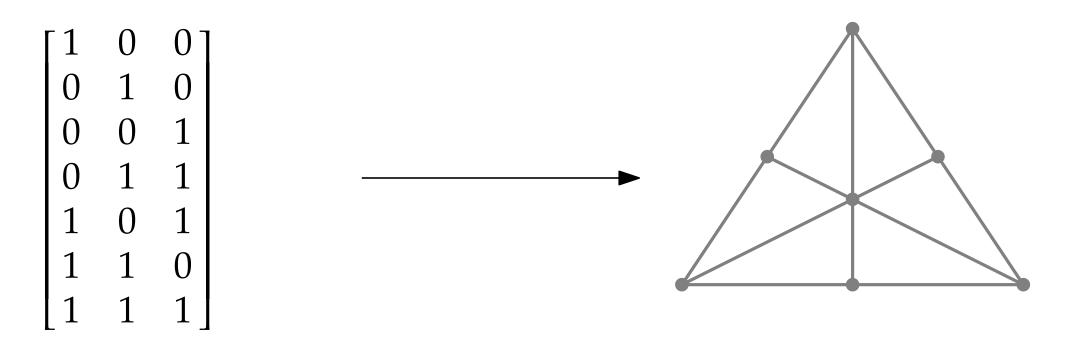
Matroids: algebraicity, duality, and valuations

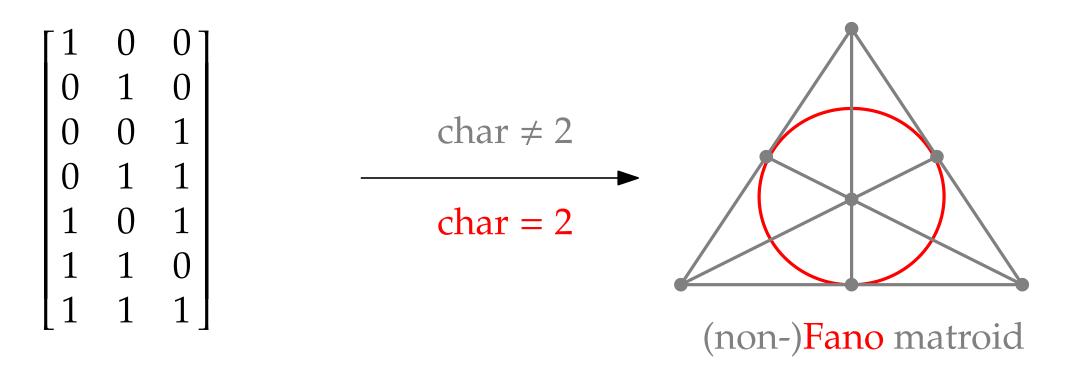
Jan Draisma Universität Bern and Eindhoven University of Technology

Berlin, June 2019

Algebraic matroids and Frobenius flocks, Bollen-D-Pendavingh Matroids over one-dimensional groups, Bollen-Cartwright-D



$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$		
0 0 1	char ≠ 2	
0 1 1		
1 0 1	char = 2	
1 1 0		
[1 1 1]		(non-)Fano matro



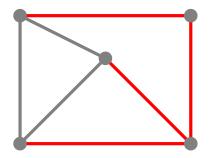
This collection $I \subseteq 2^{[n]}$ is nonempty, downward closed, and satisfies $\forall I, J \in I : |J| > |I| \Rightarrow \exists j \in J \setminus I : I + j \in I$; these are the defining properties of a *matroid* on [n].

Linear matroids: from a matrix over a field.

Linear matroids: from a matrix over a field.

Graphical matroids: edge set [n], independent = contains no cycle.

a basis:



The greedy algorithm for minimal-cost spanning tree carries over precisely to matroids.

Linear matroids: from a matrix over a field.

