(Uniform) determinantal representations

Jan Draisma Universität Bern

October 2016, Kolloquium Bern

$$R := \mathbb{C}[x_1, \dots, x_n] \text{ and } R_{\leq d} := \{ p \in R \mid \deg p \leq d \}$$

A determinantal representation of $p \in R$ of size N is a matrix $M \in R_{\leq 1}^{N \times N}$ with $\det(M) = p$.

$$R := \mathbb{C}[x_1, ..., x_n] \text{ and } R_{\leq d} := \{ p \in R \mid \deg p \leq d \}$$

A determinantal representation of $p \in R$ of size N is a matrix $M \in R_{\leq 1}^{N \times N}$ with $\det(M) = p$.

n = 1: companion matrices

$$\det \begin{bmatrix} x & -1 & & & \\ & x & -1 & & \\ & & \ddots & \ddots & \\ & & x & -1 & \\ a_0 & a_1 & \cdots & a_{n-2} & a_{n-1} + a_n x \end{bmatrix} = a_0 + a_1 x + \dots + a_n x^n$$

$$R := \mathbb{C}[x_1, \dots, x_n] \text{ and } R_{\leq d} := \{ p \in R \mid \deg p \leq d \}$$

A determinantal representation of $p \in R$ of size N is a matrix $M \in R_{\leq 1}^{N \times N}$ with $\det(M) = p$.

A bivariate example

$$\det \begin{bmatrix} x & -1 \\ y & -1 \\ a+bx+cy & dx+ey & fy \end{bmatrix} = a+bx+cy+dx^2+exy+fy^2$$

$$R := \mathbb{C}[x_1, \dots, x_n] \text{ and } R_{\leq d} := \{ p \in R \mid \deg p \leq d \}$$

A determinantal representation of $p \in R$ of size N is a matrix $M \in R_{\leq 1}^{N \times N}$ with $\det(M) = p$.

A bivariate example

$$\det \begin{bmatrix} x & -1 \\ y & -1 \\ a+bx+cy & dx+ey & fy \end{bmatrix} = a+bx+cy+dx^2+exy+fy^2$$

Determinantal representations always exist, but how small? \rightsquigarrow the *determinantal complexity* dc(p) is the smallest N.

Why?

Motivation I: permanent versus determinant

"If p has a determinantal representation M of small size N, then p can be evaluated efficiently using Gaussian elimination."

"If p has a determinantal representation M of small size N, then p can be evaluated efficiently using Gaussian elimination."

Definition

$$\operatorname{perm}_m := \sum_{\pi \in S_m} x_{1\pi(1)} \cdots x_{m\pi(m)}$$
 is the $m \times m$ permanent.

Example

$$perm_3 \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} = 3 \text{ counts } perfect \text{ matchings:}$$

"If p has a determinantal representation M of small size N, then p can be evaluated efficiently using Gaussian elimination."

Definition

$$\operatorname{perm}_m := \sum_{\pi \in S_m} x_{1\pi(1)} \cdots x_{m\pi(m)}$$
 is the $m \times m$ permanent.

Example

$$perm_3 \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} = 3 \text{ counts } perfect \text{ matchings:}$$

Counting matchings in bipartite graphs is believed hard, so $dc(perm_m)$ should be large!

[Valiant, 70s]

 $dc(perm_m)$ grows faster with m than any polynomial.

[Valiant, 70s]

 $dc(perm_m)$ grows faster with m than any polynomial.

Best known bounds

[Mignon-Ressayre 04, Grenet 12]

 $\frac{m^2}{2} \le \text{dc}(\text{perm}_m) \le 2^m - 1$ [Alper-Bogart-Velasco 15: = 7 for m = 3]

[Valiant, 70s]

 $dc(perm_m)$ grows faster with m than any polynomial.

