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2Determinantal representations

R := C[x1, . . . , xn] and R≤d := {p ∈ R | deg p ≤ d}

Definition
A determinantal representation of p ∈ R of size N is a matrix
M ∈ RN×N

≤1 with det(M) = p.



2Determinantal representations

n = 1: companion matrices

det



x −1
x −1

. . .
. . .

x −1
a0 a1 · · · an−2 an−1 + anx


= a0 + a1x + . . . + anxn

R := C[x1, . . . , xn] and R≤d := {p ∈ R | deg p ≤ d}
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A determinantal representation of p ∈ R of size N is a matrix
M ∈ RN×N

≤1 with det(M) = p.
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R := C[x1, . . . , xn] and R≤d := {p ∈ R | deg p ≤ d}

Definition
A determinantal representation of p ∈ R of size N is a matrix
M ∈ RN×N

≤1 with det(M) = p.

A bivariate example

det

 x −1
y −1

a + bx + cy dx + ey f y

 = a + bx + cy + dx2 + exy + f y2



2Determinantal representations

R := C[x1, . . . , xn] and R≤d := {p ∈ R | deg p ≤ d}

Definition
A determinantal representation of p ∈ R of size N is a matrix
M ∈ RN×N

≤1 with det(M) = p.

A bivariate example

det

 x −1
y −1

a + bx + cy dx + ey f y

 = a + bx + cy + dx2 + exy + f y2

Determinantal representations always exist, but how small?
 the determinantal complexity dc(p) is the smallest N.
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Why?



4Motivation I: permanent versus determinant

“If p has a determinantal representation M of small size N, then p
can be evaluated efficiently using Gaussian elimination.”
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can be evaluated efficiently using Gaussian elimination.”

Definition
permm :=

∑
π∈S m

x1π(1) · · · xmπ(m) is the m × m permanent.

Example

perm3

 1 1 0
1 1 1
0 1 1

 = 3 counts perfect matchings:
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“If p has a determinantal representation M of small size N, then p
can be evaluated efficiently using Gaussian elimination.”

Definition
permm :=

∑
π∈S m

x1π(1) · · · xmπ(m) is the m × m permanent.

Example

perm3

 1 1 0
1 1 1
0 1 1

 = 3 counts perfect matchings:

Counting matchings in bipartite graphs is believed hard, so
dc(permm) should be large!
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dc(permm) grows faster with m than any polynomial.
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Best known bounds [Mignon-Ressayre 04, Grenet 12]
m2

2 ≤ dc(permm) ≤ 2m − 1 [Alper-Bogart-Velasco 15: = 7 for m = 3]

Proof sketch of lower bound
If ψ : Cm×m → CN×N affine-linear with detN(ψ(A)) = permm(A),

J :=


−m + 1 1 · · · 1

1 1 · · · 1
...

...
...

1 1 · · · 1

 permm = 0
detN = 0

J

ψ(J)
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Conjecture [Valiant, 70s]
dc(permm) grows faster with m than any polynomial.

Best known bounds [Mignon-Ressayre 04, Grenet 12]
m2

2 ≤ dc(permm) ≤ 2m − 1 [Alper-Bogart-Velasco 15: = 7 for m = 3]

Proof sketch of lower bound
If ψ : Cm×m → CN×N affine-linear with detN(ψ(A)) = permm(A),

J :=


−m + 1 1 · · · 1

1 1 · · · 1
...

...
...

1 1 · · · 1

 permm = 0
detN = 0

J

ψ(J)

q1(X) := quadratic part of permm(J + X), form of rank m2

q2(Y) := quadratic part of detN(ψ(J) + Y), form of rank ≤ 2N

Now q1(X) = q2(L(X)) where L linear part of ψ, so m2 ≤ 2N. �



6Grenet’s 2m − 1 construction

∅ = 123

1 2 3

12
13

23

123 = ∅

x11 x12 x13

x22

x23

x21

x23

x21

x22

x33 x32 x31

∅ = 123
1
2
3
12
13
23

0
x11
x12
x13
0
0
0

0
1
0
0
x22
x23
0

0
0
1
0
x21
0
x23

0
0
0
1
0
x21
x22

x33
0
0
0
1
0
0

x32
0
0
0
0
1
0

x31
0
0
0
0
0
1

∅ = 123 1 2 12 133 23

xi j labels an arrow from an (i − 1)-set to an i-set by adding j.
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Theorem [Landsberg-Ressayre, 15]
Grenet’s representation is optimal among representations that pre-
serve left multiplication with permutation and diagonal matrices.
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GCT Programme [Mulmuley-Sohoni, 01-]
Compare orbit closures X1, X2 of `N−mpermm and detN inside the
space of degree-N polynomials in N2 variables under G = GLN2 ;
try to show that X1 * X2 by showing that multiplicities of certain
G-representations are higher in C[X1] than in C[X2] unless N is
super-polynomial in m.



