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This collection I ⊆ 2[n] is nonempty, downward closed, and
satisfies ∀I, J ∈ I : |J| > |I| ⇒ ∃ j ∈ J \ I : I + j ∈ I; these are
the defining properties of a matroid on [n].



3 - 1Well-understood breeds of matroids

Definition: A matroid on [n] is a nonempty, downward closed
collectionI ⊆ 2[n] s.t. ∀I, J ∈ I : |J| > |I| ⇒ ∃ j ∈ J\ I : I+ j ∈ I.
The maximal independent sets are called the bases.



3 - 2Well-understood breeds of matroids

Definition: A matroid on [n] is a nonempty, downward closed
collectionI ⊆ 2[n] s.t. ∀I, J ∈ I : |J| > |I| ⇒ ∃ j ∈ J\ I : I+ j ∈ I.
The maximal independent sets are called the bases.

Linear matroids: from a matrix over a field.



3 - 3Well-understood breeds of matroids

Definition: A matroid on [n] is a nonempty, downward closed
collectionI ⊆ 2[n] s.t. ∀I, J ∈ I : |J| > |I| ⇒ ∃ j ∈ J\ I : I+ j ∈ I.
The maximal independent sets are called the bases.

Graphical matroids: edge set [n],
independent = contains no cycle.

a basis:

The greedy algorithm for minimal-cost spanning tree carries over
precisely to matroids.

Linear matroids: from a matrix over a field.



3 - 4Well-understood breeds of matroids

Definition: A matroid on [n] is a nonempty, downward closed
collectionI ⊆ 2[n] s.t. ∀I, J ∈ I : |J| > |I| ⇒ ∃ j ∈ J\ I : I+ j ∈ I.
The maximal independent sets are called the bases.

Graphical matroids: edge set [n],
independent = contains no cycle.

a basis:

Every graphical matroid is linear (over every field).
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The greedy algorithm for minimal-cost spanning tree carries over
precisely to matroids.

Linear matroids: from a matrix over a field.
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Definition: Let L ⊇ K be a field extension and x1, . . . , xn ∈ L.
SetI := {I ⊆ [n] : (xi)i∈I algebraically independent over K}. Such
a matroid is called algebraic (over K).

Every linear matroid is algebraic:
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L = K(t1, t2, t3)

x1 = t1
x2 = t2
x3 = t3
x4 = t2 + t3
x5 = t1 + t3
x6 = t1 + t2
x7 = t1 + t2 + t3
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5 - 4Why study algebraic matroids?

Generic completion
K algebraically closed
X ⊆ Kn irreducible closed subvariety
I := {I ⊆ [n] : any generic p ∈ KI can be completed to p̃ ∈ X}

x1 = x2
2 + x2

3 − 1 = 0

I = {∅, 2, 3}
p

I is an algebraic matroid
with L = K(X); and every
algebraic matroid arises
in this manner.

Problem: Given X and I ⊆ [n], decide whether I ∈ I.

Can be solved by Buchberger’s algorithm for elimination, but
this is not efficient.
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6 - 4Case study: generic low-rank matrix completion

[n] = [`] × [m], `,m ≥ k, K`×m
⊇ X := {A | rk (A) ≤ k}

Generic rank-k completion problem: On input I ⊆ [`]× [m],
decide wether a generic choice of (ai j)(i, j)∈I can be completed
to a matrix of rank ≤ k.

Rank k = 1: yes iff the bipartite graph with edges I has no
cycles I is the graphical matroid of K`,m; independence is easy.

Rank k = 2, Bernstein: yes iff that graph admits an acyclic
orientation with no alternating cycles. Krone proves this theo-
rem using tropical secant varieties. Polynomial time??