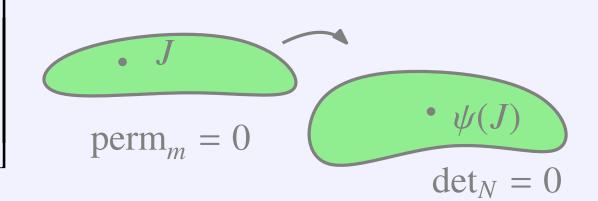
$$\frac{m^2}{2} \le \operatorname{dc}(\operatorname{perm}_m) \le 2^m - 1$$

Best known bounds [Mignon-Ressayre 04, Grenet 12] $\frac{m^2}{2} \le \text{dc}(\text{perm}_m) \le 2^m - 1$ [Alper-Bogart-Velasco 15: = 7 for m = 3]

Proof sketch of lower bound

If $\psi : \mathbb{C}^{m \times m} \to \mathbb{C}^{N \times N}$ affine-linear with $\det_N(\psi(A)) = \operatorname{perm}_m(A)$,

$$J := \begin{bmatrix} -m+1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \vdots \\ 1 & 1 & \cdots & 1 \end{bmatrix}$$



[Valiant, 70s]

 $dc(perm_m)$ grows faster with m than any polynomial.

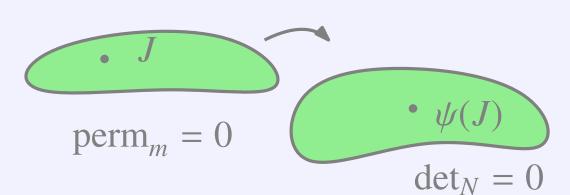
$$\frac{m^2}{2} \le \operatorname{dc}(\operatorname{perm}_m) \le 2^m - 1$$

Best known bounds [Mignon-Ressayre 04, Grenet 12] $\frac{m^2}{2} \le \text{dc}(\text{perm}_m) \le 2^m - 1$ [Alper-Bogart-Velasco 15: = 7 for m = 3]

Proof sketch of lower bound

If $\psi : \mathbb{C}^{m \times m} \to \mathbb{C}^{N \times N}$ affine-linear with $\det_N(\psi(A)) = \operatorname{perm}_m(A)$,

$$J := \begin{bmatrix} -m+1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \vdots \\ 1 & 1 & \cdots & 1 \end{bmatrix}$$



 $q_1(X) := \text{quadratic part of perm}_m(J + X), \text{ form of rank } m^2$

 $q_2(Y) := \text{quadratic part of } \det_N(\psi(J) + Y), \text{ form of rank } \leq 2N$

[Valiant, 70s]

 $dc(perm_m)$ grows faster with m than any polynomial.

Best known bounds

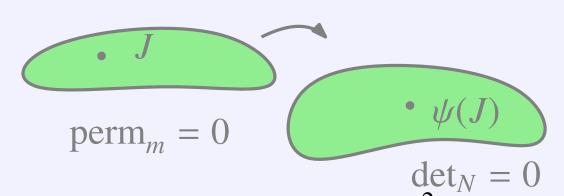
[Mignon-Ressayre 04, Grenet 12]

$$\frac{m^2}{2} \le \text{dc}(\text{perm}_m) \le 2^m - 1$$
 [Alper-Bogart-Velasco 15: = 7 for $m = 3$]

