A short history of strength

Jan Draisma Universität Bern and Eindhoven University of Technology

Advances in Applied Algebraic Geometry Bristol, December 2018

```
\begin{bmatrix} a_{11} & a_{12} & \cdots \\ a_{21} & a_{22} & \cdots \\ \vdots & \vdots \end{bmatrix} =: A \in \mathbb{C}^{M \times N}, \ M, N \in \{1, 2, \dots, \infty\}
```

```
a_{11} \ a_{12} \ \cdots
a_{21} \ a_{22} \ \cdots
a_{2n} = A \in \mathbb{C}^{M \times N}, M, N \in \{1, 2, ..., \infty\}
```

 \rightsquigarrow either $\overline{GL_M \cdot A \cdot GL_N} = \mathbb{C}^{M \times N}$

```
a_{11} \ a_{12} \ \cdots
a_{21} \ a_{22} \ \cdots
=: A \in \mathbb{C}^{M \times N}, \ M, N \in \{1, 2, ..., \infty\}
::
```

```
\rightsquigarrow either \overline{GL_M \cdot A \cdot GL_N} = \mathbb{C}^{M \times N}
or else A = \sum_{i=1}^k u_i v_i^T, k = \operatorname{rk}(A) < \min\{M, N\}.
```

```
a_{11} \ a_{12} \ \cdots
a_{21} \ a_{22} \ \cdots
a_{2n} = A \in \mathbb{C}^{M \times N}, M, N \in \{1, 2, ..., \infty\}
```

$$\rightsquigarrow$$
 either $\overline{GL_M \cdot A \cdot GL_N} = \mathbb{C}^{M \times N}$
or else $A = \sum_{i=1}^k u_i v_i^T$, $k = \operatorname{rk}(A) < \min\{M, N\}$.

Without coordinates: $A \in U \otimes V$ a *two*-tensor

$$a_{11} \ a_{12} \ \cdots \ a_{21} \ a_{22} \ \cdots =: A \in \mathbb{C}^{M \times N}, \ M, N \in \{1, 2, \dots, \infty\}$$
 $\vdots \ \vdots$

$$\rightsquigarrow$$
 either $\overline{GL_M \cdot A \cdot GL_N} = \mathbb{C}^{M \times N}$
or else $A = \sum_{i=1}^k u_i v_i^T$, $k = \operatorname{rk}(A) < \min\{M, N\}$.

Without coordinates: $A \in U \otimes V$ a *two*-tensor

 \rightsquigarrow either $GL(U) \times GL(V)A = U \otimes V$ or else A is a polynomial in 2k one-tensors.

Definition.
$$A_1, ..., A_{\ell} \in \mathbb{C}^{N \times N} \leadsto \text{rk} (A_1, ..., A_{\ell}) := \min \{ \text{rk} (c_1 A_1 + \cdots + c_{\ell} A_{\ell}) \mid (c_1 : \cdots : c_{\ell}) \in \mathbb{P}^{l-1} \}$$

```
Definition. A_1, \ldots, A_\ell \in \mathbb{C}^{N \times N} \leadsto \operatorname{rk}(A_1, \ldots, A_\ell) := \min \{\operatorname{rk}(c_1 A_1 + \cdots + c_\ell A_\ell) \mid (c_1 : \cdots : c_\ell) \in \mathbb{P}^{l-1} \} {tuple rank \leq k} is closed (equations?)
```

or rk $(A_1, \ldots, A_\ell) =: k < \infty$.

```
Definition. A_1, \ldots, A_\ell \in \mathbb{C}^{N \times N} \leadsto \operatorname{rk}(A_1, \ldots, A_\ell) := \min \{\operatorname{rk}(c_1 A_1 + \cdots + c_\ell A_\ell) \mid (c_1 : \cdots : c_\ell) \in \mathbb{P}^{l-1} \} {tuple rank \leq k} is closed (equations?)

Theorem (D-Eggermont, 2014) (infinite setting)

Either \operatorname{GL}_{\infty} \times \operatorname{GL}_{\infty} \cdot (A_1, \ldots, A_\ell) is dense in (\mathbb{C}^{\infty \times \infty})^\ell,
```

```
Definition. A_1, \ldots, A_\ell \in \mathbb{C}^{N \times N} \leadsto \operatorname{rk}(A_1, \ldots, A_\ell) := \min \{\operatorname{rk}(c_1 A_1 + \cdots + c_\ell A_\ell) \mid (c_1 : \cdots : c_\ell) \in \mathbb{P}^{l-1} \} {tuple rank \leq k} is closed (equations?)
```

