On critical rank-k approximations to tensors

Jan Draisma (jww Giorgio Ottaviani and Alicia Tocino)

Atlanta, August 2017

SVD

$$A \in \mathbb{R}^{m \times n}$$
, $m \le n \leadsto A = \sum_{i=1}^m \sigma_i u_i v_i^T$ with singular values $\sigma_1 \ge \cdots \ge \sigma_m \ge 0$ and $(u_i|u_j) = (v_i|v_j) = \delta_{ij}$.

Theorem

 $\sum_{i=1}^k \sigma_i u_i v_i^T \text{ minimises } d_A(B) := ||A-B||^2 = \sum_{i,j} (a_{ij} - b_{ij})^2$ among rank $\leq k$ -matrices.

SVD

$$A \in \mathbb{R}^{m \times n}$$
, $m \le n \leadsto A = \sum_{i=1}^m \sigma_i u_i v_i^T$ with singular values $\sigma_1 \ge \cdots \ge \sigma_m \ge 0$ and $(u_i|u_j) = (v_i|v_j) = \delta_{ij}$.

Theorem

 $\sum_{i=1}^k \sigma_i u_i v_i^T \text{ minimises } d_A(B) := ||A-B||^2 = \sum_{i,j} (a_{ij} - b_{ij})^2$ among rank $\leq k$ -matrices.

Refinement

If $\sigma_1 > \cdots > \sigma_m > 0$, then the critical points of d_A on the manifold of rank-k matrices are $\sum_{i \in I} \sigma_i u_i v_i^T$ for |I| = k.

These lie in the span of the critical rank-1 approximations.

Main result

Theorem (D-Ottaviani-Tocino)

Under mild conditions, the critical rank-k approximations to a tensor f also lie in the span of its critical rank-1 approximations.

Main result

Theorem (D-Ottaviani-Tocino)

Under mild conditions, the critical rank-k approximations to a tensor f also lie in the span of its critical rank-1 approximations.

Setting

- V_1, \ldots, V_p f.d. \mathbb{C} -spaces with symmetric bilinear forms (.|.)
- d_1, \ldots, d_p natural numbers ≥ 1
- $T := S^{d_1}V_1 \otimes \cdots \otimes S^{d_p}V_p$ equipped with (.|.) satisfying $(v_1^{d_1} \otimes \cdots \otimes v_p^{d_p}|w_1^{d_1} \otimes \cdots \otimes w_p^{d_p}) = (v_1|w_1)^{d_1} \cdots (v_p|w_p)^{d_p}$

Theorem (D-Ottaviani-Tocino)

Under mild conditions, the critical rank-k approximations to a tensor f also lie in the span of its critical rank-1 approximations.

Setting

- V_1, \ldots, V_p f.d. \mathbb{C} -spaces with symmetric bilinear forms (.|.)
- d_1, \ldots, d_p natural numbers ≥ 1
- $T := S^{d_1}V_1 \otimes \cdots \otimes S^{d_p}V_p$ equipped with (.|.) satisfying $(v_1^{d_1} \otimes \cdots \otimes v_p^{d_p}|w_1^{d_1} \otimes \cdots \otimes w_p^{d_p}) = (v_1|w_1)^{d_1} \cdots (v_p|w_p)^{d_p}$

Mild conditions

- $f \in T$ is sufficiently general
- for all i with $d_i = 1$: $(\dim V_i 1) \leq \sum_{j \neq i} (\dim V_j 1)$

Necessary?

Main result

Theorem (D-Ottaviani-Tocino)

Under mild conditions, the critical rank-k approximations to a tensor f also lie in the span of its critical rank-1 approximations.

Setting

ullet $X:=\{v_1^{d_1}\otimes \cdots \otimes v_p^{d_p}\}\leq T$ the variety of rank ≤ 1 tensors

 $\bullet \ \sigma_k X := \overline{\{x_1 + \cdots + x_k \mid x_i \in X\}}$ the k-th secant variety

Main result

Theorem (D-Ottaviani-Tocino)

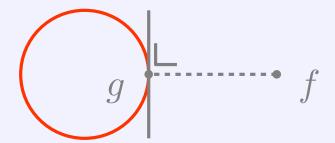
Under mild conditions, the critical rank-k approximations to a tensor f also lie in the span of its critical rank-1 approximations.

Setting

- ullet $X:=\{v_1^{d_1}\otimes \cdots \otimes v_p^{d_p}\}\leq T$ the variety of rank ≤ 1 tensors
- $\sigma_k X := \overline{\{x_1 + \dots + x_k \mid x_i \in X\}}$ the k-th secant variety

Definition

A critical rank-k approximation to $f \in T$ is a smooth point $g \in \sigma_k X$ such that $f - g \perp T_q \sigma_k X$.



The critical space

For each $i \in \{1, ..., p\}$, there is a natural skew bilinear map $[.|.]_i : T \times T \to \bigwedge^2 V_i$ constructed from the bilinear forms.

Definition

The critical space for $f \in T$ is $H_f := \{g \in T \mid \forall i : [f|g]_i = 0\}$.

For each $i \in \{1, ..., p\}$, there is a natural skew bilinear map $[.|.]_i : T \times T \to \bigwedge^2 V_i$ constructed from the bilinear forms.

Definition

The critical space for $f \in T$ is $H_f := \{g \in T \mid \forall i : [f|g]_i = 0\}$.