Open problem: is there a poly time deterministic algorithm
that on input S ⊆ Qn decides if S can be partitioned by a
hyperplane into two linearly independent sets?
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X ⊆ Kn irreducible, and q ∈ X smooth  the tangent space
TqX defines a matroid on [n] with I(TqX) ⊆ I(X).

x1 = x2
2 + x2

3 − 1 = 0

I = {∅, 2, 3}
I = {∅, 2, 3}
I = {∅, 3}

If charK = 0, then for
q ∈ X sufficiently general,
I(TqX) = I(X);
not true for charK = p > 0.

Consequences
• Algebraic matroids in characteristic 0 are linear (Ingleton)
• Sometimes there is an efficient probabilistic algorithm for
the generic completion problem: sample q ∈ X, compute
TqX, and use Gaussian elimination to check I ∈ I(TqX).
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Definition: If I is a matroid on [n], then I⊥ := {J ⊆ [n] : J is
disjoint from some basis of I} is the dual matroid.

The dual of a linear matroid is linear:
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The dual of a planar graph
matroid is graphical:
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9 - 4Main challenges on algebraic matroids

Testing algebraicity: given a matroid, how does one decide
if it is algebraic?

For linearity, this boils down to testing whether a system
of polynomial equations has a solution, and Buchberger’s
algorithm can do this.

Duality: is the dual of an algebraic matroid again algebraic?

Example (Alfter-Hochstättler):
the tic-tac-toe matroid on [3] × [3] has as
bases all quintuples except all 4 L’s and
all 4 T’s. Is it algebraic?? Its dual is not.

Yes in characteristic 0, because they’re linear!
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v−1(∞) = {0}, v(ab) = v(a) + v(b), and v(a + b) ≥ min{v(a), v(b)}
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K a field, v : K → R := R ∪ {∞} a non-Archimedean valuation:
v−1(∞) = {0}, v(ab) = v(a) + v(b), and v(a + b) ≥ min{v(a), v(b)}

Recipe (Dress-Wenzel): Given an n×d-matrix of rank d over
K, remember the valuations of the d × d-subdeterminants.

1 0
0 1
1 1
1 8


K = Q, v =2-adic µ({1, 2}) = µ({1, 3}

= µ({2, 3}) = µ({2, 4})
= µ({3, 4}) = 0
µ({1, 4}) = 3

This matroid valuation µ :
(

[n]
d

)
→ R satisfies: µ , ∞ and

∀B,B′, i ∈ B\B′∃ j ∈ B′\B : µ(B)+µ(B′) ≥ µ(B−i+ j)+µ(B′+i− j).

Matroid valuations play the role of linear spaces in trop geometry.
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Definition (Bollen-D-Pendavingh, Cartwright)
K an algebraically closed field of characteristic p > 0
L = K(x1, . . . , xn) ⊇ K of transcendence degree d

 µ :
(

[n]
d

)
→ R defined as µ(I) := logp[L : K((xi)i∈I)sep]

is the Lindström valuation of the algebraic matroid.
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Definition (Bollen-D-Pendavingh, Cartwright)
K an algebraically closed field of characteristic p > 0
L = K(x1, . . . , xn) ⊇ K of transcendence degree d

 µ :
(

[n]
d

)
→ R defined as µ(I) := logp[L : K((xi)i∈I)sep]

is the Lindström valuation of the algebraic matroid.

Theorem (B-D-P): if the Lindström valuation is trivial, i.e.
∃α ∈ Zn: for all bases µ(B) =

∑
i∈B αi, then the algebraic

matroid is also linear.

Corollary: Matroids, such as Fano, that admit only trivial
valuations are algebraic over K iff they are linear over K.

Bollen used enhancements of this for ruling out algebraicity of
many matroids on ≤ 9 elements.
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K algebraically closed, charK = p > 0
G a one-dimensional algebraic group over K
 then G = (K,+) or G = (K∗, ·) or G = an elliptic curve.

Construction: a closed, connected subgroup X ⊆ Gn  
I := {I ⊆ [n] : X→ GI is surjective} is an algebraic matroid.

Questions: Lindström valuation? Is the dual also algebraic?