Theorem (D-Eggermont, 2014) (infinite setting) Either $GL_{\infty} \times GL_{\infty} \cdot (A_1, \ldots, A_{\ell})$ is dense in $(\mathbb{C}^{\infty \times \infty})^{\ell}$, or $\operatorname{rk}(A_1, \ldots, A_{\ell}) =: k < \infty$.

Latter case: (A_1, \ldots, A_ℓ) is a polynomial in $\ell-1$ two-tensors and 2k one-tensors.

```
Definition. A_1, \ldots, A_\ell \in \mathbb{C}^{N \times N} \leadsto \operatorname{rk}(A_1, \ldots, A_\ell) := \min \{\operatorname{rk}(c_1 A_1 + \cdots + c_\ell A_\ell) \mid (c_1 : \cdots : c_\ell) \in \mathbb{P}^{l-1} \} {tuple rank \leq k} is closed (equations?)
```

Theorem (D-Eggermont, 2014) (infinite setting) Either $GL_{\infty} \times GL_{\infty} \cdot (A_1, \ldots, A_{\ell})$ is dense in $(\mathbb{C}^{\infty \times \infty})^{\ell}$, or $\operatorname{rk}(A_1, \ldots, A_{\ell}) =: k < \infty$.

Latter case: (A_1, \ldots, A_ℓ) is a polynomial in $\ell-1$ two-tensors and 2k one-tensors.

Strength of cubics=q-rank

Definition (Derksen-Eggermont-Snowden)

$$f = a_{111}x_1^3 + a_{112}x_1^2x_2 + \dots + a_{ijk}x_ix_jx_k + \dots$$

 \sim q-rank $(f) := minimal k s.t. $f = \ell_1 q_1 + \dots + \ell_k q_k$.$

Strength of cubics=q-rank

Definition (Derksen-Eggermont-Snowden)

$$f = a_{111}x_1^3 + a_{112}x_1^2x_2 + \cdots + a_{ijk}x_ix_jx_k + \cdots$$

 \rightsquigarrow q-rank $(f) :=$ minimal k s.t. $f = \ell_1q_1 + \cdots + \ell_kq_k$.
infinite setting:

Theorem (Derksen, Eggermont, Snowden, 2017)

- q-rank $(f) = \min\{\operatorname{codim}(V) \mid V \subseteq \mathbb{C}^{\oplus \infty}, f|_{V} = 0\}$
- $\{q-rank(f) \le k\}$ is closed
- either $GL_{\infty}f$ is dense, or else q-rank $(f) < \infty$.

Strength of cubics=q-rank

Definition (Derksen-Eggermont-Snowden)

```
f = a_{111}x_1^3 + a_{112}x_1^2x_2 + \cdots + a_{ijk}x_ix_jx_k + \cdots

\rightsquigarrow q-rank(f) := minimal k s.t. f = \ell_1q_1 + \cdots + \ell_kq_k.

infinite setting:
```

Theorem (Derksen, Eggermont, Snowden, 2017)

- q-rank $(f) = \min\{\operatorname{codim}(V) \mid V \subseteq \mathbb{C}^{\oplus \infty}, f|_{V} = 0\}$
- $\{q-rank(f) \le k\}$ is closed
- either $GL_{\infty}f$ is dense, or else q-rank $(f) < \infty$.

Then f is a polynomial in 2k lower-degree forms.