Graphical matroids: edge set [n], independent = contains no cycle. $\begin{bmatrix}
1 & -1 & 0 & 0 & 0 \\
0 & 1 & -1 & 0 & 0 \\
0 & 0 & 1 & -1 & 0 \\
1 & 0 & 0 & -1 & 0 \\
1 & 0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0 & -1 \\
0 & 0 & 1 & 0 & -1 \\
0 & 0 & 1 & 0 & -1 \\
0 & 0 & 1 & 0 & -1 \\
0 & 0 & 1 & 0 & -1 \\
0 & 0 & 1 & 0 & -1 \\
0 & 0 & 1 & 0 & -1 \\
0 & 0 & 1 & 0 & -1 \\
0 & 0 & 1 & 0 & -1 \\
0 & 0 & 1 & 0 & -1 \\
0 & 0 & 1 & 0 & -1 \\
0 & 0 & 1 & 0 & -1 \\
0 & 0 & 1 & 0 & -1 \\
0 & 0 & 1 & 0 & -1 \\
0 & 0 & 1 & 0 & -1 \\
0 & 0 & 1 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & -1$

The *greedy algorithm for minimal-cost spanning tree* carries over precisely to matroids.

Every graphical matroid is linear (over every field).

Definition: Let $L \supseteq K$ be a field extension and $x_1, \ldots, x_n \in L$. Set $I := \{I \subseteq [n] : (x_i)_{i \in I} \text{ algebraically independent over } K\}$. Such a matroid is called *algebraic* (over K). **Definition:** Let $L \supseteq K$ be a field extension and $x_1, ..., x_n \in L$. Set $I := \{I \subseteq [n] : (x_i)_{i \in I} \text{ algebraically independent over } K\}$. Such a matroid is called algebraic (over K).

Every linear matroid is algebraic:

[1	0	0		$x_1 = t_1$
0	1	0		$x_2 = t_2$
0	0	1		$x_3 = t_3$
0	1	1	-	$x_4 = t_2 + t_3$
1	0			$x_5 = t_1 + t_3$
1	1	0		$x_6 = t_1 + t_2$
[1	1	$1 \rfloor$		$x_7 = t_1 + t_2 + t_3$
				$L = K(t_1, t_2, t_3)$

K algebraically closed

 $X \subseteq K^n$ irreducible closed subvariety

 $\mathcal{I} := \{I \subseteq [n] : \text{any generic } p \in K^I \text{ can be completed to } \tilde{p} \in X\}$

K algebraically closed

 $X \subseteq K^n$ irreducible closed subvariety

 $\mathcal{I} := \{I \subseteq [n] : \text{any generic } p \in K^I \text{ can be completed to } \tilde{p} \in X\}$

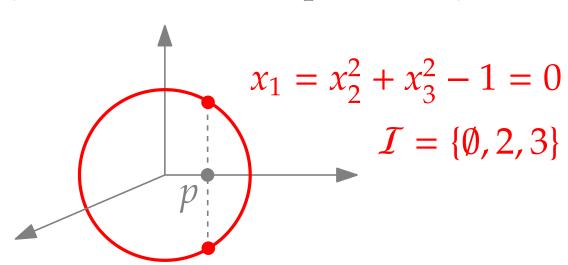


K algebraically closed

 $X \subseteq K^n$ irreducible closed subvariety

 $\mathcal{I} := \{I \subseteq [n] : \text{any generic } p \in K^I \text{ can be completed to } \tilde{p} \in X\}$

I is an algebraic matroid with L = K(X); and every algebraic matroid arises in this manner.

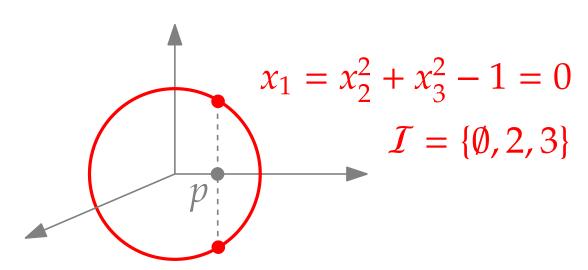


K algebraically closed

 $X \subseteq K^n$ irreducible closed subvariety

 $\mathcal{I} := \{I \subseteq [n] : \text{any generic } p \in K^I \text{ can be completed to } \tilde{p} \in X\}$

I is an algebraic matroid with L = K(X); and every algebraic matroid arises in this manner.



Problem: Given X and $I \subseteq [n]$, decide whether $I \in \mathcal{I}$.

