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From matrix to matroid I 2.4

Recipe: Given an n X d-matrix over a field, remember only
which subsets of the rows are independent.
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0 0 1 char # 2
0O 1 1 >
1 0 1 char =2
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(non-)Fano matroid

This collection 7 C 2" is nonempty, downward closed, and
satisfies VI,J € I : |J| > |I| = Aj € J\I: 1+ ] € 1; these are
the defining properties of a matroid on [n].
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Definition: A matroid on [n]is a nonempty, downward closed
collection 7 C 2 st. VI, Je T :|]|>|[|=> Aje J\I:[+j€ T.
The maximal independent sets are called the bases.
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Graphical matroids: edge set [n],
independent = contains no cycle.

a basis:

The greedy algorithm for minimal-cost spanning tree carries over
precisely to matroids.
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Definition: A matroid on [n]is a nonempty, downward closed
collection 7 C 2 st. VI, Je T :|]|>|[|=> Aje J\I:[+j€ T.
The maximal independent sets are called the bases.

Linear matroids: from a matrix over a field.

Graphical matroids: edge set [n], 1 -1 0 0 0]
independent = contains no cycle. 6 1 -1 0 0
0 O 1 -1 O
1 1 0 0 -1 0
a basis: > (1) 8 (1) 8 _}
0o 0 0 1 -1

The greedy algorithm for minimal-cost spanning tree carries over
precisely to matroids.

Every graphical matroid is linear (over every field).
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Set 1 :={I C [n] : (x;)ie; algebraically independent over K}. Such
a matroid is called algebraic (over K).



The ugly ducks among matroids .-

Definition: Let L D K be a field extension and x1,...,x, € L.
Set 1 :={I C [n] : (x;)ie; algebraically independent over K}. Such
a matroid is called algebraic (over K).

Every linear matroid is algebraic:

(1 0 O] X1=t1
O 1 O X2:t2
0 0 X3 = t3
0O 1 1 > X4 =1y + 13
1 0 1 X5 =11 + 13
1 0 Xe =11+ 1
1 1_ X7 =11+t + 13

L= K(tll t2/ t3)
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Generic completion

K algebraically closed

X C K" irreducible closed subvariety
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A
Xp=x5+x-1=0

\‘\ 1 =10,2,3}
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Generic completion

K algebraically closed

X C K" irreducible closed subvariety

I :={I C [n] : any generic p € K! can be completed to f € X}

A
I is an algebraic matroid Y =x+x3-1=0
with L = K(X); and every \‘\ 7 =102, 3
algebraic matroid arises D -

in this manner.

Problem: Given X and I C [n], decide whether I € 1.

Can be solved by Buchberger’s algorithm for elimination, but
this is not efficient.
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Case study: generic low-rank matrix completion s

] =[] x[m], €m=k K" 2X:=1A]|rk(A) <kl

Generic rank-k completion problem: On input I C [£] X [m],
decide wether a generic choice of (4;;); jer can be completed
to a matrix of rank < k.

Rank k = 1: yes iff the bipartite graph with edges I has no
cycles ~~ I is the graphical matroid of K ,,; independence is easy.

Rank k = 2, Bernstein: yes iff that graph admits an acyclic
orientation with no alternating cycles. Krone proves this theo-
rem using tropical secant varieties. Polynomial time??

Open problem: is there a poly time deterministic algorithm
that on input S € Q" decides it S can be partitioned by a
hyperplane into two linearly independent sets?
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A
X1 =x5+x35-1=0

\ I =10,2,3]}
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X € K" irreducible, and g € X smooth ~» the tangent space
T, X defines a matroid on [n] with 7(T,X) C Z(X).
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Linearising algebraic matroids 7-4

X € K" irreducible, and g € X smooth ~» the tangent space
T, X defines a matroid on [n] with 7(T,X) C Z(X).

A
N 1 =x5+x5—-1=0
~. < =102,3]
= 1=1{0,2,3}
I =1{0,3}
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X € K" irreducible, and g € X smooth ~» the tangent space
T, X defines a matroid on [n] with 7(T,X) C Z(X).

A
If charK = 0, then for AN Y1 = x% + x% —-1=0
g € X sufficiently general, I =10.23
I(T,X) = I(X); - 02
not true for charK = p > 0. T - {@’ 3’}



Linearising algebraic matroids 7-

X € K" irreducible, and g € X smooth ~» the tangent space
T, X defines a matroid on [n] with 7(T,X) C Z(X).

