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High school probability

n-sided die, probabilities P = (p1, . . . , pn), thrown N times
 prob of U = (u1, . . . ,un) ∈ Nn with u1 + . . . + un = N is

multinomial·pu1
1 · · · p

un
n =: `U(P) likelihood of P given U

Basic statistical problem
Given U, maximise `U(P) subject to constraints on P.

Example
If only constraints are

∑
i pi =: p+ = 1 and pi ≥ 0

 maximum attained by pi := ui/N.
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(Mixtures of) independence

P = (pi j)i j ∈ Rm×n joint distribution of two random variables
 independent if pi j can be written as qit j, i.e., iff rk(P) = 1

U = (ui j)i j data matrix, `U(P) =
∏

i j pui j

i j

ML-problem for independence model
Maximise `U(P) subject to pi j ≥ 0, p++ = 1, rk(P) = 1.

Solution
pi j = ui+u+ j/(u2

++)

Mixture of r copies of independence
P convex combination of P1, . . . ,Pr as above
 p++ = 1 and rk(P) ≤ r ML-problem much harder!
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Critical points

ML-problem for manifold M ⊆ (R>0)n

Maximise `U(P) =
∏

i pui
i subject to P ∈M.

Derivative
(dP`U)(X) = `U(P)

∑
i

xi
pi

ui, X ∈ TPM

Necessary condition for P to be the ML-estimate
P critical: dP`U vanishes identically on TPM
⇔
∑

i
xi
pi

ui = 0 for all X ∈ TPM⇔ (p−1
1 , . . . , p

−1
n )TPM ⊆ U⊥

Algebraic measure of complexity
Count number of critical points. . . easier over C!
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ML-degree

Setting
M ⊆ (C∗)n smooth subvariety (locally closed) Crit(M):=
{(P,U) ∈M × Cn

| P−1TPM ⊆ U⊥} variety of critical points

Fibre over U ∈ Nn is set of critical points for U.
Reasonable assumptions fibres finite of constant size for
sufficiently general U. ML-degree of M

Theorem (Huh, 2012; related Franecki-Kapranov, 2000)
M closed in addition to smooth (very affine)
 ML-degree is (−1)dimC Mχ(M), where χ is the Euler
characteristic of M.
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Theorem (Hauenstein-Rodriguez-Sturmfels, 2012)
For small r ≤ m ≤ n ML-degree of M is as follows:
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Theorem (Hauenstein-Rodriguez-Sturmfels, 2012)
For small r ≤ m ≤ n ML-degree of M is as follows:

Bertini

Conjecture (HRS)
ML-degree (Mr) = ML-degree (Mm−r+1)
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ML-duality

Mr := {P ∈ (C∗)m×n
| p++ = 1, rk(P) = r}, m ≤ n

Theorem (D-Rodriguez, 2012)
U ∈ Nm×n sufficiently general the map P 7→ Q′ defined by
pi jq′i j = ui+ui ju+ j/(u3

++) is a bijection between critical points
of `U on Mr and those on Mm−r+1.

Remark
• `U(P)`U(Q′) independent of P

• P positive real⇔ so is Q′

• `U(Q′) decreases with increasing `U(P)

“Mr and Mm−r+1 are ML-dual”
• Rodriguez established a general ML-duality theory.
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1
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1

1
6776
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1

(m,n)

r

Theorem (Botong-Rodriguez 2015)
For r = 2 and m = 3 ≤ n the ML-degree is equal to 2n+1

− 6.

The proof involves subtle topological counting. More
generally, they prove a recurrence relation for the rank-two
case with which a closed formula for any fixed m and
running n can be found.
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Algebraic varieties with ML-degree 1

Recall
For the model of independence, the ML-degree is 1 and the
ML estimate is (ui+u+ j)/(u2

++).

In general, consider a rational map Ψ : Cn
→ (C∗)n which is

a composition of a linear map Cn
→ Cr followed by a

monomial map Cr
→ (C∗)n which is homogeneous of degree

zero. Define M as the smooth locus of the closure of imΨ.

Theorem (Huh 2013)
The variety M has ML-degree 1, and Ψ is its ML-estimator.
Moreover, every variety of ML-degree 1 arises like this.
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Reintroducing inequalities

Forget about ML-degree.

M1 := {P ∈ Rm×n
≥0 | rk(P) = 1,

∑
i j pi j = 1} independence

Mr := {c1P1 + . . . + crPr | Pi ∈M1, ci ∈ R≥0, c1 + . . . + cr = 1}
mixture of r copies of M1

For a nonnegative matrix A with
∑

i j ai j = 1 the smallest r
with A ∈Mr is the nonnegative rank of A. It is ≥ rk(A).