Proof sketch of lower bound

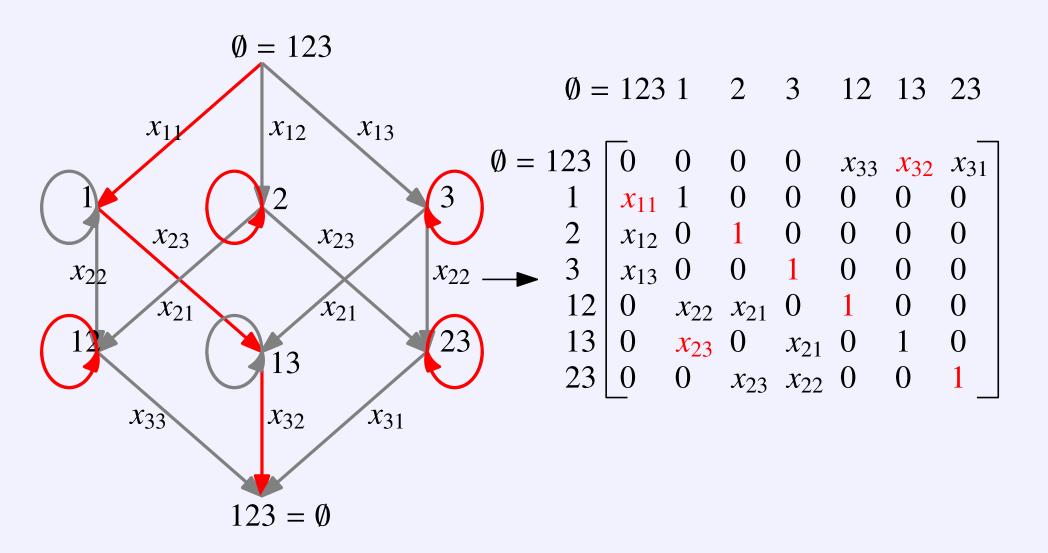
If $\psi : \mathbb{C}^{m \times m} \to \mathbb{C}^{N \times N}$ affine-linear with $\det_N(\psi(A)) = \operatorname{perm}_m(A)$,

$$J := \begin{bmatrix} -m+1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & \cdots & 1 \end{bmatrix}$$



 $q_1(X) := \text{quadratic part of perm}_m(J + X), \text{ form of rank } m^2$ $q_2(Y) := \text{quadratic part of } \det_N(\psi(J) + Y), \text{ form of rank } \leq 2N$

Now $q_1(X) = q_2(L(X))$ where L linear part of ψ , so $m^2 \le 2N$.



 x_{ij} labels an arrow from an (i-1)-set to an i-set by adding j.

Theorem

[Landsberg-Ressayre, 15]

Grenet's representation is optimal among representations that preserve left multiplication with permutation and diagonal matrices.

Theorem

[Landsberg-Ressayre, 15]

Grenet's representation is optimal among representations that preserve left multiplication with permutation and diagonal matrices.

GCT Programme

[Mulmuley-Sohoni, 01-]

Compare orbit closures X_1, X_2 of ℓ^{N-m} perm_m and \det_N inside the space of degree-N polynomials in N^2 variables under $G = \operatorname{GL}_{N^2}$; try to show that $X_1 \not\subseteq X_2$ by showing that multiplicities of certain G-representations are higher in $\mathbb{C}[X_1]$ than in $\mathbb{C}[X_2]$ unless N is super-polynomial in m.

Theorem

[Landsberg-Ressayre, 15]

Grenet's representation is optimal among representations that preserve left multiplication with permutation and diagonal matrices.

GCT Programme

[Mulmuley-Sohoni, 01-]

Compare orbit closures X_1, X_2 of ℓ^{N-m} perm_m and \det_N inside the space of degree-N polynomials in N^2 variables under $G = \operatorname{GL}_{N^2}$; try to show that $X_1 \not\subseteq X_2$ by showing that multiplicities of certain G-representations are higher in $\mathbb{C}[X_1]$ than in $\mathbb{C}[X_2]$ unless N is super-polynomial in m.

Theorem

[Bürgisser-Ikenmeyer-Panova, 16]

This approach does not work if *higher than* is restricted to 1 > 0 (so-called *occurrence obstructions*).

Motivation II: Solving systems of equations

In numerics, solving a univariate equation p(x) = 0 is often done by finding the eigenvalues of the companion matrix of p. In numerics, solving a univariate equation p(x) = 0 is often done by finding the eigenvalues of the companion matrix of p.

Proposal

[Plestenjak-Hochstenbach, 16]

To solve p(x, y) = q(x, y) = 0 write $p = \det(A_0 + xA_1 + yA_2)$ and $q = \det(B_0 + xB_1x + yB_2)$ and solve the *two-parameter eigenvalue* problem $(A_0 + xA_1 + yA_2)u = 0$ and $(B_0 + xB_1 + yB_2)v = 0$.

In numerics, solving a univariate equation p(x) = 0 is often done by finding the eigenvalues of the companion matrix of p.

