$ cone over Grassmannian (rank-one alternating tensors)

Grassmannians: functoriality and duality

V a fin-dim vector space over an infinite field K $\leadsto \mathbf{Gr}_p(V) := \{v_1 \land \cdots \land v_p \mid v_i \in V\} \subseteq \bigwedge^p V$ cone over Grassmannian (rank-one alternating tensors)

1. if $\varphi: V \to W$ linear

 $\rightsquigarrow \bigwedge^p \varphi : \bigwedge^p V \rightarrow \bigwedge^p W$

maps $\mathbf{Gr}_p(V) \to \mathbf{Gr}_p(W)$

V a fin-dim vector space over an infinite field K $\leadsto \mathbf{Gr}_p(V) := \{v_1 \land \cdots \land v_p \mid v_i \in V\} \subseteq \bigwedge^p V$ cone over Grassmannian (rank-one alternating tensors)

Two properties:

1. if $\varphi: V \to W$ linear $\rightsquigarrow \bigwedge^p \varphi: \bigwedge^p V \to \bigwedge^p W$ maps $\mathbf{Gr}_p(V) \to \mathbf{Gr}_p(W)$

2. if dim V =: n + p with $n, p \ge 0$ \rightsquigarrow natural map $\bigwedge^p V \to (\bigwedge^n V)^* \to \bigwedge^n (V^*)$ maps $\mathbf{Gr}_p(V) \to \mathbf{Gr}_n(V^*)$

Rules X_0, X_1, X_2, \dots with

 $\mathbf{X}_p : \{ \text{vector spaces } V \} \rightarrow \{ \text{varieties in } \bigwedge^p V \}$

Rules X_0, X_1, X_2, \dots with

 $\mathbf{X}_p : \{ \text{vector spaces } V \} \rightarrow \{ \text{varieties in } \bigwedge^p V \}$

form a *Plücker variety* if, for dim V = n + p,

1.
$$\varphi: V \to W \leadsto \bigwedge^p \varphi \text{ maps } \mathbf{X}_p(V) \to \mathbf{X}_p(W)$$

2.
$$\bigwedge^p V \to \bigwedge^n(V^*)$$
 maps $\mathbf{X}_p(V) \to \mathbf{X}_n(V^*)$



Rules X_0, X_1, X_2, \dots with

 $\mathbf{X}_p : \{ \text{vector spaces } V \} \rightarrow \{ \text{varieties in } \bigwedge^p V \}$

form a *Plücker variety* if, for dim V = n + p,

1. $\varphi: V \to W \leadsto \bigwedge^p \varphi \text{ maps } \mathbf{X}_p(V) \to \mathbf{X}_p(W)$

2. $\bigwedge^p V \to \bigwedge^n(V^*)$ maps $\mathbf{X}_p(V) \to \mathbf{X}_n(V^*)$

X, Y Plücker varieties \rightsquigarrow so are

X + Y (join), τX (tangential),

 $X \cup Y, X \cap Y$



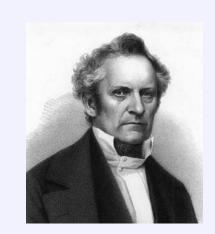
Rules X_0, X_1, X_2, \dots with

 $\mathbf{X}_p : \{ \text{vector spaces } V \} \rightarrow \{ \text{varieties in } \bigwedge^p V \}$

form a *Plücker variety* if, for dim V = n + p,

1.
$$\varphi: V \to W \leadsto \bigwedge^p \varphi \text{ maps } \mathbf{X}_p(V) \to \mathbf{X}_p(W)$$

2.
$$\bigwedge^p V \to \bigwedge^n(V^*)$$
 maps $\mathbf{X}_p(V) \to \mathbf{X}_n(V^*)$



Constructions

X, Y Plücker varieties \rightsquigarrow so are

X + Y (join), τX (tangential),

 $X \cup Y, X \cap Y$

skew analogue of Snowden's Δ -varieties

A Plücker variety $\{\mathbf{X}_p\}_p$ is bounded if $\mathbf{X}_2(V) \neq \bigwedge^2 V$ for dim V sufficiently large.

A Plücker variety $\{\mathbf{X}_p\}_p$ is bounded if $\mathbf{X}_2(V) \neq \bigwedge^2 V$ for dim V sufficiently large.

