# Brill-Noether and Gonality

Jan Draisma TU Eindhoven

Trento, 16 September 2011

(based on work by Cools-D-Payne-Robeva and Castryck-Cools)

#### Part I: the Brill-Noether theorem

 $\begin{array}{l} X \text{ smooth projective curve of genus } g \\ D \in \operatorname{Div} X \leadsto |D| = \{E \geq 0 \mid D \sim E\}; \operatorname{rk}(D) := \dim |D| \\ d, r \in \mathbb{N} \\ W^r_d := \{[D] \in \operatorname{Pic}_d(X) \mid \operatorname{rk} D \geq r\} \\ \rho := g - (r+1)(g-d+r) \end{array}$ 

#### Theorem

$$\rho \geq 0 \Rightarrow W^r_d \neq \emptyset$$
 [Kempf 1971, Kleiman-Laksov 1972, Meis 1960, . . . ]

$$ho < 0$$
 and  $X$  general  $\Rightarrow W_d^r = \emptyset$   $ho \geq 0$  and  $X$  general  $\Rightarrow \dim W_d^r = \rho$  [Griffiths-Harris 1980]

$$\rho=0$$
 and  $X$  general  $\Rightarrow |W^r_d|=\#$  standard tableaux of shape  $(g-d+r)\times (r+1)$  with entries  $1,2,\ldots,g$ 

## Why $\rho = g - (r+1)(g-d+r)$ ?

$$\rightsquigarrow$$
 expected dim  $W = d - r(g - d + r)$ 

$$\rightarrow$$
 expected dim  $W_d^r = d - r(g - d + r) - r = \rho$ 

## Linear systems on metric graphs

[Baker-Norine, Gathmann-Kerber, Mikhalkin-Zharkov]  $\Gamma \text{ metric graph}$   $\operatorname{Div} \Gamma := \mathbb{Z}\Gamma$   $M(\Gamma) := \{ \text{piecewise linear functions } \Gamma \to \mathbb{R} \text{ with } \mathbb{Z}\text{-slopes} \}$   $\operatorname{div} f := \sum_{v \in \Gamma} \operatorname{ord}_v(f) v \sim 0 \text{ principal divisors}$   $|D| := \{ E \geq 0 \mid E \sim D \}$   $\operatorname{rk} D := \max \{ r \mid |D - v_1 - \ldots - v_r| \neq \emptyset \text{ for all } v_i \in \Gamma \}$ 

Chip-dragging interpretation







## Specialisation Lemma (Baker, 2007)

K discretely valued field,  $R\subseteq K$  valuation ring, k residue field X smooth curve over K

#### Strongly semistable model of X

 $\mathfrak{X}$  proper, regular, flat scheme over  $\operatorname{Spec} R$  general fibre  $\mathfrak{X}_K$  isomorphic to X special fibre  $\mathfrak{X}_k = X_1 \cup \ldots \cup X_s$  intersections simple nodes /k  $\leadsto$  dual graph  $\Gamma$  on  $\{u_1,\ldots,u_s\}$  (metric with edge lengths  $\mathfrak{I}$ )  $\leadsto$  map  $X(K) = \mathfrak{X}(R) \to \{u_1,\ldots,u_s\}$ 



well-behaved with respect to finite extensions K'/K  $\leadsto$  specialisation map  $\tau:X(\overline{K})\to \Gamma$ 

#### **Specialisation Lemma**

$$\hat{D} \in \operatorname{Div}_d(X_{\overline{K}}) \Rightarrow \operatorname{rk}(\tau_* D) \ge \operatorname{rk}(D)$$

# A Brill-Noether general $\Gamma_g$



$$d, r \in \mathbb{N}, \rho := g - (r+1)(g-d+r)$$

$$W_d^r := \{ [D] \in \operatorname{Pic}_d(\Gamma_g) \mid \operatorname{rk}(D) \ge r \}$$

#### Theorem (Cools-D-Payne-Robeva)

$$ho < 0 \Rightarrow W_d^r = \emptyset$$
 $ho \ge 0 \Rightarrow \dim W_d^r = \rho$ 
 $ho = 0 \Rightarrow \#W_d^r = \#$  standard tableaux of shape
 $(r+1) \times (g-d+r)$  with entries  $1,2,\ldots,g$ 
 $ho \Rightarrow$  G-H 1980! [Specialisation and Conrad's appendix to Baker 2007]

### The BN Game









**Rules** 

B puts d chips on a metric graph (i.e., chooses  $D \geq 0$ ,  $\operatorname{rk} D = d$ ) N challenges by specifying r positions B wins if he can  $\operatorname{drag}$  to cover those N wins otherwise



d=2, r=1—who wins?