Can be solved by Buchberger's algorithm for *elimination*, but this is not efficient.

$$[n] = [\ell] \times [m], \quad \ell, m \ge k, \quad K^{\ell \times m} \supseteq X := \{A \mid \operatorname{rk}(A) \le k\}$$

Generic rank-k **completion problem:** On input $I \subseteq [\ell] \times [m]$, decide wether a generic choice of $(a_{ij})_{(i,j)\in I}$ can be completed to a matrix of rank $\leq k$.

$$[n] = [\ell] \times [m], \quad \ell, m \ge k, \quad K^{\ell \times m} \supseteq X := \{A \mid \operatorname{rk}(A) \le k\}$$

Generic rank-k **completion problem:** On input $I \subseteq [\ell] \times [m]$, decide wether a generic choice of $(a_{ij})_{(i,j)\in I}$ can be completed to a matrix of rank $\leq k$.

Rank k = 1: yes iff the bipartite graph with edges I has no cycles $\rightsquigarrow I$ is the graphical matroid of $K_{\ell,m}$; independence is easy.

$$[n] = [\ell] \times [m], \quad \ell, m \ge k, \quad K^{\ell \times m} \supseteq X := \{A \mid \operatorname{rk}(A) \le k\}$$

Generic rank-k **completion problem:** On input $I \subseteq [\ell] \times [m]$, decide wether a generic choice of $(a_{ij})_{(i,j)\in I}$ can be completed to a matrix of rank $\leq k$.

Rank k = 1: yes iff the bipartite graph with edges I has no cycles $\rightsquigarrow I$ is the graphical matroid of $K_{\ell,m}$; independence is easy.

Rank k = 2, **Bernstein:** yes iff that graph admits an acyclic orientation with no *alternating cycles*. **Krone** proves this theorem using tropical secant varieties. *Polynomial time?*?

$$[n] = [\ell] \times [m], \quad \ell, m \ge k, \quad K^{\ell \times m} \supseteq X := \{A \mid \operatorname{rk}(A) \le k\}$$

Generic rank-k **completion problem:** On input $I \subseteq [\ell] \times [m]$, decide wether a generic choice of $(a_{ij})_{(i,j)\in I}$ can be completed to a matrix of rank $\leq k$.

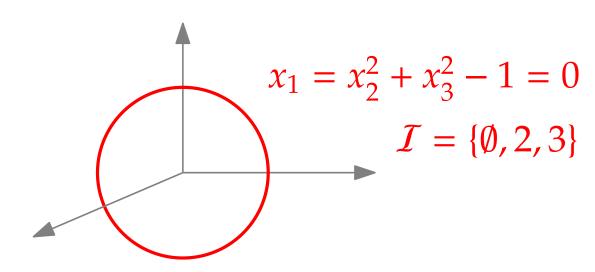
Rank k = 1: yes iff the bipartite graph with edges I has no cycles $\rightsquigarrow I$ is the graphical matroid of $K_{\ell,m}$; independence is easy.

Rank k = 2, **Bernstein:** yes iff that graph admits an acyclic orientation with no *alternating cycles*. **Krone** proves this theorem using tropical secant varieties. *Polynomial time?*?

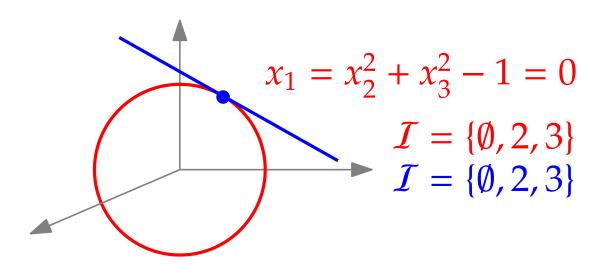
Open problem: is there a poly time deterministic algorithm that on input $S \subseteq \mathbb{Q}^n$ decides if S can be partitioned by a hyperplane into two linearly independent sets?

 $X \subseteq K^n$ irreducible, and $q \in X$ smooth \rightsquigarrow the *tangent space* T_qX defines a matroid on [n] with $I(T_qX) \subseteq I(X)$.

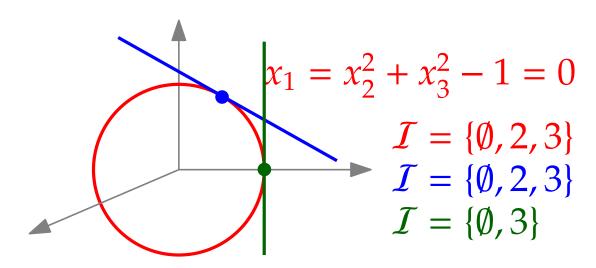
 $X \subseteq K^n$ irreducible, and $q \in X$ smooth \rightsquigarrow the *tangent space* T_qX defines a matroid on [n] with $I(T_qX) \subseteq I(X)$.