Theorem

Any bounded Plücker variety is defined set-theoretically in bounded degree, by finitely many equations *up to symmetry*.

A Plücker variety $\{\mathbf{X}_p\}_p$ is bounded if $\mathbf{X}_2(V) \neq \bigwedge^2 V$ for dim V sufficiently large.

Any bounded Plücker variety is defined set-theoretically in bounded degree, by finitely many equations *up to symmetry*.

Theorem

For any fixed bounded Plücker variety there exists a polynomial-time membership test.

A Plücker variety $\{\mathbf{X}_p\}_p$ is bounded if $\mathbf{X}_2(V) \neq \bigwedge^2 V$ for dim V sufficiently large.

Any bounded Plücker variety is defined set-theoretically in bounded degree, by finitely many equations *up to symmetry*.

Theorem

For any fixed bounded Plücker variety there exists a polynomial-time membership test.

Theorems apply, in particular, to $k\mathbf{Gr} = k$ -th secant variety of \mathbf{Gr} .

The infinite wedge

$$V_{\infty} := \langle \dots, x_{-3}, x_{-2}, x_{-1}, x_1, x_2, x_3, \dots \rangle_K$$

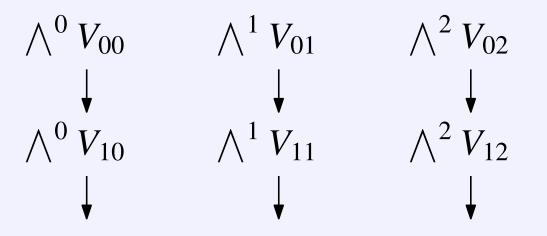
$$V_{n,p} := \langle x_{-n}, \dots, x_{-1}, x_1, \dots, x_p \rangle \subseteq V_{\infty}$$

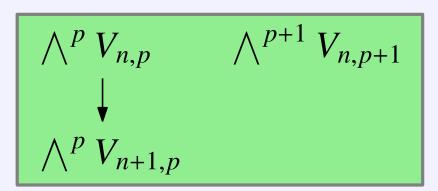
The infinite wedge

$$V_{\infty} := \langle \dots, x_{-3}, x_{-2}, x_{-1}, x_1, x_2, x_3, \dots \rangle_K$$

$$V_{n,p} := \langle x_{-n}, \dots, x_{-1}, x_1, \dots, x_p \rangle \subseteq V_{\infty}$$

Diagram



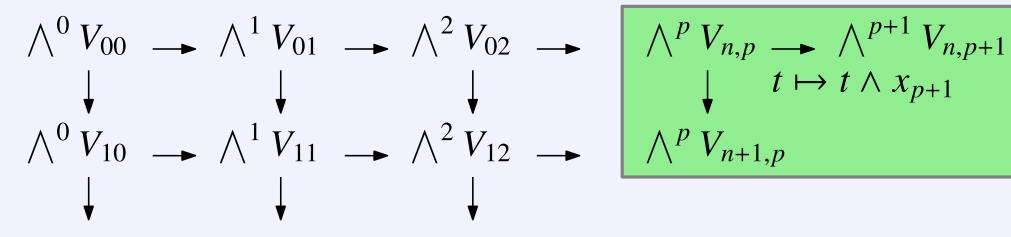


The infinite wedge

$$V_{\infty} := \langle \dots, x_{-3}, x_{-2}, x_{-1}, x_1, x_2, x_3, \dots \rangle_K$$

$$V_{n,p} := \langle x_{-n}, \dots, x_{-1}, x_1, \dots, x_p \rangle \subseteq V_{\infty}$$

Diagram



$$V_{\infty} := \langle \dots, x_{-3}, x_{-2}, x_{-1}, x_1, x_2, x_3, \dots \rangle_K$$

 $V_{n,p} := \langle x_{-n}, \dots, x_{-1}, x_1, \dots, x_p \rangle \subseteq V_{\infty}$

Diagram

Definition

 $\bigwedge^{\infty/2} V_{\infty} := \lim_{\to} \bigwedge^p V_{n,p}$ the infinite wedge (charge-0 part); basis $\{x_I := x_{i_1} \land x_{i_2} \land \cdots\}_I$, $I = \{i_1 < i_2 < \ldots\}$, $i_k = k$ for $k \gg 0$

$$V_{\infty} := \langle \dots, x_{-3}, x_{-2}, x_{-1}, x_1, x_2, x_3, \dots \rangle_K$$

$$V_{n,p} := \langle x_{-n}, \dots, x_{-1}, x_1, \dots, x_p \rangle \subseteq V_{\infty}$$