Example: matrices

For $A = \sum_{i=1}^{m} \sigma_i u_i v_i^T \in \mathbb{R}^{m \times n}$ this is the set of B such that AB^T and A^TB are both symmetric; so each $u_j v_j^T \in H_A$.

Moreover, if the σ_i are positive and distinct, then H_A is the span of the $u_j v_i^T$.

Remark

 H_f was called *singular space* by Ottaviani-Paoletti.

Proposition 1

Under same mild conditions, $\operatorname{codim}_T H_f = \sum_{i=1}^p \dim \bigwedge^2 V_i$.

Proposition 1

Under same mild conditions, $\operatorname{codim}_T H_f = \sum_{i=1}^p \dim \bigwedge^2 V_i$.

Proposition 2

Proof sketch

Proposition 1

Under same mild conditions, $\operatorname{codim}_T H_f = \sum_{i=1}^p \dim \bigwedge^2 V_i$.

Proposition 2

The critical rank-k approximations to f lie in H_f .

Proposition 3

The critical rank-one approximations to f span a space of the same codimension $\sum_i \dim \bigwedge^2 V_i$.

Proof sketch

Proposition 1

Under same mild conditions, $\operatorname{codim}_T H_f = \sum_{i=1}^p \dim \bigwedge^2 V_i$.

Proposition 2

The critical rank-k approximations to f lie in H_f .

Proposition 3

The critical rank-one approximations to f span a space of the same codimension $\sum_i \dim \bigwedge^2 V_i$.

Ad 3: Following Friedlander-Ottaviani, interpret the rank-one approximations as the zeroes of a section of a certain vector bundle on $\mathbb{P}V_1 \times \cdots \times \mathbb{P}V_p$, and we use vector bundle techniques.

Ad 1: Find an explicit (sparse) f for which this holds.

The critical space for $f \in T$ is $H_f := \{g \in T \mid \forall i : [f|g]_i = 0\}$.

Proposition 2

The critical space for $f \in T$ is $H_f := \{g \in T \mid \forall i : [f|g]_i = 0\}$.

Proposition 2

The critical rank-k approximations to f lie in H_f .

• Let $g := x_1 + \cdots + x_k$ be critical for f, so $\forall i : f - g \perp T_{x_i} X$.

The critical space for $f \in T$ is $H_f := \{g \in T \mid \forall i : [f|g]_i = 0\}.$

Proposition 2

- Let $g := x_1 + \cdots + x_k$ be critical for f, so $\forall i : f g \perp T_{x_i} X$.
- Write $x_1 = v_1^{d_1} \otimes \cdots \otimes v_p^{d_p}$, and extend each v_i to an orthogonal basis of V_i . This gives an x_1 -adapted monomial basis of T.

The critical space for $f \in T$ is $H_f := \{g \in T \mid \forall i : [f|g]_i = 0\}.$

Proposition 2

- Let $g := x_1 + \cdots + x_k$ be critical for f, so $\forall i : f g \perp T_{x_i} X$.
- Write $x_1 = v_1^{d_1} \otimes \cdots \otimes v_p^{d_p}$, and extend each v_i to an orthogonal basis of V_i . This gives an x_1 -adapted monomial basis of T.
- Now f-g is a linear combination of monomials that have gcd of degree $<-1+\sum_i d_i$ with x_1 . Hence $\forall i:[f-g|x_1]_i=0$.

The critical space for $f \in T$ is $H_f := \{g \in T \mid \forall i : [f|g]_i = 0\}$.

Proposition 2

- Let $g := x_1 + \cdots + x_k$ be critical for f, so $\forall i : f g \perp T_{x_i} X$.
- Write $x_1 = v_1^{d_1} \otimes \cdots \otimes v_p^{d_p}$, and extend each v_i to an orthogonal basis of V_i . This gives an x_1 -adapted monomial basis of T.
- Now f-g is a linear combination of monomials that have gcd of degree $<-1+\sum_i d_i$ with x_1 . Hence $\forall i:[f-g|x_1]_i=0$.
- Similarly for x_2 etc, so $[f-g|g]_i=[f-g|x_1+\cdots+x_k]_i=0$.

The critical space for $f \in T$ is $H_f := \{g \in T \mid \forall i : [f|g]_i = 0\}$.

Proposition 2

- Let $g := x_1 + \cdots + x_k$ be critical for f, so $\forall i : f g \perp T_{x_i} X$.
- Write $x_1 = v_1^{d_1} \otimes \cdots \otimes v_p^{d_p}$, and extend each v_i to an orthogonal basis of V_i . This gives an x_1 -adapted monomial basis of T.
- Now f-g is a linear combination of monomials that have gcd of degree $<-1+\sum_i d_i$ with x_1 . Hence $\forall i:[f-g|x_1]_i=0$.
- Similarly for x_2 etc, so $[f-g|g]_i=[f-g|x_1+\cdots+x_k]_i=0$.
- Since $[g|g]_i = 0$, also $[f|g]_i = 0$.

Theorem (D-Ottaviani-Tocino)

Under mild conditions, the critical rank-k approximations to a tensor lie in the span of its critical rank-1 approximations.

Disclaimer

This does *not* mean that a best rank-k approximation can be found by iteratively subtracting best rank-1 approximations. This is true only seldomly (Vannieuwenhoven, Nicaise, Vandebril, and Meerbergen).

On the arXiv soon . . . comments welcome!