 $X \subseteq K^n$ irreducible, and $q \in X$ smooth \rightsquigarrow the *tangent space* T_qX defines a matroid on [n] with $I(T_qX) \subseteq I(X)$.



 $X \subseteq K^n$ irreducible, and $q \in X$ smooth \leadsto the *tangent space* T_qX defines a matroid on [n] with $I(T_qX) \subseteq I(X)$.



 $X \subseteq K^n$ irreducible, and $q \in X$ smooth \rightsquigarrow the *tangent space* T_qX defines a matroid on [n] with $\mathcal{I}(T_qX) \subseteq \mathcal{I}(X)$.

If charK=0, then for $q \in X$ sufficiently general, $I(T_qX)=I(X);$ not true for charK=p>0. I(X)=I(X) $I=\{\emptyset,2,3\}$ $I=\{\emptyset,2,3\}$

 $X \subseteq K^n$ irreducible, and $q \in X$ smooth \rightsquigarrow the *tangent space* T_qX defines a matroid on [n] with $\mathcal{I}(T_qX) \subseteq \mathcal{I}(X)$.

If charK=0, then for $q \in X$ sufficiently general, $I(T_qX)=I(X);$ not true for charK=p>0. $I(T_qX)=I(X)$ $I=\{\emptyset,2,3\}$ $I=\{\emptyset,3\}$

Consequences

- Algebraic matroids in characteristic 0 are linear (**Ingleton**)
- Sometimes there is an efficient probabilistic algorithm for the generic completion problem: sample $q \in X$, compute T_qX , and use Gaussian elimination to check $I \in \mathcal{I}(T_qX)$.

Duality

Definition: If I is a matroid on [n], then $I^{\perp} := \{J \subseteq [n] : J$ is disjoint from some basis of I} is the *dual* matroid.

Duality

Definition: If \mathcal{I} is a matroid on [n], then $\mathcal{I}^{\perp} := \{J \subseteq [n] : J \text{ is } \}$ disjoint from some basis of \mathcal{I} } is the *dual* matroid.

The dual of a *linear* matroid is linear:

Duality

Definition: If I is a matroid on [n], then $I^{\perp} := \{J \subseteq [n] : J$ is disjoint from some basis of I} is the *dual* matroid.

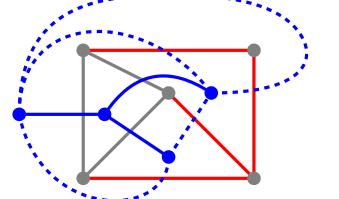
The dual of a *linear* matroid is linear:

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

$$char \neq 2$$

$$A^{\perp} = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 1 & -1 & -1 & 1 \\ -1 & 1 & 1 & 1 \\ 0 & 0 & 0 & -2 \end{bmatrix}$$

The dual of a *planar graph* matroid is graphical:



For *linearity*, this boils down to testing whether a system of polynomial equations has a solution, and Buchberger's algorithm can do this.

For *linearity*, this boils down to testing whether a system of polynomial equations has a solution, and Buchberger's algorithm can do this.

Duality: is the dual of an algebraic matroid again algebraic?

For *linearity*, this boils down to testing whether a system of polynomial equations has a solution, and Buchberger's algorithm can do this.

Duality: is the dual of an algebraic matroid again algebraic?

Yes in characteristic 0, because they're linear!

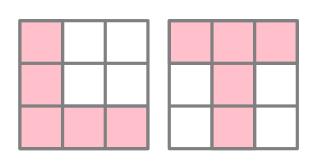
For *linearity*, this boils down to testing whether a system of polynomial equations has a solution, and Buchberger's algorithm can do this.

Duality: is the dual of an algebraic matroid again algebraic?

Yes in characteristic 0, because they're linear!

Example (Alfter-Hochstättler):

the *tic-tac-toe* matroid on [3] \times [3] has as bases all quintuples *except* all 4 L's and all 4 T's. Is it algebraic?? Its dual is *not*.