Proposal

[Plestenjak-Hochstenbach, 16]

To solve p(x, y) = q(x, y) = 0 write $p = \det(A_0 + xA_1 + yA_2)$ and $q = \det(B_0 + xB_1x + yB_2)$ and solve the *two-parameter eigenvalue* problem $(A_0 + xA_1 + yA_2)u = 0$ and $(B_0 + xB_1 + yB_2)v = 0$.

 \rightsquigarrow translates to a joint pair of generalised eigenvalue problems: $(\Delta_1 - x\Delta_0)w = 0$ and $(\Delta_2 - y\Delta_0)w = 0$ where $w = u \otimes v$ and $\Delta_0 = A_1 \otimes B_2 - A_2 \otimes B_1$, $\Delta_1 = A_2 \otimes B_0 - A_0 \otimes B_2$, $\Delta_2 = A_0 \otimes B_1 - A_1 \otimes B_0$

In numerics, solving a univariate equation p(x) = 0 is often done by finding the eigenvalues of the companion matrix of p.

Proposal

[Plestenjak-Hochstenbach, 16]

To solve p(x, y) = q(x, y) = 0 write $p = \det(A_0 + xA_1 + yA_2)$ and $q = \det(B_0 + xB_1x + yB_2)$ and solve the *two-parameter eigenvalue* problem $(A_0 + xA_1 + yA_2)u = 0$ and $(B_0 + xB_1 + yB_2)v = 0$.

 \rightsquigarrow translates to a joint pair of generalised eigenvalue problems: $(\Delta_1 - x\Delta_0)w = 0$ and $(\Delta_2 - y\Delta_0)w = 0$ where $w = u \otimes v$ and $\Delta_0 = A_1 \otimes B_2 - A_2 \otimes B_1$, $\Delta_1 = A_2 \otimes B_0 - A_0 \otimes B_2$, $\Delta_2 = A_0 \otimes B_1 - A_1 \otimes B_0$

If the sizes are N, then Δ_i have size N^2 , and solving takes $(N^2)^3$... (plane curves have det rep of size = deg, but harder to compute).

Theorem [Boralevi-v Doornmalen-D-Hochstenbach-Plestenjak, 16] For n fixed, there exist C_1, C_2 such that a *sufficiently general* $p \in R_{\leq d}$ has $dc(p) \geq C_1 d^{n/2}$ and $any \ p \in R_{\leq d}$ has $dc(p) \leq C_2 d^{n/2}$. **Theorem** [Boralevi-v Doornmalen-D-Hochstenbach-Plestenjak, 16] For n fixed, there exist C_1, C_2 such that a *sufficiently general* $p \in R_{\leq d}$ has $dc(p) \geq C_1 d^{n/2}$ and $any \ p \in R_{\leq d}$ has $dc(p) \leq C_2 d^{n/2}$.

For the upper bound, the determinantal representation can be chosen to depend bi-affine-linearly on x_1, \ldots, x_n and on the *coefficients* of p; these are *uniform* determinantal representations.

Theorem [Boralevi-v Doornmalen-D-Hochstenbach-Plestenjak, 16]

For *n* fixed, there exist C_1, C_2 such that a *sufficiently general* $p \in R_{\leq d}$ has $dc(p) \geq C_1 d^{n/2}$ and $any \ p \in R_{\leq d}$ has $dc(p) \leq C_2 d^{n/2}$.

For the upper bound, the determinantal representation can be chosen to depend bi-affine-linearly on x_1, \ldots, x_n and on the *coefficients* of p; these are *uniform* determinantal representations.

Proof of lower bound

If sufficiently general $p \in R_{\leq d}$ have $dc(p) \leq N$, then the map det : $R_{\leq 1}^{N \times N} \to R_{\leq N}$ contains $R_{\leq d}$ in the closure of its image. Comparing

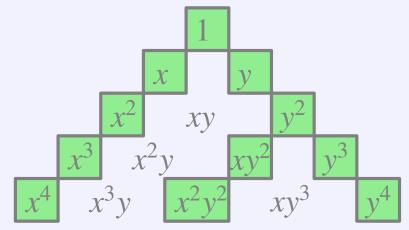
dimensions, find
$$N^2 \cdot (n+1) \ge \dim_{\mathbb{C}} R_{\le d} = \binom{n+d}{n}$$
.