Definition (Ananyan-Hochster)

strength(
$$f = \sum_{i_1 \leq \dots \leq i_d} c_{i_1, \dots, i_d} x_{i_1} \cdots x_{i_d}$$
) is min{ $k \mid f = \sum_{i=1}^k g_i h_i$; deg g_i , deg $h_i < \deg f$ }.

Definition (Ananyan-Hochster)

```
strength(f = \sum_{i_1 \le \dots \le i_d} c_{i_1, \dots, i_d} x_{i_1} \cdots x_{i_d}) is min{k \mid f = \sum_{i=1}^k g_i h_i; deg g_i, deg h_i < \deg f}.
```

Theorem (Kazhdan-Ziegler, 2018) (finite setting) If strength($\partial f/\partial v$) $\leq c$ for all directions v, then strength(f) $\leq N(c,d)$.

Definition (Ananyan-Hochster)

```
strength(f = \sum_{i_1 \leq \dots \leq i_d} c_{i_1, \dots, i_d} x_{i_1} \cdots x_{i_d}) is min{k \mid f = \sum_{i=1}^k g_i h_i; deg g_i, deg h_i < \deg f}.
```

Theorem (Kazhdan-Ziegler, 2018) (finite setting) If strength($\partial f/\partial v$) $\leq c$ for all directions v, then strength(f) $\leq N(c, d)$.

Theorem (Bik-Draisma-Eggermont, 2018) (inf) Either $GL_{\infty} \cdot f$ is dense, or strength(f) $< \infty$.

Definition (Ananyan-Hochster)

strength($f = \sum_{i_1 \le \dots \le i_d} c_{i_1, \dots, i_d} x_{i_1} \cdots x_{i_d}$) is min{ $k \mid f = \sum_{i=1}^k g_i h_i$; deg g_i , deg $h_i < \deg f$ }.

Theorem (Kazhdan-Ziegler, 2018) (finite setting) If strength($\partial f/\partial v$) $\leq c$ for all directions v, then strength(f) $\leq N(c, d)$.

Theorem (Bik-Draisma-Eggermont, 2018) (inf) Either $GL_{\infty} \cdot f$ is dense, or strength(f) $< \infty$.

Plan today: generalise the dense/bounded dichotomy; applications; computational issues.

 $Vec := \{finite-dimensional \mathbb{C}-spaces\}$

 $Vec := \{finite-dimensional \ \mathbb{C}-spaces\}$

 $P: \mathsf{Vec} \to \mathsf{Vec} \ \mathsf{a} \ \mathsf{functor}$:

 $\varphi: U \to V \leadsto P(\varphi): PU \to PV$

 $P(1_V) = 1_{P(V)}$, $P(\varphi \circ \psi) = P(\varphi) \circ P(\psi)$

 $Vec := \{finite-dimensional \mathbb{C}-spaces\}$

 $P: \mathsf{Vec} \to \mathsf{Vec}$ a functor:

 $\varphi: U \to V \leadsto P(\varphi): PU \to PV$

 $P(1_V) = 1_{P(V)}$, $P(\varphi \circ \psi) = P(\varphi) \circ P(\psi)$

Definition

P is a polynomial functor if for all $U, V \in Vec$

 $P: \operatorname{Hom}(U, V) \to \operatorname{Hom}(PU, PV)$ is polynomial.

 $Vec := \{finite-dimensional \mathbb{C}-spaces\}$

 $P: \mathsf{Vec} \to \mathsf{Vec}$ a functor:

 $\varphi: U \to V \leadsto P(\varphi): PU \to PV$

 $P(1_V) = 1_{P(V)}, P(\varphi \circ \psi) = P(\varphi) \circ P(\psi)$

Definition

P is a polynomial functor if for all $U, V \in Vec$

 $P: \operatorname{Hom}(U, V) \to \operatorname{Hom}(PU, PV)$ is polynomial.