Diagram

Definition

$$\bigwedge^{\infty/2} V_{\infty} := \lim_{\to} \bigwedge^p V_{n,p}$$
 the infinite wedge (charge-0 part); basis $\{x_I := x_{i_1} \land x_{i_2} \land \cdots\}_I$, $I = \{i_1 < i_2 < \ldots\}$, $i_k = k$ for $k \gg 0$

$$On \bigwedge^{\infty/2} V_{\infty} \ acts \ \mathrm{GL}_{\infty} := \bigcup_{n,p} \mathrm{GL}(V_{n,p}).$$

Young diagrams

Recall

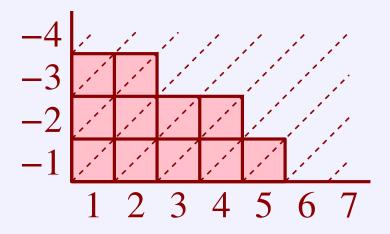
$$\bigwedge^{\infty/2} V_{\infty}$$
 has basis $\{x_I := x_{i_1} \land x_{i_2} \land \cdots\}_I$, where $I = \{i_1 < i_2 < \ldots\} \subseteq (-\mathbb{N}) \cup (+\mathbb{N})$ with $i_k = k$ for $k \gg 0$

Recall

$$\bigwedge^{\infty/2} V_{\infty}$$
 has basis $\{x_I := x_{i_1} \land x_{i_2} \land \cdots\}_I$, where $I = \{i_1 < i_2 < \ldots\} \subseteq (-\mathbb{N}) \cup (+\mathbb{N})$ with $i_k = k$ for $k \gg 0$

Bijection with Young diagrams

 x_I with $I = \{-3, -2, 1, 2, 4, 6, 7, ...\}$ corresponds to

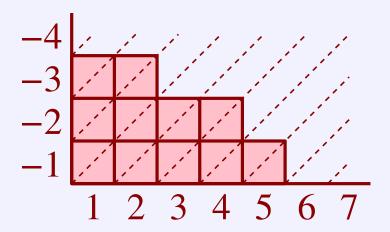


Recall

$$\bigwedge^{\infty/2} V_{\infty}$$
 has basis $\{x_I := x_{i_1} \land x_{i_2} \land \cdots\}_I$, where $I = \{i_1 < i_2 < \ldots\} \subseteq (-\mathbb{N}) \cup (+\mathbb{N})$ with $i_k = k$ for $k \gg 0$

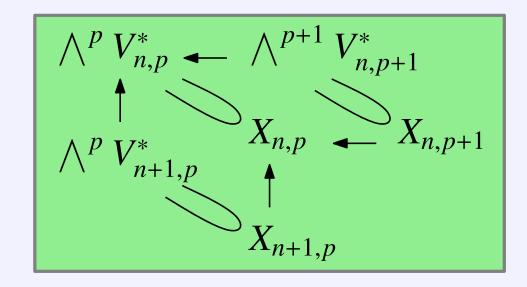
Bijection with Young diagrams

 x_I with $I = \{-3, -2, 1, 2, 4, 6, 7, ...\}$ corresponds to

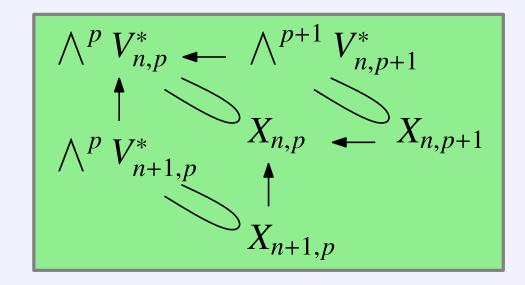


These x_I will be the *coordinates* of our ambient space, partially ordered by $I \le J$ if $i_k \ge j_k$ for all k (inclusion of Young diags). Unique minimum is $I = \{1, 2, ...\}$.