Given a nonzero subspace $V \subseteq R$ write $V_{\leq d} := V \cap R_{\leq d}$. V is connected to 1 if $V_{\leq d+1} \subseteq R_{\leq 1} \cdot V_{\leq d}$ for all $d \geq 0$.

Given a nonzero subspace $V \subseteq R$ write $V_{\leq d} := V \cap R_{\leq d}$. V is connected to 1 if $V_{\leq d+1} \subseteq R_{\leq 1} \cdot V_{\leq d}$ for all $d \geq 0$.

Example

For n = 2, V spanned by these monomials is connected to 1:

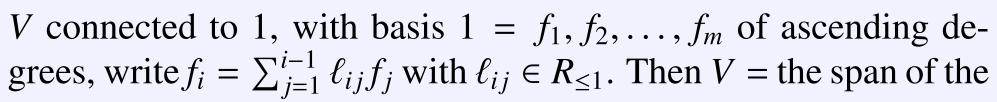


Given a nonzero subspace $V \subseteq R$ write $V_{\leq d} := V \cap R_{\leq d}$. V is connected to 1 if $V_{\leq d+1} \subseteq R_{\leq 1} \cdot V_{\leq d}$ for all $d \geq 0$.

Example

For n = 2, V spanned by these monomials is connected to 1:

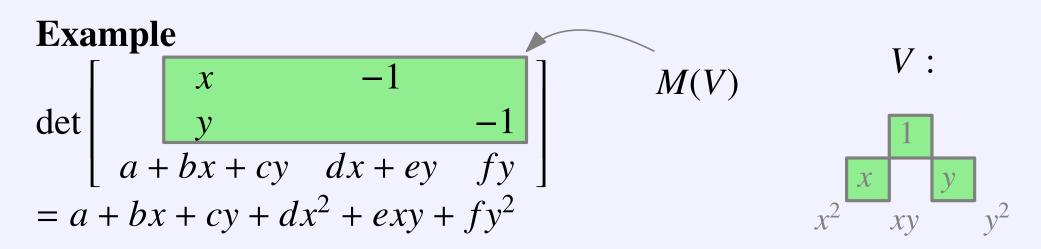
Lemma



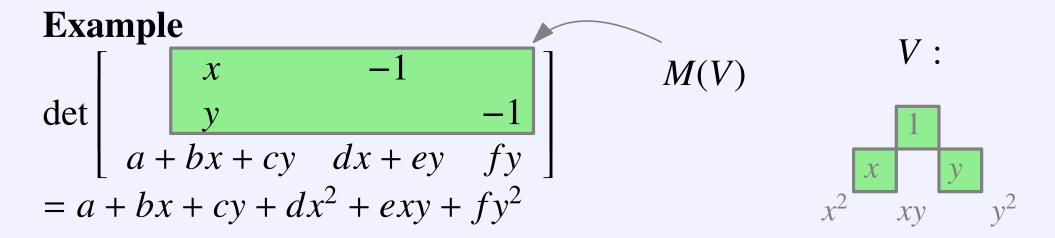
$$(m-1)\times(m-1)\text{-subdeterminants of}\begin{bmatrix} \ell_{21} & -1 \\ \ell_{31} & \ell_{32} & -1 \\ \vdots & \ddots & \ddots \\ \ell_{m1} & \ell_{m2} & \cdots & \ell_{m,m-1} & -1 \end{bmatrix}$$

Let $V \subseteq R$ be connected to 1, of dimension m, and such that $R_{\leq 1} \cdot V \supseteq R_{\leq d}$. Then there is a uniform determinantal representation of size m for the polynomials in $R_{\leq d}$.

Let $V \subseteq R$ be connected to 1, of dimension m, and such that $R_{\leq 1} \cdot V \supseteq R_{\leq d}$. Then there is a uniform determinantal representation of size m for the polynomials in $R_{\leq d}$.