Examples of degree 3:

$$PV = V \otimes V \otimes V$$
, $PV = U \oplus V \oplus \bigwedge^2 V \oplus S^3 V$.

$$\frac{\text{polynomial maps}}{\mathbb{A}^n} = \frac{?}{\text{polynomial functors}}$$

$$\frac{\text{polynomial maps}}{\mathbb{A}^n} = \frac{?}{\text{polynomial functors}}$$

Definition. P, Q polynomial functors $\alpha: P \rightarrow Q$ polynomial transformation if

$$P(U) \xrightarrow{\alpha_U} Q(U)$$

$$P(\varphi) \downarrow Q(\varphi)$$

$$Q(V) \xrightarrow{\alpha_V} Q(V)$$

$$\frac{\text{polynomial maps}}{\mathbb{A}^n} = \frac{?}{\text{polynomial functors}}$$

Definition. P, Q polynomial functors $\alpha: P \rightarrow Q$ polynomial transformation if

$$P(U) \xrightarrow{\alpha_{U}} Q(U)$$

$$P(\varphi) \downarrow \qquad \qquad \downarrow Q(\varphi)$$

$$P(V) \xrightarrow{\alpha_{V}} Q(V)$$

Example (rank-one tensors). $PV = V \oplus V \oplus V$, $QV = V^{\otimes 3}$, $\alpha_V(v_1, v_2, v_3) = v_1 \otimes v_2 \otimes v_3$.

Definition. $X \subseteq P$ *closed* if $X(V) \subseteq PV$ Zariski-closed and $P(\varphi) : X(U) \to X(V)$.

Closed subsets form a category; morphisms are restrictions of polynomial transformations.

Definition. $X \subseteq P$ *closed* if $X(V) \subseteq PV$ Zariski-closed and $P(\varphi) : X(U) \to X(V)$.

Closed subsets form a category; morphisms are restrictions of polynomial transformations.

Compare:

Classical

 $X \subseteq \mathbb{A}^n$ closed \rightsquigarrow morphisms $X \to \mathbb{A}^m$ extend to \mathbb{A}^n .

Definition. $X \subseteq P$ *closed* if $X(V) \subseteq PV$ Zariski-closed and $P(\varphi) : X(U) \to X(V)$.

Closed subsets form a category; morphisms are restrictions of polynomial transformations.

Compare:

Classical

 $X \subseteq \mathbb{A}^n$ closed \rightsquigarrow morphisms $X \to \mathbb{A}^m$ extend to \mathbb{A}^n .

Proposition (Bik-Eggermont-D-Snowden)

 $X \subseteq P$ closed \leadsto any polynomial transformation $X \to Q$ extends to P.

The dense/bounded dichotomy

Definition (lex order on polynomial functors) P a poly functor with highest degree part $P_d \supseteq R \supsetneq 0$; $Q \prec P$ if Q a quotient of $V \mapsto P(U \oplus V)/R$. Example: $S^2(U \oplus V)/S^2V = S^2U + U \otimes V$.

The dense/bounded dichotomy

Definition (lex order on polynomial functors) P a poly functor with highest degree part $P_d \supseteq R \supseteq 0$; $Q \prec P$ if Q a quotient of $V \mapsto P(U \oplus V)/R$. Example: $S^2(U \oplus V)/S^2V = S^2U + U \otimes V$.

Dichotomy (BDES) (infinite version) Let $p \in \lim_{\leftarrow n} P(\mathbb{C}^n) =: P_{\infty}$. Then either $GL_{\infty}p$ is dense in P_{∞} or $\exists Q \prec P$, $\alpha : Q \to P$, $p \in \alpha(Q_{\infty})$.

The dense/bounded dichotomy

Definition (lex order on polynomial functors) P a poly functor with highest degree part $P_d \supseteq R \supseteq 0$; $Q \prec P$ if Q a quotient of $V \mapsto P(U \oplus V)/R$. $Example: S^2(U \oplus V)/S^2V = S^2U + U \otimes V$.