 $\{\mathbf{X}_p\}_{p\geq 0}$ a Plücker variety \rightsquigarrow varieties $X_{n,p}:=\mathbf{X}_p(V_{n,p}^*)$

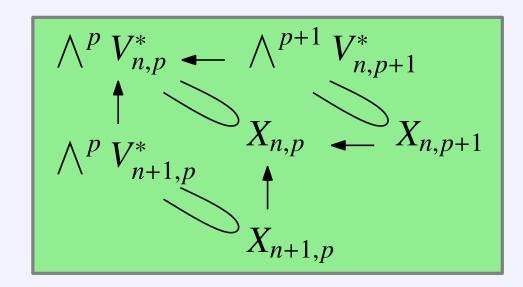


 $\{\mathbf{X}_p\}_{p\geq 0}$ a Plücker variety \leadsto varieties $X_{n,p}:=\mathbf{X}_p(V_{n,p}^*)$



 $\{\mathbf{X}_p\}_{p\geq 0}$ a Plücker variety \leadsto varieties $X_{n,p}:=\mathbf{X}_p(V_{n,p}^*)$

 $\longrightarrow \mathbf{X}_{\infty} := \lim_{\leftarrow} X_{n,p} \text{ is } \mathrm{GL}_{\infty}\text{-stable subvariety of } (\bigwedge^{\infty/2} V_{\infty})^*$



 $\{\mathbf{X}_p\}_{p\geq 0}$ a Plücker variety \rightsquigarrow varieties $X_{n,p}:=\mathbf{X}_p(V_{n,p}^*)$

 $\longrightarrow \mathbf{X}_{\infty} := \lim_{\leftarrow} X_{n,p} \text{ is } \mathrm{GL}_{\infty}\text{-stable subvariety of } (\bigwedge^{\infty/2} V_{\infty})^*$

Theorem (implies earlier)

For bounded X, the limit X_{∞} is cut out by finitely many GL_{∞} -orbits of equations.

The limit $\mathbf{Gr}_{\infty} \subseteq (\bigwedge^{\infty/2} V_{\infty})^*$ of $(\mathbf{Gr}_p)_p$ is *Sato's Grassmannian* defined by polynomials $\sum_{i \in I} \pm x_{I-i} \cdot x_{J+i} = 0$ where $i_k = k-1$ for $k \gg 0$ and $j_k = k+1$ for $k \gg 0$.

The limit $\mathbf{Gr}_{\infty} \subseteq (\bigwedge^{\infty/2} V_{\infty})^*$ of $(\mathbf{Gr}_p)_p$ is *Sato's Grassmannian* defined by polynomials $\sum_{i \in I} \pm x_{I-i} \cdot x_{J+i} = 0$ where $i_k = k-1$ for $k \gg 0$ and $j_k = k+1$ for $k \gg 0$.

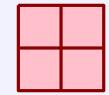
 \rightsquigarrow *not finitely many* GL_{∞} -*orbits*

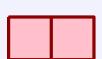
The limit $\mathbf{Gr}_{\infty} \subseteq (\bigwedge^{\infty/2} V_{\infty})^*$ of $(\mathbf{Gr}_p)_p$ is *Sato's Grassmannian* defined by polynomials $\sum_{i \in I} \pm x_{I-i} \cdot x_{J+i} = 0$ where $i_k = k-1$ for $k \gg 0$ and $j_k = k+1$ for $k \gg 0$.

 \rightsquigarrow *not finitely many* GL_{∞} -*orbits*

But in fact the GL_{∞} -orbit of

$$(x_{-2,-1,3,...} \cdot x_{1,2,3,...}) - (x_{-2,1,3,...} \cdot x_{-1,2,3,...}) + (x_{-2,2,3,...} \cdot x_{-1,1,3,...})$$





defines \mathbf{Gr}_{∞} set-theoretically.

The limit $\mathbf{Gr}_{\infty} \subseteq (\bigwedge^{\infty/2} V_{\infty})^*$ of $(\mathbf{Gr}_p)_p$ is *Sato's Grassmannian* defined by polynomials $\sum_{i \in I} \pm x_{I-i} \cdot x_{J+i} = 0$ where $i_k = k-1$ for $k \gg 0$ and $j_k = k+1$ for $k \gg 0$.

 \rightsquigarrow *not finitely many* GL_{∞} -*orbits*

But in fact the GL_{∞} -orbit of

$$(x_{-2,-1,3,...} \cdot x_{1,2,3,...}) - (x_{-2,1,3,...} \cdot x_{-1,2,3,...}) + (x_{-2,2,3,...} \cdot x_{-1,1,3,...})$$

defines \mathbf{Gr}_{∞} set-theoretically.