7Geometric complexity theory

Theorem [Landsberg-Ressayre, 15]
Grenet’s representation is optimal among representations that pre-
serve left multiplication with permutation and diagonal matrices.

GCT Programme [Mulmuley-Sohoni, 01-]
Compare orbit closures X1, X2 of `N−mpermm and detN inside the
space of degree-N polynomials in N2 variables under G = GLN2 ;
try to show that X1 * X2 by showing that multiplicities of certain
G-representations are higher in C[X1] than in C[X2] unless N is
super-polynomial in m.

Theorem [Bürgisser-Ikenmeyer-Panova, 16]
This approach does not work if higher than is restricted to 1 > 0
(so-called occurrence obstructions).
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In numerics, solving a univariate equation p(x) = 0 is often done
by finding the eigenvalues of the companion matrix of p.
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q = det(B0 + xB1x + yB2) and solve the two-parameter eigenvalue
problem (A0 + xA1 + yA2)u = 0 and (B0 + xB1 + yB2)v = 0.
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In numerics, solving a univariate equation p(x) = 0 is often done
by finding the eigenvalues of the companion matrix of p.

Proposal [Plestenjak-Hochstenbach, 16]
To solve p(x, y) = q(x, y) = 0 write p = det(A0 + xA1 + yA2) and
q = det(B0 + xB1x + yB2) and solve the two-parameter eigenvalue
problem (A0 + xA1 + yA2)u = 0 and (B0 + xB1 + yB2)v = 0.

 translates to a joint pair of generalised eigenvalue problems:
(∆1 − x∆0)w = 0 and (∆2 − y∆0)w = 0 where w = u ⊗ v and
∆0 = A1⊗B2−A2⊗B1, ∆1 = A2⊗B0−A0⊗B2, ∆2 = A0⊗B1−A1⊗B0

If the sizes are N, then ∆i have size N2, and solving takes (N2)3 . . .
(plane curves have det rep of size = deg, but harder to compute).



9Determinantal complexity of general polynomials

Theorem [Boralevi-v Doornmalen-D-Hochstenbach-Plestenjak, 16]
For n fixed, there exist C1,C2 such that a sufficiently general p ∈
R≤d has dc(p) ≥ C1dn/2 and any p ∈ R≤d has dc(p) ≤ C2dn/2.
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For the upper bound, the determinantal representation can be cho-
sen to depend bi-affine-linearly on x1, . . . , xn and on the coeffi-
cients of p; these are uniform determinantal representations.



9Determinantal complexity of general polynomials

Theorem [Boralevi-v Doornmalen-D-Hochstenbach-Plestenjak, 16]
For n fixed, there exist C1,C2 such that a sufficiently general p ∈
R≤d has dc(p) ≥ C1dn/2 and any p ∈ R≤d has dc(p) ≤ C2dn/2.

Proof of lower bound
If sufficiently general p ∈ R≤d have dc(p) ≤ N, then the map det :
RN×N
≤1 → R≤N contains R≤d in the closure of its image. Comparing

dimensions, find N2 · (n + 1) ≥ dimC R≤d =

(
n + d

n

)
. �

For the upper bound, the determinantal representation can be cho-
sen to depend bi-affine-linearly on x1, . . . , xn and on the coeffi-
cients of p; these are uniform determinantal representations.
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Definition
Given a nonzero subspace V ⊆ R write V≤d := V ∩ R≤d. V is
connected to 1 if V≤d+1 ⊆ R≤1 · V≤d for all d ≥ 0.
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10Spaces connected to 1

Definition
Given a nonzero subspace V ⊆ R write V≤d := V ∩ R≤d. V is
connected to 1 if V≤d+1 ⊆ R≤1 · V≤d for all d ≥ 0.

Example
For n = 2, V spanned by these
monomials is connected to 1:

1
x y

x2 xy y2

x3 x2y xy2 y3

x4 x3y x2y2 xy3 y4Lemma
V connected to 1, with basis 1 = f1, f2, . . . , fm of ascending de-
grees, write fi =

∑i−1
j=1 `i j f j with `i j ∈ R≤1. Then V = the span of the

(m−1)×(m−1)-subdeterminants of


`21 −1
`31 `32 −1
...