Let $V \subseteq R$ be connected to 1, of dimension m, and such that $R_{\leq 1} \cdot V \supseteq R_{\leq d}$. Then there is a uniform determinantal representation of size m for the polynomials in $R_{\leq d}$.



Theorem

For n = 2 there exist uniform det representations of size $\sim \frac{d^2}{4}$.

[Hochstenbach-Plestenjak 16]

Analysis of first construction

$$V$$
 connected to 1 and $R_{\leq 1} \cdot V \supseteq R_{\leq d}$ imply dim $V \geq \frac{1}{n} \binom{n+d}{n}$

Analysis of first construction

$$V$$
 connected to 1 and $R_{\leq 1} \cdot V \supseteq R_{\leq d}$ imply dim $V \geq \frac{1}{n} \binom{n+d}{n}$

Proposition

For fixed n, \exists uniform determinantal representation of size $\sim \frac{d^n}{n \cdot n!}$.

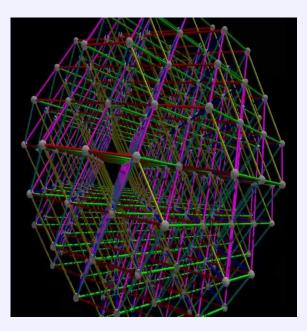
V connected to 1 and $R_{\leq 1} \cdot V \supseteq R_{\leq d}$ imply dim $V \geq \frac{1}{n} \binom{n+d}{n}$

Proposition

For fixed n, \exists uniform determinantal representation of size $\sim \frac{d^n}{n \cdot n!}$.

Construction uses the lattice of type A_{n-1} with generating matrix

$$\begin{bmatrix}
2 & -1 & & & \\
-1 & 2 & \ddots & & \\
& \ddots & \ddots & -1 \\
& & -1 & 2
\end{bmatrix}$$



(David Madore, YouTube,

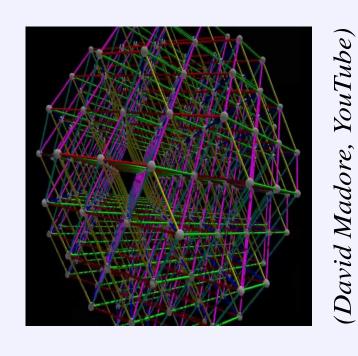
V connected to 1 and $R_{\leq 1} \cdot V \supseteq R_{\leq d}$ imply dim $V \geq \frac{1}{n} \binom{n+d}{n}$

Proposition

For fixed n, \exists uniform determinantal representation of size $\sim \frac{d^n}{n \cdot n!}$.

Construction uses the lattice of type A_{n-1} with generating matrix

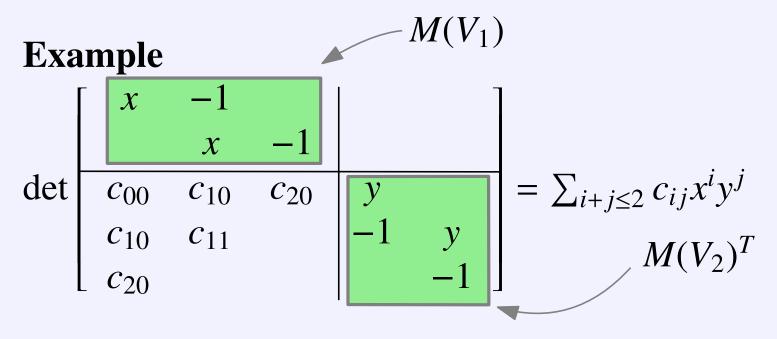
$$\begin{bmatrix} 2 & -1 \\ -1 & 2 & \ddots \\ & \ddots & \ddots & -1 \\ & -1 & 2 \end{bmatrix}$$