Our theorems imply that also higher secant varieties of Sato's Grassmannian are defined by finitely many GL_{∞} -orbits of equations. . . we just don't know which!

The Commutative Algebra of Highly Symmetric Data

combinatorics

Conjecture

Over any field K, Sato's Grassmannian $\mathbf{Gr}_{\infty}(K)$ is Noetherian up to $\mathrm{Sym}(-\mathbb{N} \cup +\mathbb{N}) \subseteq \mathrm{GL}_{\infty}$.

Graph minors

Any sequence of operations

takes a graph to a minor.

Graph minors

Any sequence of operations

takes a graph to a minor.

Robertson-Seymour [JCB 1983–2004, 669pp] Any network property preserved under taking minors can be characterised by *finitely many forbidden minors*.

Graph minors

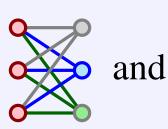
Any sequence of operations

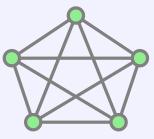
takes a graph to a minor.

Robertson-Seymour [JCB 1983–2004, 669pp]

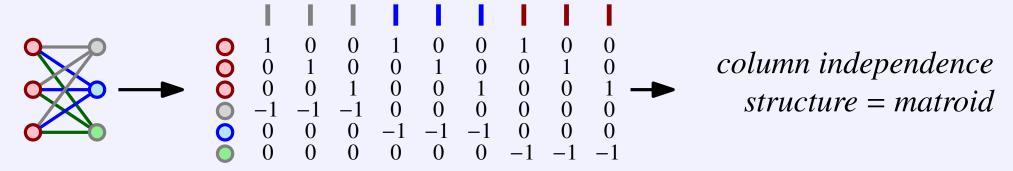
Any network property preserved under taking minors can be characterised by *finitely many forbidden minors*.

For *planarity* these are

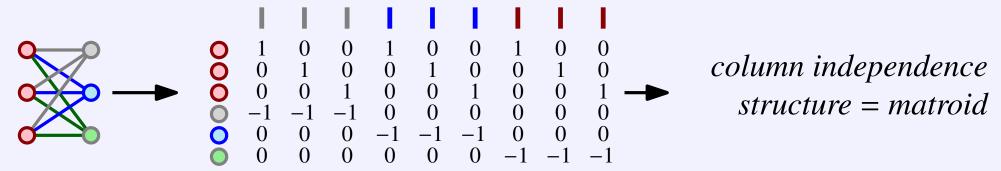




From graphs to matroids



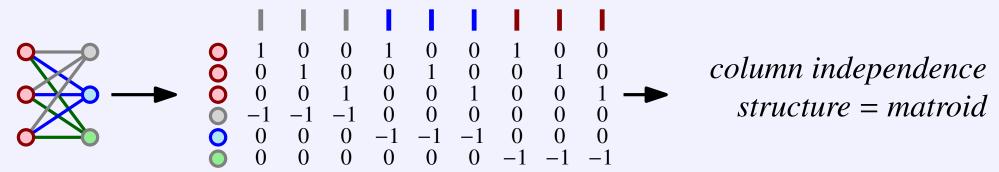
From graphs to matroids



Matroid minor theorem (Geelen-Gerards-Whittle)

Any minor-preserved property of matroids over a fixed *finite field K* can be characterised by finitely many forbidden minors.

From graphs to matroids

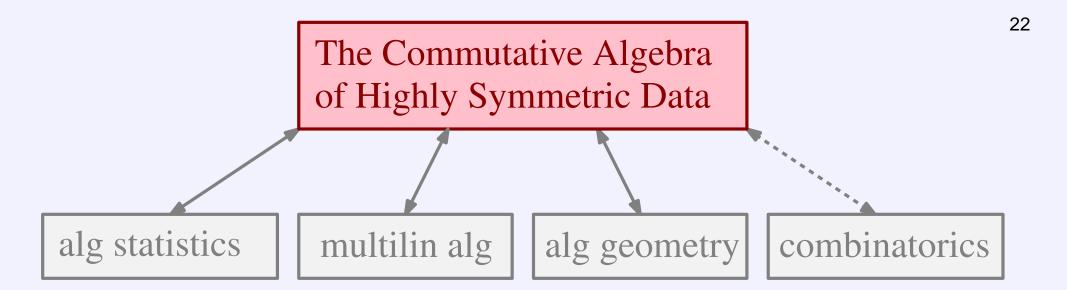


Matroid minor theorem (Geelen-Gerards-Whittle)