Theorem (Vavasis 2009, Shitov 2015/2016)
nonnegative rank is NP-hard and may depend on the field.

Exercise
If a nonnegative matrix A has rank ≤ 2, then rkA equals its
nonnegative rank.
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Nonnegative rank three

Consider M3. Given a data matrix U ∈ Zm×n
≥0 , the

ML-estimate in M3 is in practice approximated via the
ME-algorithm.

Kubjas-Robeva-Sturmfels 2013
This often converges to the boundary of M3 inside the variety
of matrices of rank ≤ 3; find explicit description of fixpoints.

Theorem (K-R-S)
This boundary has three orbits of irreducible components
under row and column permutations:
• one orbit where an entry of U is zero
• one orbit corresponding to the picture:
• and its transpose
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Margins

Mr := {P ∈ (C∗)m×n
| p++ = 1, rk(P) = r}, m ≤ n

U sufficiently general, P critical point for `U(P) =
∏

i j pui j

i j

Tangent space
TPMr = {X ∈ Cm×n

| x++ = 0,X ker P ⊆ imP}

1 := (1, . . . , 1) ∈ Cm or Cn

Lemma
P1 is proportional to U1

p2+ · p11 p2+ · p1n
−p1+ · p21 −p1+ · p2n

0 0

0 0

· · ·

· · ·

· · ·

...
...

X = ∈ TPMr  0 =
∑

i j
xi j

pi j
ui j

= p2+ · u1+ − p1+ · u2+

�
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Normalisation of Q

Mr := {P ∈ (C∗)m×n
| p++ = 1, rk(P) = r}, m ≤ n

U sufficiently general, P critical point for `U(P) =
∏

i j pui j

i j

P1,U1 proportional (and so are 1TP, 1TU)

Dual critical point
qi j := ui+

ui j

pi j
u+ j, q′i j := qi j/(u3

++)

Proposition
q++ = u3

++

Y := (ui+ · u+ j)i j satisfies Y ker P ⊆ imP
P satisfies P ker P ⊆ imP

 Y − cP ∈ TPMr
c = y++/p++ = u2

++∑
i j qi j =

∑
i j yi j

ui j

pi j
=
∑

i j cpi j
ui j

pi j
= (u++)3

�
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Rank of Q

Mr := {P ∈ (C∗)m×n
| p++ = 1, rk(P) = r}, m ≤ n

Q = R · ( U
P ) · K, R = diag(U1),K = diag(1TU)

Lemma
TPMr is spanned by rank-one matrices vwT with
(v ∈ imP or w⊥ker P) and (v⊥1 or w⊥1).

Derivative
(dP`U)(vwT) =

∑
i j vi

ui j

pi j
w j = vtR−1QK−1w

Proposition
ker Q ⊇ K−1(ker P + C1)⊥ and imQ ⊆ (R−1(imP ∩ 1⊥))⊥

 rkQ =: s ≤ m − r + 1
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Criticality of Q

P1,U1 = R1 proportional (and so are 1TP, 1TU = 1TK)
Q = R · ( U

P ) · K, rkQ = s ≤ m − r + 1,
ker Q ⊇ K−1(ker P + C1)⊥ =: W
imQ ⊆ (R−1(imP ∩ 1⊥))⊥ =: V

Proposition
For all x ∈ Cm, y ∈ Cn with (x ∈ V or y⊥W) and (x⊥1 or y⊥1)
we have xTR−1PK−1y = 0.

E.g., x ∈ V and x⊥1 PK−1y = cR1 + v with v ∈ imP ∩ 1⊥

 xTR−1PK−1y = cxT1 + xTR−1v = 0 + 0 = 0 �
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For all x ∈ Cm, y ∈ Cn with (x ∈ V or y⊥W) and (x⊥1 or y⊥1)
we have xTR−1PK−1y = 0.

E.g., x ∈ V and x⊥1 PK−1y = cR1 + v with v ∈ imP ∩ 1⊥

 xTR−1PK−1y = cxT1 + xTR−1v = 0 + 0 = 0 �

In particular for x ∈ imQ or y⊥ker Q Q′ critical in Ms!
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Bijection

Crit(Mr) Crit(M f (r)), f (r) = s ≤ m − r + 1

(P,U) ((R · U
P · K)/(u3

++),U)
ψr

Observation
• ψr injective
• ψr dominant (both spaces have dimension mn − 1)
 ψr birational, f : {1, . . . ,m} → {1, . . . ,m} bijection
 f (r) = m − r + 1

Theorem (D-Rodriguez, 2012)
Mr and Mm−r+1 are ML-dual.

Further work
symmetric/alternating matrices!
tensors? other ML-dual pairs of varieties?

�
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