Dichotomy (BDES)

(infinite version)

Let $p \in \lim_{\leftarrow n} P(\mathbb{C}^n) =: P_{\infty}$. Then either $GL_{\infty}p$ is dense in P_{∞} or $\exists Q \prec P$, $\alpha : Q \to P$, $p \in \alpha(Q_{\infty})$.

Dichotomy (BDES)

(finite version)

 $X \subseteq P$ closed. Then either X = P or $\exists Q_1, \ldots, Q_k \prec P$ and $\alpha_i : Q_i \to P$ such that $X \subseteq \bigcup \text{im} (\alpha_i)$.

(implies all earlier theorems)

First applications

Theorem (D, 2017) (Noetherianity) Any chain $P \supseteq X_1 \supseteq X_2 \supseteq \dots (X_i \text{ closed})$ stabilises.

First applications

Theorem (D, 2017) (Noetherianity) Any chain $P \supseteq X_1 \supseteq X_2 \supseteq \dots (X_i \text{ closed})$ stabilises.

Proof

Either all $X_m = P$ or some $X_{m_0} \subseteq \bigcup_{i=1}^k \operatorname{im} \alpha_i$ where $\alpha_i : Q_i \to P$ and $Q_i \prec P$. The pre-images $\alpha_i^{-1}(X_m), m \geq m_0$ stabilise by induction.

First applications

Theorem (D, 2017) (Noetherianity) Any chain $P \supseteq X_1 \supseteq X_2 \supseteq \dots (X_i \text{ closed})$ stabilises.

Proof

Either all $X_m = P$ or some $X_{m_0} \subseteq \bigcup_{i=1}^k \operatorname{im} \alpha_i$ where $\alpha_i : Q_i \to P$ and $Q_i \prec P$. The pre-images $\alpha_i^{-1}(X_m), m \geq m_0$ stabilise by induction.

Theorem (BDES) (orbit closures)
The map $\alpha \mapsto \operatorname{im} \alpha$ is a surjection from {polynomial transformations into P} to {closures of $\operatorname{GL}_{\mathbb{N}}$ -orbits in P_{∞} }.

The ultimate notion of strength?

Proposition/Definition (BDES)

For $p \in P_{\infty}$ there is a unique smallest Q such that $p \in \operatorname{im} \alpha$ for some $\alpha : Q \to P$. Call this Q the strength of p. $(\alpha \text{ is unique mod Aut}_{\operatorname{poly}}(Q))$

The ultimate notion of strength?

Proposition/Definition (BDES)

For $p \in P_{\infty}$ there is a unique smallest Q such that $p \in \operatorname{im} \alpha$ for some $\alpha : Q \to P$. Call this Q the strength of p. $(\alpha \text{ is unique mod } \operatorname{Aut}_{\operatorname{poly}}(Q))$

Example: $P(V) = V \otimes V$.

A sum of a symmetric $\infty \times \infty$ -matrix of infinite rank and a skew-symmetric $\infty \times \infty$ -matrix of rank 2k has strength $S^2 \oplus (S^1)^{\oplus 2k}$.

The ultimate notion of strength?

Proposition/Definition (BDES)

For $p \in P_{\infty}$ there is a unique smallest Q such that $p \in \operatorname{im} \alpha$ for some $\alpha : Q \to P$. Call this Q the strength of p. $(\alpha \text{ is unique mod } \operatorname{Aut}_{\operatorname{poly}}(Q))$

Example: $P(V) = V \otimes V$.

A sum of a symmetric $\infty \times \infty$ -matrix of infinite rank and a skew-symmetric $\infty \times \infty$ -matrix of rank 2k has strength $S^2 \oplus (S^1)^{\oplus 2k}$.

Dichotomy

 $p \in P_{\infty}$ has a dense orbit or p has strength $\prec P$.