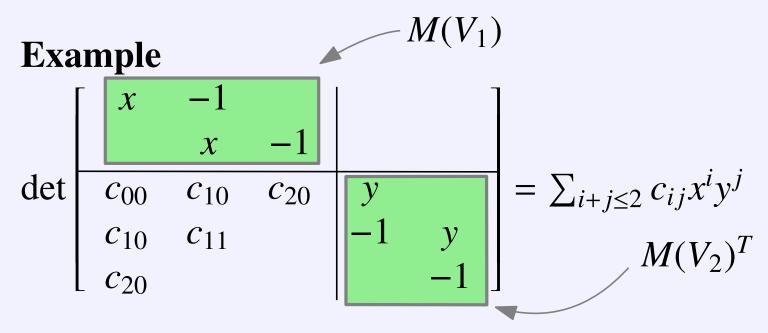
But the exponent of d is n rather than n/2.

Suppose $V_1, V_2 \subseteq R$ connected to 1 such that $R_{\leq 1} \cdot V_1 \cdot V_2 \supseteq R_{\leq d}$. Then there is a uniform det representation of degree-d polynomials of size $-1 + \dim V_1 + \dim V_2$.

Suppose $V_1, V_2 \subseteq R$ connected to 1 such that $R_{\leq 1} \cdot V_1 \cdot V_2 \supseteq R_{\leq d}$. Then there is a uniform det representation of degree-d polynomials of size $-1 + \dim V_1 + \dim V_2$.



Suppose $V_1, V_2 \subseteq R$ connected to 1 such that $R_{\leq 1} \cdot V_1 \cdot V_2 \supseteq R_{\leq d}$. Then there is a uniform det representation of degree-d polynomials of size $-1 + \dim V_1 + \dim V_2$.



Can we find V_1, V_2 , connected to 1, of dim $\sim \sqrt{\dim R_{\leq d}}$ such that $(R_1 \cdot) V_1 \cdot V_2 \supseteq R_{\leq d}$?

Can we find V_1, V_2 , connected to 1, of dim growing like $\sqrt{\dim R_{\leq d}}$ such that $(R_1 \cdot)V_1 \cdot V_2 \supseteq R_{\leq d}$?

Can we find V_1, V_2 , connected to 1, of dim growing like $\sqrt{\dim R_{\leq d}}$ such that $(R_1 \cdot)V_1 \cdot V_2 \supseteq R_{\leq d}$?

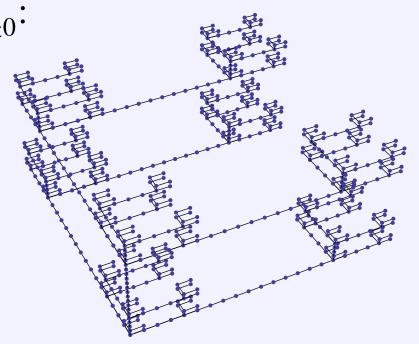
• For *n* even, split variables $\rightsquigarrow V_1, V_2$ of dimension $\binom{n/2+d}{n/2}$.

Can we find V_1, V_2 , connected to 1, of dim growing like $\sqrt{\dim R_{\leq d}}$ such that $(R_1 \cdot)V_1 \cdot V_2 \supseteq R_{\leq d}$?

- For *n* even, split variables $\rightsquigarrow V_1, V_2$ of dimension $\binom{n/2+d}{n/2}$.
- For odd n, find subsets $A_0, A_1 \subseteq (\mathbb{Z}_{\geq 0})^n$, connected to 0, of "dimension" $\frac{n}{2}$ such that $A_0 + A_1 = \mathbb{Z}_{>0}^n$:
- start with $B_0 := \sum_{j=0}^{\infty} \{0, 1\} \cdot 2^{2j}$;
- $B_1 := 2B_0$ so that $B_0 + B_1 = \mathbb{Z}_{\geq 0}$;
- $-A_i := B_i^n;$
- connect to 0.

Can we find V_1, V_2 , connected to 1, of dim growing like $\sqrt{\dim R_{\leq d}}$ such that $(R_1 \cdot)V_1 \cdot V_2 \supseteq R_{\leq d}$?