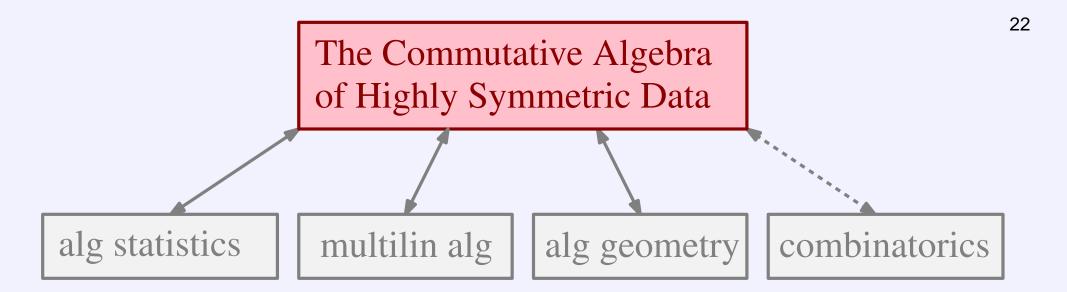
Any minor-preserved property of matroids over a fixed *finite field K* can be characterised by finitely many forbidden minors.

Surprising correspondence

Equivalant to Sym $(-\mathbb{N} \cup +\mathbb{N})$ -Noetherianity of $\mathbf{Gr}_{\infty}(K)$ (but Noetherianity may be true even for infinite K).

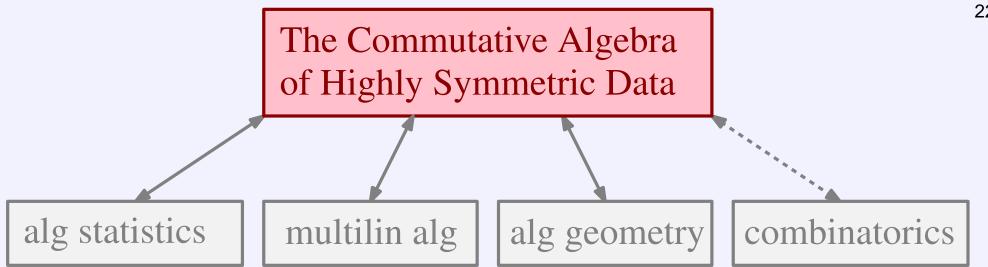


- \rightsquigarrow theory and algorithms for highly symmetric, ∞ -dim varieties
- *→ exciting interplay of algebra, combinatorics, statistics, and geometry*



- \rightsquigarrow theory and algorithms for highly symmetric, ∞ -dim varieties
- we exciting interplay of algebra, combinatorics, statistics, and geometry

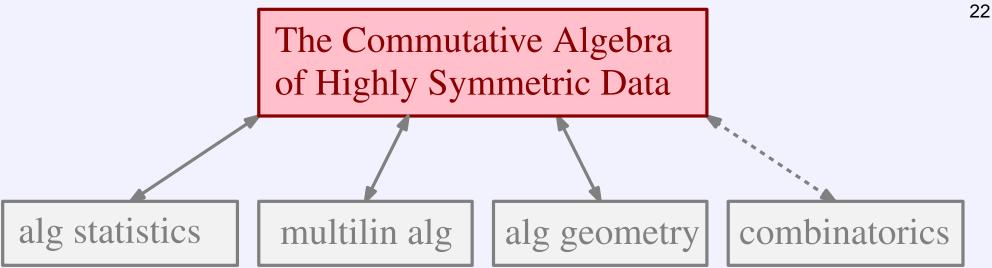
Paul Gordan



- \rightsquigarrow theory and algorithms for highly symmetric, ∞ -dim varieties
- *→ exciting interplay of algebra, combinatorics, statistics, and geometry*

Paul Gordan

Ich habe mich davon überzeugt, daß auch die Theologie ihre Vorzüge hat.



- \rightsquigarrow theory and algorithms for highly symmetric, ∞ -dim varieties
- *→ exciting interplay of algebra, combinatorics, statistics, and geometry*

Paul Gordan

Ich habe mich davon überzeugt, daß auch die Theologie ihre Vorzüge hat.

Thank you!