Set-theoretic finiteness for the *k*-factor model

Jan Draisma

Statistics ~ algebra

Phylogenetics

genetic data evolutionary tree

Factor analysis

many test results \rightsquigarrow few types of intelligence

Message

Statistics → beautiful algebra challenges (→ statistics)

Phylogenetics

Statistical problem

Test whether n aligned strings of DNA \it{match} a hypothetical tree T.

Approach

Data \leadsto *empirical distribution* P on $\{A, C, G, T\}^n$ Tree \leadsto *parameterised family* F_T of distributions To test: $P \in F_T$?

Phylogenetics, continued

Parameterisation

$$Pr(i, j, k, l) = \sum_{m, p, q} \pi_m M_{pm} P_{ip} Q_{jp} N_{qm} R_{kq} S_{lq}$$

Classical approach

Maximum-likelihood estimates for parameters

Phylogenetics, continued

Observation

 ${\cal F}$ is parameterised by polynomials, hence an *algebraic variety*.

"Ideal approach to biology"

[Barry Cipra, SIAM News, Summer 2007]

Find polynomial equations for F_T (and test on P).

Phylogenetics, selected results

[Allman-Rhodes 2004, Sturmfels-Sullivant 2005, Casanellas-Sullivant 2005, Draisma-Kuttler 2008]

Theorem

- 1. Equations for *stars* → equations for arbitrary trees
- 2. Equations for stars in certain models with symmetry

Allman's fish problem

Find all equations for $\operatorname{Sec}^4(\mathbb{P}^3 \times \mathbb{P}^3 \times \mathbb{P}^3)$ and win a Smoked Copper River Salmon.

The *k*-factor model

Statistical problem

Test whether n (large) observed, jointly Gaussian variables, are pairwise independent given k (small) hidden Gaussian variables.

Approach

Data $\leadsto n \times n$ empirical covariance matrix Σ k-factor model \leadsto family $F_{k,n}$ of $n \times n$ -matrices To test: $\Sigma \in F_{k,n}$?

The k-factor model, continued

Parameterisation

$$F_{k,n} = \{Y = D + SS^T \mid D > 0 \text{ diagonal and } S \in \mathbb{R}^{k \times n} \}$$

Classical approach

Maximum-likelihood estimates for D, S

Ideal approach

Find *polynomial equations* of $F_{k,n}$ (and test on Σ).

The *k*-factor model, some results

Theorem

[De Loera-Sturmfels-Thomas 1995] For all n, ideal of $F_{1,n}$ is generated by off-diagonal 2×2 -minors $y_{ij}y_{kl} - y_{il}y_{kj}$ (tetrads).

Theorem

[Drton-Sturmfels-Sullivant 2007] For $5 \le n \le 9$ ideal of $F_{2,n}$ is generated by off-

diagonal 3×3 -minors and pentads:

$$\sum_{\pi \in \text{Sym}(5)} \operatorname{sgn}(\pi) y_{\pi(1)\pi(2)} y_{\pi(2)\pi(3)} \cdots y_{\pi(5)\pi(1)}.$$

The 2-factor model, finiteness

Observation

$$I \subseteq \{1,\ldots,n\}$$
 and $Y \in F_{k,n} \leadsto Y[I] \in F_{k,|I|}$

Theorem

[Drton-Xiao 2008]

For n > 6:

$$Y \in F_{2,n} \Leftrightarrow \forall_{I,|I|=6} Y[I] \in F_{2,n}$$
.

The k-factor model, fin(iten)esses?

Questions

- 1. Does there exist $n_0 = n_0(k)$ such that $\forall n \geq n_0$: $Y \in F_{k,n} \Leftrightarrow \forall_{I,|I|=n_0} Y[I] \in F_{k,n_0}$?
- 2. Same question for the *Zariski closure* of $F_{k,n}$
- 3. Same question for the *scheme* $F_{k,n}$

Aside

From Cambridge Advanced Learner's Dictionary: finesse verb [T]: to deal with a situation or a person in a skilful and often slightly dishonest way.

The k-factor model, finiteness

Theorem

[Draisma 2008] For all k there exists an $n_0(k)$ such that $\forall n \geq n_0$: $Y \in \overline{F_{k,n}} \Leftrightarrow \forall_{I,|I|=n_0} Y[I] \in \overline{F_{k,n_0}}$.

Disclaimer

- **1.** No obvious bound for n_0
- **2.** No obvious implication for $F_{k,n}$
- 3. Not scheme-theoretically

G-Noetherianity

Definition

G group acting on ring R R is G-Noetherian if every chain

$$I_1 \subseteq I_2 \subseteq \dots$$

of G-stable ideals stabilises.

Theorem

[Aschenbrenner-Hillar 2007, Hillar-Sullivant 2008] $\mathbb{R}[u_1, u_2, \dots, v_1, v_2, \dots, z_1, z_2, \dots]$ is $\mathrm{Sym}(\mathbb{N})$ -Noetherian.

G-Noetherianity, continued

Idea

Prove that $\overline{F_{k,\infty}}$ is a $\mathrm{Sym}(\mathbb{N})$ -stable subvariety of some $\mathrm{Sym}(\mathbb{N})$ -Noetherian variety, which itself is finitely characterised.

Wishful thinking

- **1.** Is $\mathbb{R}[y_{ij} \mid i, j = 1, 2, \ldots] \operatorname{Sym}(\mathbb{N})$ -Noetherian? NO!
- 2. Is $\mathbb{R}[y_{ij}]/\langle \text{off-diagonal } (k+1) \times (k+1) \text{-minors} \rangle$ Sym(N)-Noetherian? Perhaps, but not even clear for k=1.

The k-factor model, proof idea

Theorem

The $\mathbb{N} \times \mathbb{N}$ -matrices over \mathbb{R} defined by the off-diagonal $(k+1) \times (k+1)$ -minors form a $\mathrm{Sym}(\mathbb{N})$ -Noetherian topological space.

Proof uses Aschenbrenner-Hillar-Sullivant, induction on k, and the following lemma.

Lemma

If X an H-Noetherian H-space and $G\supseteq H$, then $G\times_H X$ is G-Noetherian.

Conclusions

Algebra challenges from statistics

- 1. Implicitisation: parameterisation → equations
- 2. Finiteness: small → large models
- 3. Maximum-likelihood equations

Relevant tools

- 1. Invariant theory
- 2. *G*-Noetherianity
- 3. Computational algebra
- 4. Toric and tropical geometry
- 5. Secant varieties