- For *n* even, split variables $\rightsquigarrow V_1, V_2$ of dimension $\binom{n/2+d}{n/2}$.
- For odd n, find subsets $A_0, A_1 \subseteq (\mathbb{Z}_{\geq 0})^n$, connected to 0, of
- "dimension" $\frac{n}{2}$ such that $A_0 + A_1 = \mathbb{Z}_{\geq 0}^n$:
- start with $B_0 := \sum_{j=0}^{\infty} \{0, 1\} \cdot 2^{2j}$;
- $B_1 := 2B_0$ so that $B_0 + B_1 = \mathbb{Z}_{\geq 0}$;
- $-A_i := B_i^n;$
- connect to 0.



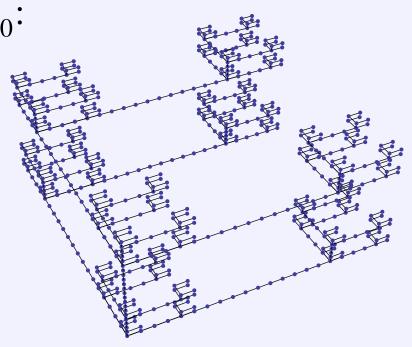
Can we find V_1, V_2 , connected to 1, of dim growing like $\sqrt{\dim R_{\leq d}}$ such that $(R_1 \cdot)V_1 \cdot V_2 \supseteq R_{\leq d}$?

- For *n* even, split variables $\rightsquigarrow V_1, V_2$ of dimension $\binom{n/2+d}{n/2}$.
- For odd n, find subsets $A_0, A_1 \subseteq (\mathbb{Z}_{\geq 0})^n$, connected to 0, of

"dimension" $\frac{n}{2}$ such that $A_0 + A_1 = \mathbb{Z}_{\geq 0}^n$:

- start with $B_0 := \sum_{j=0}^{\infty} \{0, 1\} \cdot 2^{2j}$;
- $B_1 := 2B_0$ so that $B_0 + B_1 = \mathbb{Z}_{\geq 0}$;
- $-A_i := B_i^n;$
- connect to 0.

Take V_i spanned by the monomials with exponent vectors in A_i .



Outlook

Theorem [Boralevi-v Doornmalen-D-Hochstenbach-Plestenjak, 16]

For *n* fixed, there exist C_1, C_2 such that a *sufficiently general* $p \in R_{\leq d}$ has $dc(p) \geq C_1 d^{n/2}$ and any $p \in R_{\leq d}$ has $dc(p) \leq C_2 d^{n/2}$.

Many questions remain:

- what are the best constants C_1, C_2 ?
- what about the regime where *d* is fixed and *n* runs?
- symmetric determinantal representations?

Outlook 15

Theorem [Boralevi-v Doornmalen-D-Hochstenbach-Plestenjak, 16]

For *n* fixed, there exist C_1, C_2 such that a *sufficiently general* $p \in R_{\leq d}$ has $dc(p) \geq C_1 d^{n/2}$ and any $p \in R_{\leq d}$ has $dc(p) \leq C_2 d^{n/2}$.

Many questions remain:

- what are the best constants C_1, C_2 ?
- what about the regime where *d* is fixed and *n* runs?
- symmetric determinantal representations?

Thank you!

Outlook

Theorem [Boralevi-v Doornmalen-D-Hochstenbach-Plestenjak, 16]

For *n* fixed, there exist C_1, C_2 such that a *sufficiently general* $p \in R_{\leq d}$ has $dc(p) \geq C_1 d^{n/2}$ and any $p \in R_{\leq d}$ has $dc(p) \leq C_2 d^{n/2}$.

Many questions remain:

- what are the best constants C_1, C_2 ?
- what about the regime where *d* is fixed and *n* runs?
- symmetric determinantal representations?

Thank you!

Motivation III: hyperbolic polynomials

If $p = \det(A_0 + \sum_i x_i A_i)$ with $A_i \in \mathbb{R}^{N \times N}$ symmetric and A_0 positive definite, then the restriction of p to any line through 0 has only real roots. For n = 2 the converse also holds (Helton-Vinnikov).