K a field, $v: K \to \mathbb{R} := \mathbb{R} \cup \{\infty\}$ a non-Archimedean valuation: $v^{-1}(\infty) = \{0\}, v(ab) = v(a) + v(b), \text{ and } v(a+b) \ge \min\{v(a), v(b)\}$

K a field, $v: K \to \mathbb{R} := \mathbb{R} \cup \{\infty\}$ a non-Archimedean valuation: $v^{-1}(\infty) = \{0\}, v(ab) = v(a) + v(b), \text{ and } v(a+b) \ge \min\{v(a), v(b)\}$

Recipe (Dress-Wenzel): Given an $n \times d$ -matrix of rank d over K, remember the valuations of the $d \times d$ -subdeterminants.

K a field, $v: K \to \overline{\mathbb{R}} := \mathbb{R} \cup \{\infty\}$ a non-Archimedean valuation: $v^{-1}(\infty) = \{0\}, v(ab) = v(a) + v(b), \text{ and } v(a+b) \ge \min\{v(a), v(b)\}$

Recipe (Dress-Wenzel): Given an $n \times d$ -matrix of rank d over K, remember the valuations of the $d \times d$ -subdeterminants.

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \\ 1 & 8 \end{bmatrix} \qquad K = \mathbb{Q}, v = 2\text{-adic} \qquad \mu(\{1, 2\}) = \mu(\{1, 3\}) = \mu(\{2, 3\}) = \mu(\{2, 4\}) = \mu(\{3, 4\}) = 0 \\ \mu(\{1, 4\}) = 3$$

K a field, $v: K \to \overline{\mathbb{R}} := \mathbb{R} \cup \{\infty\}$ a non-Archimedean valuation: $v^{-1}(\infty) = \{0\}, v(ab) = v(a) + v(b), \text{ and } v(a+b) \ge \min\{v(a), v(b)\}$

Recipe (Dress-Wenzel): Given an $n \times d$ -matrix of rank d over K, remember the valuations of the $d \times d$ -subdeterminants.

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \\ 1 & 8 \end{bmatrix} \qquad K = \mathbb{Q}, v = 2\text{-adic} \qquad \mu(\{1, 2\}) = \mu(\{1, 3\}) = \mu(\{2, 3\}) = \mu(\{2, 4\}) = \mu(\{3, 4\}) = 0 \\ \mu(\{1, 4\}) = 3$$

This matroid valuation $\mu: \binom{[n]}{d} \to \overline{\mathbb{R}}$ satisfies: $\mu \neq \infty$ and $\forall B, B', i \in B \setminus B' \exists j \in B' \setminus B : \mu(B) + \mu(B') \geq \mu(B - i + j) + \mu(B' + i - j)$. Matroid valuations play the role of linear spaces in trop geometry.

Definition (Bollen-D-Pendavingh, Cartwright)

K an algebraically closed field of characteristic p > 0 $L = K(x_1, ..., x_n) \supseteq K$ of transcendence degree d

$$\rightsquigarrow \mu : \binom{[n]}{d} \to \overline{\mathbb{R}}$$
 defined as $\mu(I) := \log_p[L : K((x_i)_{i \in I})^{\text{sep}}]$ is the *Lindström valuation* of the algebraic matroid.

Definition (Bollen-D-Pendavingh, Cartwright)

K an algebraically closed field of characteristic p > 0 $L = K(x_1, ..., x_n) \supseteq K$ of transcendence degree d

$$\rightsquigarrow \mu : \binom{[n]}{d} \rightarrow \overline{\mathbb{R}}$$
 defined as $\mu(I) := \log_p[L : K((x_i)_{i \in I})^{\text{sep}}]$ is the *Lindström valuation* of the algebraic matroid.

Theorem (B-D-P): if the Lindström valuation is trivial, i.e. $\exists \alpha \in \mathbb{Z}^n$: for all bases $\mu(B) = \sum_{i \in B} \alpha_i$, then the algebraic matroid is also linear.

Definition (Bollen-D-Pendavingh, Cartwright)

K an algebraically closed field of characteristic p > 0 $L = K(x_1, ..., x_n) \supseteq K$ of transcendence degree d

$$\rightsquigarrow \mu : \binom{[n]}{d} \to \overline{\mathbb{R}}$$
 defined as $\mu(I) := \log_p[L : K((x_i)_{i \in I})^{\text{sep}}]$ is the *Lindström valuation* of the algebraic matroid.