# Example

$$g=4, d=3, r=1 \\ \leadsto \rho=0$$

|   | ρ | O |               |
|---|---|---|---------------|
| 1 | 3 | • | 1, 2, 3, 2, 1 |
| 2 | 4 |   | 1, 2, 0, 2, 1 |

| 1 | 2 | <b>→</b> | 1  | 2          | 1  | 2  | 1 |
|---|---|----------|----|------------|----|----|---|
| 3 | 4 | 1.44     | 1, | $\angle$ , | 1, | Ζ, | Т |



## Part II: curves with prescribed Newton polygon

```
\begin{aligned} & \mathsf{gonality}(X) := \min\{d \mid \exists \ \mathsf{rational} \ \mathsf{function} \ \mathsf{on} \ X \ \mathsf{of} \ \mathsf{degree} \ d\} \\ &= \min\{d \mid \exists D \ \mathsf{of} \ \mathsf{rank} \ 1 \ \mathsf{and} \ \mathsf{degree} \ d\} \end{aligned}
```

 $\Delta \subseteq \mathbb{R}^2$  lattice polygon X plane curve with Newton polygon  $\Delta \longrightarrow$  gonality  $\leq lattice\ width\ of\ \Delta$ 

#### Conjecture (Castryck-Cools, 2010)

equality holds for general X with Newton polygon  $\Delta$  except for  $\mathbb{N}+1$  counter-examples

semi-continuity: suffices to construct one X with equality

## Approach by Castryck-Cools

 $\Delta = \Delta_1 \cup \ldots \cup \Delta_r$  regular subdivision into lattice polytopes  $\Gamma$  dual graph on  $\{1, \ldots, r\}$  (metric with edge lengths 1)

#### Theorem

general X with Newton polygon  $\Delta$  has gonality  $\geq$  gonality  $(\Gamma)$ 

#### **Proof idea**

- 1. lift  $\Delta$  to lattice polygon  $\tilde{\Delta} \subseteq \mathbb{R}^3$ : upper facet horizontal and lower facets projecting to  $\Delta_i$   $\leadsto$  toric three-fold Y with fibration  $\{Y_t\}_t$  over  $\mathbb{P}^1$   $Y_0$  union of toric surfaces  $Y_{0,i} \leftrightsquigarrow \Delta_1, \ldots, \Delta_r$
- 2. choose general  $f\in K[t^{\pm 1},x^{\pm 1},y^{\pm 1}]$  with Newton polygon  $\tilde{\Delta}$   $X_t:=\{f=0\}\cap Y_t, t\neq 0 \text{ smooth } X_0:=\{f=0\}\cap Y_0 \text{ union of } r \text{ smooth curves, one in each } Y_{0,i}\text{, dual graph } \Gamma$
- 3. apply Specialisation Lemma

## Approach by Castryck-Cools, continued

#### Stronger conjecture

for all  $\Delta$  (with  $\mathbb{N} + 1$  exceptions) ∃ regular subdivision such that gonality( $\Gamma$ ) = lattice width( $\Delta$ )

true for lattice width at most 4, quadrangle spanned by  $1, x^d, xy^{d-1}, y^{d-1}$ , etc.

#### Example





# Analysing the BN game on $\Gamma_g$



 $\begin{aligned} & \text{may assume that N's positions are in } \{v_0, \dots, v_g\} \text{ [Luo]} \\ & \text{may assume that D has } d_0 \text{ chips at } v_0 \text{ and } \leq 1 \text{ chip on each } \gamma_i \\ & D \leadsto \text{lingering lattice path } P: p_0, p_1, \dots, p_g \in \mathbb{Z}^r \\ & p_0 \coloneqq (d_0, d_0 - 1, \dots, d_0 - r + 1) \\ & & \left\{ \begin{array}{c} (-1, \dots, -1) & \text{if B has no chip on } \gamma_i \\ e_j & \text{if firing } p_{i-1}(j) \text{ chips from } v_{i-1} \text{ to } v_i \\ e_j & \text{if firing } p_{i-1}(j) \text{ chips from } v_{i-1} \text{ to } v_i \\ & \text{leads the chip on } \gamma_i \text{ to } v_i \text{ as well} \\ & & \text{and } p_{j-1}, p_{j-1} + e_j \in \mathcal{C} \\ 0 & \text{otherwise} \\ & \mathcal{C} \coloneqq \{(y(0), \dots, y(r-1)) \in \mathbb{Z}^r \mid y(0) > y(1) > \dots > y(r-1) > 0\} \end{aligned}$ 

## Analysis, continued

Proposition  $\Rightarrow$  Main Theorem

#### **Proposition**

B wins with starting position D iff P stays entirely in C.

# assume $W_d^r \neq \emptyset$ P lingering lattice path with a winning D $d_0 \geq r$ # steps in direction $(-1,\ldots,-1)=g-d+d_0$ $0 < p_g(r-1)=(d_0-r+1)-(g-d+d_0)+\#$ steps in direction $e_{r-1} \sim \#$ steps in direction $e_{r-1} \geq g-d+r$

$$\Rightarrow d - d_0 > r(q - d + r)$$

 $\rightsquigarrow$  # steps in direction  $e_i > q - d + r$ , all i

$$\Rightarrow d-r \ge r(q-d+r)$$

$$\leadsto g \ge (r+1)(g-d+r)$$