A

If charK = 0, then for N =242 -1=0
q € X sufficiently general, 1023

I(T,X) = I(X); - }@, 2,31
not true for charK = p > 0. - - {@/ 3/}

Consequences

e Algebraic matroids in characteristic 0 are linear (Ingleton)
e Sometimes there is an efficient probabilistic algorithm for
the generic completion problem: sample g € X, compute
T';X, and use Gaussian elimination to check I € 7(T,X).
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Duality ;-

Definition: If J is a matroid on [n], then 7+ :={J C [n] : | is
disjoint from some basis of 7} is the dual matroid.

The dual of a linear matroid is linear:

1 0 0 2 0 0 0°
0 1 0 0 2 0 0
0 0 1 0 0 2 0
A=l0 1 1 char # 2 At=|1 -1 -1 1
1 0 1 > -1 1 -1 1
1 1 0 -1 -1 1 1
1 1 1 0 0 0 =2




Duality ;-

Definition: If J is a matroid on [n], then 7+ :={J C [n] : | is
disjoint from some basis of 7} is the dual matroid.

The dual of a linear matroid is linear:

1 0 O
O 1 O
0O 0 1
aclo 1 1 char # 2 AL
1 0 1 >
1 1 O
1 1 1
The dual of a planar graph :

matroid is graphical:
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Testing algebraicity: given a matroid, how does one decide
if it is algebraic?

For linearity, this boils down to testing whether a system
of polynomial equations has a solution, and Buchberger’s
algorithm can do this.

1



Main challenges on algebraic matroids -

Testing algebraicity: given a matroid, how does one decide
if it is algebraic?

For linearity, this boils down to testing whether a system
of polynomial equations has a solution, and Buchberger’s
algorithm can do this.

Duality: is the dual of an algebraic matroid again algebraic?



Main challenges on algebraic matroids 9-3

Testing algebraicity: given a matroid, how does one decide
if it is algebraic?

For linearity, this boils down to testing whether a system
of polynomial equations has a solution, and Buchberger’s
algorithm can do this.

Duality: is the dual of an algebraic matroid again algebraic?

Yes in characteristic 0, because they re linear!



Main challenges on algebraic matroids 0.4

Testing algebraicity: given a matroid, how does one decide
if it is algebraic?

For linearity, this boils down to testing whether a system
of polynomial equations has a solution, and Buchberger’s
algorithm can do this.

Duality: is the dual of an algebraic matroid again algebraic?

Yes in characteristic 0, because they re linear!

Example (Alfter-Hochstittler):
the tic-tac-toe matroid on [3] X [3] has as

bases all quintuples except all 4 L's and
all 4 T’s. Is it algebraic?? Its dual is not.
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K afield, v : K - R := R U {oo} a non-Archimedean valuation:
v~ (o0) = {0}, v(ab) = v(a) + v(b), and v(a + b) > min{v(a), v(b))

Recipe (Dress-Wenzel): Given an n Xd-matrix of rank d over
K, remember the valuations of the d X d-subdeterminants.
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From matrix to matroid (valuation) II 10-4

K afield, v : K - R := R U {oo} a non-Archimedean valuation:
v~ (o0) = {0}, v(ab) = v(a) + v(b), and v(a + b) > min{v(a), v(b))

Recipe (Dress-Wenzel): Given an n Xd-matrix of rank d over
K, remember the valuations of the d X d-subdeterminants.

1 0 oo u((1,2)) = u({1, 3]
o 1| L CVTTRRC _u2,3) = u(2,4)
11 = u({3,4}) =0

1 8 u({1,4}) =3

This matroid valuation u : ([Z]) — R satisfies: u # oo and

VB,B’,i € B\B'Aj € B'\B : u(B)+u(B’) > u(B—i+j)+u(B +i—j).

Matroid valuations play the role of linear spaces in trop geometry.



The Lindstrom valuation

Definition (Bollen-D-Pendavingh, Cartwright)
K an algebraically closed field of characteristic p > 0
L = K(x1,...,x,;) 2 K of transcendence degree d

SATE ([Z]) — R defined as u(l) := logp[L : K((x1)ie1)*P ]

is the Lindstrom valuation of the algebraic matroid.

11 -
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Definition (Bollen-D-Pendavingh, Cartwright)
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da € Z": for all bases u(B) = ).,z @i, then the algebraic
matroid is also linear.
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Definition (Bollen-D-Pendavingh, Cartwright)
K an algebraically closed field of characteristic p > 0
L = K(x1,...,x,;) 2 K of transcendence degree d

SATE ([Z]) — R defined as u(l) := logp[L : K((x1)ie1)*P ]

is the Lindstrom valuation of the algebraic matroid.

