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ol a LA CMN MON e {12
ar»1 dy = AeC , , E{ v Ly e, OO}

~ either GLy - A- GlLy = CMXN
orelse A=5" uv!, k=rk(A) < min{M, N}.

Without coordinates: A € U ® V a two-tensor
~ either GL(U) x GL(VI A=UQ® V

or else A is a polynomial in 2k one-tensors.
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Definition (Derksen-Eggermont-Snowden)
f = 0111X13 + 0112X12X2 + - T ik XiXjXk + -
~+ g-rank(f) := minimal k s.t. f =411+ -+ qx.

infinite setting:

Theorem (Derksen, Eggermont, Snowden, 2017)
e g-rank(f) = min{codim (V) | V C C®*, f|, = 0}
e {g-rank(f) < k} is closed

e either GL.f is dense, or else g-rank(f) < oo.

Then 7 is a polynomial in 2k lower-degree forms.
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Strength of higher-degree forms

Definition (Ananyan-Hochster)
strength(f = Zhg---gid Cii i Xiy *Xi,) 1S
min{k | f = ZL g:h;; degg; degh; < degf}.

Theorem (Kazhdan-Ziegler, 2018) (finite setting)
It strength(df/0dv) < c for all directions v, then
strength(f) < N(c, d).

Theorem (Bik-Draisma-Eggermont, 2018) (inf)
Either GL, - f is dense, or strength(f) < oo.

Plan today: generalise the dense/bounded
dichotomy, applications; computational issues.
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Vec := {finite-dimensional C-spaces}

P : Vec — Vec a functor:
o:U—->V -~~~ Plg): PU—- PV

P(v) =Tpw), Ple o y) = Plg) o P(Y)
Definition

P is a polynomial functor it for all U, V &€ Vec
P :Hom(U, V) - Hom(PU, PV) is polynomial.

Examples of degree 3:
PV=VeVeV, PV=UsVaNVaeSV.
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polynomial maps _ ?

A" polynomial functors

Definition. P, Q polynomial functors
a: P — Q polynomial transformation it

PU) YV, O(U)

P(<p>| n |o<<p)
P(V) % . (V)

Example (rank-one tensors). PV =V o VeV,
Q\/ = \/®3, O’\/(V1, V7, V3) =V VK.
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Polynomial transformations

Definition. X C P closed it X(V) C PV
/ariski-closed and P(¢p) : X(U) — X(V).

Closed subsets form a category;, morphisms are re-
strictions of polynomial transformations.

Compare:

Classical
X C A" closed ~» morphisms X — A" extend to A".

Proposition (Bik-Eggermont-D-Snowden)
X C P closed ~» any polynomial transtormation
X — 0 extends to P.
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The dense/bounded dichotomy

Definition (lex order on polynomial functors)

P a poly functor with highest degree part P; O R 2
0; Q< P it O aquotientof V— P(U&® V)/R.
Example: S?(U® V)/S*V =S°U+U® V.

Dichotomy (BDES) (infinite version)
Let p € lim_, P(C") =: Py. Then either GL,p is
dense in P, ord0 < P,a: Q — P, p € a(0Q).

Dichotomy (BDES) (finite version)
X C P closed. Then either X = P or 40+, . . ., O <
P and a; : Q; — P such that X C | Jim (o).

(implies all earlier theorems)
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Theorem (BDES) (orbit closures)

The map o — im «a is a surjection from
{polynomial transformations into P} to
{closures of GLy-orbits in P,}.




The ultimate notion of strength?

Proposition/Definition (BDES)

For p € P, there is a unique smallest Q such that
p € ima for some a : Q — P. Call this Q the
strength of p. (a is unique mod Aut p,,(Q))



The ultimate notion of strength?

Proposition/Definition (BDES)

For p € P, there is a unique smallest Q such that
p € ima for some a : Q — P. Call this Q the
strength of p. (a is unique mod Aut p,,(Q))

Example: P(V)=V ® V.
A sum of a symmetric oo X co-matrix of infinite rank
and a skew-symmetric oo X co-matrix of rank 2k has

strength S° @ (S')®%%,



The ultimate notion of strength?

Proposition/Definition (BDES)

For p € P, there is a unique smallest Q such that
p € ima for some a : Q — P. Call this Q the
strength of p. (a is unique mod Aut p,,(Q))

Example: P(V)=V ® V.
A sum of a symmetric oo X co-matrix of infinite rank
and a skew-symmetric oo X co-matrix of rank 2k has

strength S° @ (S')®%%,

Dichotomy
p € P, has a dense orbit or p has strength < P.
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Theorem (Erman-Sam-Snowden 2018)

The ring R of bounded-degree series ) ., CoX” I
variables xq, x2,... is a graded polynomial ring in
uncountably many variables of degrees 1,2, 3, ...

Proof. Take {4}, {q,}; {ck}«, ... such that the g;
are a basis modulo the ¢:¢,, the ¢, are a basis mod-
ulo the ¢;q;, etc. Any finite tuple has the expectec
strength ~» are algebraically independent.

Theorem (Ananyan-Hochster 2016, ESS2017)
There exists an upper bound N(d,..., d¢) on the
projective dimension of (fq,..., fr) with deg(f;) = d..
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A Grobner proof of Stillman’s conjecture

Theorem (D-Lason-Leykin, 2018)
Any finitely generated homogeneous ideal in R has
a finite grevlex Grobner basis w.r.t. x; > x > ...

(uses Erman-Sam-Snowden; not true for, say, lex;
(s homogeneous needed?)

Theorem (D-Lason-Leykin, 2018)

There exists an algorithm that on input d4, ..., dy
outputs all possible grevlex generic ideals of ideals
(f4,..., fr) € R where f; homogeneous of degree d.;.
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Final remarks

e Strength of p € P, is a vast generalisation of ma-
trix rank; strength-P elements are “generic points”.

o Gl -orbit closures in P.,: countably many finite-
dimensional families, accessible to a computer.

e We don't understand their poset structure yet. E.g.
fixed border strength = finitely many strengths?

e Many orbit closures are well-known models from
applied algebraic geometry.

Thank you!
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