Key to the solution: the endomorphism ring E of G:
• K[F] with Fa = apF if G = (K,+);
• Z if G = (K∗, ·); and
• Z or an order in an imaginary quadratic number field or
in a quaternion algebra if G = an elliptic curve.
In all cases, E is an Ore ring, hence generates a skew field Q.
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given by a rank-d matrix A ∈ En×d, and is uniquely deter-
mined by the column span of A, a right Q-subspace of Qn.
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The closed subgroup X ⊆ Gn is the image of a map Gd
→ Gn

given by a rank-d matrix A ∈ En×d, and is uniquely deter-
mined by the column span of A, a right Q-subspace of Qn.

The ring E comes with a valuation: v(α) is the degree of
inseparability of α : G→ G; this extends to v : Q→ R.

Theorem (B-Cartwright-D)
The Lindström valuation of the matroid defined by X maps
I ⊆ [n] of size d to v(Diedonné determinant of A[I]).



13 - 4From matrix to matroid (valuation) III

The closed subgroup X ⊆ Gn is the image of a map Gd
→ Gn

given by a rank-d matrix A ∈ En×d, and is uniquely deter-
mined by the column span of A, a right Q-subspace of Qn.

The ring E comes with a valuation: v(α) is the degree of
inseparability of α : G→ G; this extends to v : Q→ R.

Theorem (B-Cartwright-D)
The Lindström valuation of the matroid defined by X maps
I ⊆ [n] of size d to v(Diedonné determinant of A[I]).

Theorem (B-C-D)
The dual matroid is also that of a closed subgroup X∨ of Gn.

Colspace(A)⊥ is a left subspace, but fortunately Q � Qop.
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Definition (Dress-Wenzel)

If µ :
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[n]
d

)
→ R is a valuation, then µ′ :
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[n]

n − d

)
→ R,

µ′(I) = µ(Ic) is the dual valuation.
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Definition (Dress-Wenzel)

If µ :
(

[n]
d

)
→ R is a valuation, then µ′ :

(
[n]

n − d

)
→ R,

µ′(I) = µ(Ic) is the dual valuation.

This notion is compatible with the dual of a linear matroid,
but not with the construction of X′ above: take G = (K,+),
E = K[F] and

A =


1 0
0 1
1 1
1 F

 A⊥ =

[
1 1 −1 0
1 F 0 −1

]
A∨ =


1 1
1 F−1

−1 0
0 −1


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This notion is compatible with the dual of a linear matroid,
but not with the construction of X′ above: take G = (K,+),
E = K[F] and

A =


1 0
0 1
1 1
1 F

 A⊥ =

[
1 1 −1 0
1 F 0 −1

]
A∨ =


1 1
1 F−1

−1 0
0 −1


µ(14) + µ(23) − µ(13) − µ(24) = 1 + 0 − 0 − 0 = 1 but
µ∨(23) + µ∨(14) − µ∨(24) − µ∨(13) = −1 + 0 − 0 − 0 = −1



15A negative result

Theorem (B-C-D): The set of Lindström valuations of alge-
braic matroids is not closed under duality.

Proof sketch: via a universality construction of Evans-
Hrushovski, we construct a matroid M∨ s.t. every alge-
braic realisation of M∨ is equivalent to one from a subgroup
X∨ ⊆ Gn for some one-dimensional algebraic group G, but
such that the Lindström valuation of X is not the dual to that
of X∨. Then the dual of the Lindström valuation of X is not
a Lindström valuation. �
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• Algebraic matroids arise from generic completion problems.
Even in characteristic zero, where these matroids are linear,
they pose intriguing computational problems.
• Open problem: decide deterministically in polynomial
time whether S ⊆ Qn can be partitioned by a hyperplane
into two independent sets deterministic polynomial-time
algorithm for generic rank-two matrix completion.

• Lindström valuations are a powerful new tool for studying
algebraicity of matroids. Enhanced with their Lindström
valuations, algebraic matroids are not closed under duality.
• Still, much work needs to be done before the ugly ducks of
algebraic matroids mature into beautiful swans!

Thank you!
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