Theorem (B-D-P): if the Lindstrom valuation is trivial, i.e.
da € Z": for all bases u(B) = ).,z @i, then the algebraic
matroid is also linear.

Corollary: Matroids, such as Fano, that admit only trivial
valuations are algebraic over K itf they are linear over K.

Bollen used enhancements of this for ruling out algebraicity of
many matroids on < 9 elements.



Matroids over one-dimensional groups

K algebraically closed, charK =p > 0
G a one-dimensional algebraic group over K
~ then G = (K, +) or G = (K%, ) or G = an elliptic curve.

12 -
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Matroids over one-dimensional groups -

K algebraically closed, charK =p > 0
G a one-dimensional algebraic group over K
~ then G = (K, +) or G = (K%, ) or G = an elliptic curve.

Construction: a closed, connected subgroup X € G" ~»
7 :={I C[n]: X - G!is surjective} is an algebraic matroid.

Questions: Lindstrom valuation? Is the dual also algebraic?

Key to the solution: the endomorphism ring E of G:

o K[F] with Fa = aPF if G = (K, +);

e 7 it G = (K*,+); and

e Z or an order in an imaginary quadratic number field or
in a quaternion algebra if G = an elliptic curve.

In all cases, E is an Ore ring, hence generates a skew field Q.
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given by a rank-d matrix A € E™, and is uniquely deter-
mined by the column span of A, a right Q-subspace ot Q".
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From matrix to matroid (valuation) III 13-4

The closed subgroup X C G" is the image of a map G — G”"
given by a rank-d matrix A € E™, and is uniquely deter-
mined by the column span of A, a right Q-subspace ot Q".

The ring E comes with a valuation: v(a) is the degree of
inseparability of a : G — G; this extends tov : Q — R.

Theorem (B-Cartwright-D)
The Lindstrom valuation of the matroid defined by X maps
I C [n] of size d to v(Diedonné determinant of A[I]).

Theorem (B-C-D)
The dual matroid is also that of a closed subgroup X" of G".

Colspace(A)™ is a left subspace, but fortunately Q = Q°P.



Dual valuations

Definition (Dress-Wenzel)
If u: ([n]) — R is a valuation, then p’ (

u'(I) = u(I°) is the dual valuation.

[7]
n—d

)
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Definition (Dress-Wenzel)

If u: ([Z]) — R is a valuation, then y’ : (n[ﬁ] d) — R,

u'(I) = u(I°) is the dual valuation.

This notion is compatible with the dual of a linear matroid,
but not with the construction of X’ above: take G = (K, +),

E = K[F] and
1 0 11
o 1 P O S o1 P
A=11 |4 ‘[1 F 0 —1]_’A =121 0
1 F 0 -1




Dual valuations "

Definition (Dress-Wenzel)

If u: ([Z]) — R is a valuation, then y’ : (n[ﬁ] d) - R,

u'(I) = u(I°) is the dual valuation.

This notion is compatible with the dual of a linear matroid,
but not with the construction of X’ above: take G = (K, +),

E = K[F] and
1 0 11
o 1 P O S o1 P
A=11 |4 ‘[1 F 0 —1]_’A =121 0
1 F 0 -1

u(14) + u(23) — u(13) — u24) =1+0-0-0 = 1 but
u23)+u’(14) —pu'(24) - pu’(13) =-1+0-0-0=-1



A negative result E

Theorem (B-C-D): The set of Lindstrom valuations of alge-
braic matroids is not closed under duality.

Proof sketch: via a universality construction of Evans-
Hrushovski, we construct a matroid M" s.t. every alge-
braic realisation of M" is equivalent to one from a subgroup
XY € G" for some one-dimensional algebraic group G, but
such that the Lindstrém valuation of X is not the dual to that
of XV. Then the dual of the Lindstrom valuation of X is not
a Lindstrom valuation.
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Summarising t6-

e Algebraic matroids arise from generic completion problems.
Even in characteristic zero, where these matroids are linear,
they pose intriguing computational problems.

e Open problem: decide deterministically in polynomial
time whether S € Q" can be partitioned by a hyperplane
into two independent sets ~ deterministic polynomial-time
algorithm for generic rank-two matrix completion.

e Lindstrom valuations are a powerful new tool for studying
algebraicity of matroids. Enhanced with their Lindstrom
valuations, algebraic matroids are not closed under duality.

e Still, much work needs to be done before the ugly ducks ot
algebraic matroids mature into beautiful swans!

Thank you!
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