Theorem (B-D-P): if the Lindström valuation is trivial, i.e. $\exists \alpha \in \mathbb{Z}^n$: for all bases $\mu(B) = \sum_{i \in B} \alpha_i$, then the algebraic matroid is also linear.

Corollary: Matroids, such as Fano, that admit only trivial valuations are algebraic over *K* iff they are linear over *K*.

Bollen used enhancements of this for ruling out algebraicity of many matroids on ≤ 9 elements.

K algebraically closed, char K = p > 0 *G* a one-dimensional algebraic group over K \rightsquigarrow then G = (K, +) or $G = (K^*, \cdot)$ or G = an elliptic curve.

K algebraically closed, char K = p > 0 *G* a one-dimensional algebraic group over $K \Leftrightarrow \text{then } G = (K, +) \text{ or } G = (K^*, \cdot) \text{ or } G = \text{an elliptic curve.}$

Construction: a closed, connected subgroup $X \subseteq G^n \leadsto I := \{I \subseteq [n] : X \to G^I \text{ is surjective}\}$ is an algebraic matroid.

Questions: Lindström valuation? Is the dual also algebraic?

K algebraically closed, charK = p > 0 G a one-dimensional algebraic group over K \leadsto then G = (K, +) or $G = (K^*, \cdot)$ or G =an elliptic curve.

Construction: a closed, connected subgroup $X \subseteq G^n \leadsto I := \{I \subseteq [n] : X \to G^I \text{ is surjective}\}$ is an algebraic matroid.

Questions: Lindström valuation? Is the dual also algebraic?

Key to the solution: the *endomorphism ring* \mathbb{E} *of* G:

- K[F] with $Fa = a^p F$ if G = (K, +);
- \mathbb{Z} if $G = (K^*, \cdot)$; and
- \mathbb{Z} or an order in an imaginary quadratic number field or in a quaternion algebra if G = an elliptic curve. In all cases, \mathbb{E} is an Ore ring, hence generates a skew field Q.

The ring \mathbb{E} comes with a valuation: $v(\alpha)$ is the degree of inseparability of $\alpha: G \to G$; this extends to $v: Q \to \overline{\mathbb{R}}$.

The ring \mathbb{E} comes with a valuation: $v(\alpha)$ is the degree of inseparability of $\alpha: G \to G$; this extends to $v: Q \to \overline{\mathbb{R}}$.

Theorem (B-Cartwright-D)

The Lindström valuation of the matroid defined by X maps $I \subseteq [n]$ of size d to v(Diedonn'e determinant of <math>A[I]).

The ring \mathbb{E} comes with a valuation: $v(\alpha)$ is the degree of inseparability of $\alpha: G \to G$; this extends to $v: Q \to \overline{\mathbb{R}}$.

Theorem (B-Cartwright-D)

The Lindström valuation of the matroid defined by X maps $I \subseteq [n]$ of size d to v(Diedonné determinant of <math>A[I]).

Theorem (B-C-D)

The dual matroid is also that of a closed subgroup X^{\vee} of G^{n} .

Colspace(A)^{\perp} is a *left* subspace, but fortunately $Q \cong Q^{op}$.

Definition (Dress-Wenzel)

If
$$\mu: \binom{[n]}{d} \to \overline{\mathbb{R}}$$
 is a valuation, then $\mu': \binom{[n]}{n-d} \to \overline{\mathbb{R}}$, $\mu'(I) = \mu(I^c)$ is the *dual valuation*.

Definition (Dress-Wenzel)

If
$$\mu: \binom{[n]}{d} \to \overline{\mathbb{R}}$$
 is a valuation, then $\mu': \binom{[n]}{n-d} \to \overline{\mathbb{R}}$, $\mu'(I) = \mu(I^c)$ is the *dual valuation*.