Stillman's conjecture

Theorem (Erman-Sam-Snowden 2018)

The ring R of bounded-degree series $\sum_{|\alpha| \leq d} c_{\alpha} x^{\alpha}$ in variables x_1, x_2, \ldots is a graded polynomial ring in uncountably many variables of degrees $1, 2, 3, \ldots$

Stillman's conjecture

Theorem (Erman-Sam-Snowden 2018)

The ring R of bounded-degree series $\sum_{|\alpha| \leq d} c_{\alpha} x^{\alpha}$ in variables x_1, x_2, \ldots is a graded polynomial ring in uncountably many variables of degrees $1, 2, 3, \ldots$

Proof. Take $\{\ell_i\}_i$, $\{q_j\}_j$, $\{c_k\}_k$, ... such that the q_j are a basis modulo the $\ell_i\ell_{i'}$, the c_k are a basis modulo the ℓ_iq_j , etc. Any finite tuple has the expected strength \rightsquigarrow are algebraically independent. \square

Stillman's conjecture

Theorem (Erman-Sam-Snowden 2018)

The ring R of bounded-degree series $\sum_{|\alpha| \leq d} c_{\alpha} x^{\alpha}$ in variables x_1, x_2, \ldots is a graded polynomial ring in uncountably many variables of degrees $1, 2, 3, \ldots$

Proof. Take $\{\ell_i\}_i$, $\{q_j\}_j$, $\{c_k\}_k$, ... such that the q_j are a basis modulo the $\ell_i\ell_{i'}$, the c_k are a basis modulo the ℓ_iq_j , etc. Any finite tuple has the expected strength \rightsquigarrow are algebraically independent. \square

Theorem (Ananyan-Hochster 2016, ESS2017)

There exists an upper bound $N(d_1, \ldots, d_k)$ on the projective dimension of (f_1, \ldots, f_k) with $\deg(f_i) = d_i$.

A Gröbner proof of Stillman's conjecture

Theorem (D-Lasoń-Leykin, 2018)

Any finitely generated homogeneous ideal in R has a finite grevlex Gröbner basis w.r.t. $x_1 > x_2 > \dots$

(uses Erman-Sam-Snowden; not true for, say, lex; is homogeneous needed?)

A Gröbner proof of Stillman's conjecture

Theorem (D-Lasoń-Leykin, 2018)

Any finitely generated homogeneous ideal in R has a finite grevlex Gröbner basis w.r.t. $x_1 > x_2 > \dots$

(uses Erman-Sam-Snowden; not true for, say, lex; is homogeneous needed?)

Theorem (D-Lasoń-Leykin, 2018)

There exists an algorithm that on input d_1, \ldots, d_k outputs all possible grevlex generic ideals of ideals $(f_1, \ldots, f_k) \subseteq R$ where f_i homogeneous of degree d_i .

• Strength of $p \in P_{\infty}$ is a vast generalisation of matrix rank; strength-P elements are "generic points".

- Strength of $p \in P_{\infty}$ is a vast generalisation of matrix rank; strength-P elements are "generic points".
- \bullet GL $_{\infty}$ -orbit closures in P_{∞} : countably many finite-dimensional families, accessible to a computer.

- Strength of $p \in P_{\infty}$ is a vast generalisation of matrix rank; strength-P elements are "generic points".
- GL_{∞} -orbit closures in P_{∞} : countably many finite-dimensional families, accessible to a computer.
- We don't understand their poset structure yet. E.g. fixed border strength \Rightarrow finitely many strengths?

- Strength of $p \in P_{\infty}$ is a vast generalisation of matrix rank; strength-P elements are "generic points".
- GL_{∞} -orbit closures in P_{∞} : countably many finite-dimensional families, accessible to a computer.
- We don't understand their poset structure yet. E.g. fixed border strength \Rightarrow finitely many strengths?
- Many orbit closures are well-known models from applied algebraic geometry.

- Strength of $p \in P_{\infty}$ is a vast generalisation of matrix rank; strength-P elements are "generic points".
- \bullet GL $_{\infty}$ -orbit closures in P_{∞} : countably many finite-dimensional families, accessible to a computer.
- We don't understand their poset structure yet. E.g. fixed border strength \Rightarrow finitely many strengths?
- Many orbit closures are well-known models from applied algebraic geometry.

Thank you!