. . .
. . .

`m1 `m2 · · · `m,m−1 −1


M(V) :=



11First construction

Proposition
Let V ⊆ R be connected to 1, of dimension m, and such that R≤1 ·

V ⊇ R≤d. Then there is a uniform determinantal representation of
size m for the polynomials in R≤d.
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1
x y

x2 xy y2

Proposition
Let V ⊆ R be connected to 1, of dimension m, and such that R≤1 ·

V ⊇ R≤d. Then there is a uniform determinantal representation of
size m for the polynomials in R≤d.

Example

det

 x −1
y −1

a + bx + cy dx + ey f y


= a + bx + cy + dx2 + exy + f y2

V :M(V)

Theorem [Hochstenbach-Plestenjak 16]
For n = 2 there exist uniform det
representations of size ∼ d2

4 .
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(
n + d

n

)
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V connected to 1 and R≤1 · V ⊇ R≤d imply dim V ≥ 1
n

(
n + d

n

)
Proposition
For fixed n, ∃ uniform determinantal representation of size ∼ dn

n·n! .

Construction uses the lattice of type An−1
with generating matrix

2 −1

−1 2
. . .

. . .
. . . −1
−1 2
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)
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M
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or

e,
Yo

uT
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e)

But the exponent of d is n rather than n/2.



13Second construction: divide and conquer!

Proposition
Suppose V1,V2 ⊆ R connected to 1 such that R≤1 · V1 · V2 ⊇ R≤d.
Then there is a uniform det representation of degree-d polynomials
of size −1 + dim V1 + dim V2.
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√
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(R1·)V1 · V2 ⊇ R≤d?
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• For odd n, find subsets A0, A1 ⊆ (Z≥0)n, connected to 0, of
“dimension” n

2 such that A0 + A1 = Zn
≥0:

- start with B0 :=
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j=0{0, 1} · 2
2 j;

- B1 := 2B0 so that B0 + B1 = Z≥0;
- Ai := Bn
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- connect to 0.
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Can we find V1,V2, connected to 1, of dim growing like
√

dim R≤d

such that (R1·)V1 · V2 ⊇ R≤d?

• For n even, split variables V1,V2 of dimension
(

n/2 + d
n/2

)
.

• For odd n, find subsets A0, A1 ⊆ (Z≥0)n, connected to 0, of
“dimension” n

2 such that A0 + A1 = Zn
≥0:

- start with B0 :=
∑′∞

j=0{0, 1} · 2
2 j;

- B1 := 2B0 so that B0 + B1 = Z≥0;
- Ai := Bn

i ;
- connect to 0.

Take Vi spanned by the monomials
with exponent vectors in Ai. �



15Outlook

Theorem [Boralevi-v Doornmalen-D-Hochstenbach-Plestenjak, 16]
For n fixed, there exist C1,C2 such that a sufficiently general p ∈
R≤d has dc(p) ≥ C1dn/2 and any p ∈ R≤d has dc(p) ≤ C2dn/2.

Many questions remain:
• what are the best constants C1,C2?
• what about the regime where d is fixed and n runs?
• symmetric determinantal representations?



15Outlook

Theorem [Boralevi-v Doornmalen-D-Hochstenbach-Plestenjak, 16]
For n fixed, there exist C1,C2 such that a sufficiently general p ∈
R≤d has dc(p) ≥ C1dn/2 and any p ∈ R≤d has dc(p) ≤ C2dn/2.

Many questions remain:
• what are the best constants C1,C2?
• what about the regime where d is fixed and n runs?
• symmetric determinantal representations?

Thank you!



15Outlook

Theorem [Boralevi-v Doornmalen-D-Hochstenbach-Plestenjak, 16]
For n fixed, there exist C1,C2 such that a sufficiently general p ∈
R≤d has dc(p) ≥ C1dn/2 and any p ∈ R≤d has dc(p) ≤ C2dn/2.

Many questions remain:
• what are the best constants C1,C2?
• what about the regime where d is fixed and n runs?
• symmetric determinantal representations?

Motivation III: hyperbolic polynomials
If p = det(A0 +

∑
i xiAi) with Ai ∈ R

N×N symmetric and A0 positive
definite, then the restriction of p to any line through 0 has only real
roots. For n = 2 the converse also holds (Helton-Vinnikov).

Thank you!
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