This notion is compatible with the dual of a linear matroid, but *not* with the construction of X' above: take G = (K, +), $\mathbb{E} = K[F]$ and

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \\ 1 & F \end{bmatrix} \longrightarrow A^{\perp} = \begin{bmatrix} 1 & 1 & -1 & 0 \\ 1 & F & 0 & -1 \end{bmatrix} \longrightarrow A^{\vee} = \begin{bmatrix} 1 & 1 \\ 1 & F^{-1} \\ -1 & 0 \\ 0 & -1 \end{bmatrix}$$

Definition (Dress-Wenzel)

If
$$\mu: \binom{[n]}{d} \to \overline{\mathbb{R}}$$
 is a valuation, then $\mu': \binom{[n]}{n-d} \to \overline{\mathbb{R}}$, $\mu'(I) = \mu(I^c)$ is the *dual valuation*.

This notion is compatible with the dual of a linear matroid, but *not* with the construction of X' above: take G = (K, +), $\mathbb{E} = K[F]$ and

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \\ 1 & F \end{bmatrix} \longrightarrow A^{\perp} = \begin{bmatrix} 1 & 1 & -1 & 0 \\ 1 & F & 0 & -1 \end{bmatrix} \longrightarrow A^{\vee} = \begin{bmatrix} 1 & 1 \\ 1 & F^{-1} \\ -1 & 0 \\ 0 & -1 \end{bmatrix}$$

$$\mu(14) + \mu(23) - \mu(13) - \mu(24) = 1 + 0 - 0 - 0 = 1$$
 but $\mu^{\vee}(23) + \mu^{\vee}(14) - \mu^{\vee}(24) - \mu^{\vee}(13) = -1 + 0 - 0 - 0 = -1$

A negative result

Theorem (B-C-D): The set of Lindström valuations of algebraic matroids is *not* closed under duality.

Proof sketch: via a universality construction of Evans-Hrushovski, we construct a matroid M^{\vee} s.t. every algebraic realisation of M^{\vee} is equivalent to one from a subgroup $X^{\vee} \subseteq G^n$ for some one-dimensional algebraic group G, but such that the Lindström valuation of X is not the dual to that of X^{\vee} . Then the dual of the Lindström valuation of X is not a Lindström valuation.

• Algebraic matroids arise from *generic completion problems*. Even in characteristic zero, where these matroids are linear, they pose intriguing computational problems.

- Algebraic matroids arise from *generic completion problems*. Even in characteristic zero, where these matroids are linear, they pose intriguing computational problems.
- Open problem: decide deterministically in polynomial time whether $S \subseteq \mathbb{Q}^n$ can be partitioned by a hyperplane into two independent sets \leadsto deterministic polynomial-time algorithm for generic rank-two matrix completion.

- Algebraic matroids arise from *generic completion problems*. Even in characteristic zero, where these matroids are linear, they pose intriguing computational problems.
- Open problem: decide deterministically in polynomial time whether $S \subseteq \mathbb{Q}^n$ can be partitioned by a hyperplane into two independent sets \leadsto deterministic polynomial-time algorithm for generic rank-two matrix completion.
- Lindström valuations are a powerful new tool for studying algebraicity of matroids. Enhanced with their Lindström valuations, algebraic matroids are *not* closed under duality.

- Algebraic matroids arise from *generic completion problems*. Even in characteristic zero, where these matroids are linear, they pose intriguing computational problems.
- Open problem: decide deterministically in polynomial time whether $S \subseteq \mathbb{Q}^n$ can be partitioned by a hyperplane into two independent sets \leadsto deterministic polynomial-time algorithm for generic rank-two matrix completion.
- Lindström valuations are a powerful new tool for studying algebraicity of matroids. Enhanced with their Lindström valuations, algebraic matroids are *not* closed under duality.
- Still, much work needs to be done before the ugly ducks of algebraic matroids mature into beautiful swans!

- Algebraic matroids arise from *generic completion problems*. Even in characteristic zero, where these matroids are linear, they pose intriguing computational problems.
- Open problem: decide deterministically in polynomial time whether $S \subseteq \mathbb{Q}^n$ can be partitioned by a hyperplane into two independent sets \rightsquigarrow deterministic polynomial-time algorithm for generic rank-two matrix completion.
- Lindström valuations are a powerful new tool for studying algebraicity of matroids. Enhanced with their Lindström valuations, algebraic matroids are *not* closed under duality.
- Still, much work needs to be done before the ugly ducks of algebraic matroids mature into beautiful swans!

Thank you!