Stabilisation in algebraic statistics

Jan Draisma
TU Eindhoven and VU Amsterdam

- X_1, \ldots, X_n real, jointly Gaussian random variables, mean 0
- \bullet distribution determined by covariance matrix Σ
- suppose $n \gg k$ and $X_i = \sum_{j=1}^k \lambda_{ij} Y_j + \sigma_i Z_i$ where
- $Y_1, \ldots, Y_k, Z_1, \ldots, Z_n$ independent, standard normal factors noise
- $\leadsto \Sigma = \Lambda \Lambda^T + \operatorname{diag}(\sigma_i^2)_i \operatorname{rank} k \operatorname{plus} \operatorname{diagonal}$
- $F_{k,n} = \{\text{all such matrices}\} \subseteq \mathbb{R}^{n \times n}$

Question (DSS 07): Generators for the ideal in $\mathbb{R}[(\sigma_{ij})]$ of $F_{k,n}$?

Example

- 1. $\sigma_{ij} \sigma_{ji}$ and
- 2. off-diagonal $(k + 1) \times (k + 1)$ -minors of Σ
- 3. Ideal of $F_{2,5}$ gen by 1. and $\frac{1}{10} \sum_{\pi \in S_5} \text{sgn}(\pi) \pi(\sigma_{12} \sigma_{23} \sigma_{34} \sigma_{45} \sigma_{15})$

pentad

 $F_{k,n+1} \to F_{k,n}$ by forgetting last row and col, and $F_{k,n}$ is S_n -stable

Question (DSS)

Is there $n_0 = n_0(k)$ s.t. $I(F_{k,n}) = \langle S_n I(F_{k,n_0}) \rangle$ for $n \ge n_0$?

Partial answer

- 1. Yes for k = 1 with $n_0 = 4$ (2 × 2-minors).
- 2. Yes for k = 2 with $n_0 = 6$ (pentads and off-diagonal
- 3×3 -minors generate $I(F_{2,n})$ [B-D]
- 3. Yes topologically for each k (no idea about n_0) [D]

Definition An FI-algebra over K is a functor A from FI to (commutative, associative, unital) K-algebras. An ideal is an FI-submodule of A such that for each S, I(S) is an ideal in A(S).

General question

A an FI-algebra over $K, I \subseteq A$ an ideal of interest, is I f.g.? (In k-factor model, $A(S) = \mathbb{R}[\sigma_{ij}|i, j \in S]$ and $I(S) = I(F_{k,S})$.) not Noetherian!

FI-algebra $A \rightsquigarrow$ functor X from FI^{op} to Top, $S \mapsto \operatorname{Hom}(A(S), K)$ with Zariski topology. Weaker question: is there a finite number of elements of I(S)'s whose ideal define $V(I) \subseteq X$?

The topological space defined by ideal $J \subseteq I(F_{k,.})$ generated by the *off-diagonal* $(k + 1) \times (k + 1)$ -minors is Noetherian.

Theorem (C,A-H) The FI-algebra $R: S \mapsto K[S]$ is Noetherian.

Theorem (C, H-S) So are tensor powers $R^{\otimes d}$.

For any functor Y from FI to sets, can form the FI-algebra $K[Y]: S \mapsto K[Y_S]$.

Theorem (D-E-K-L) If *Y* is f.g. and $\phi : K[Y] \to R^{\otimes k}$ monomial, then ker ϕ is f.g. and im ϕ is Noetherian.

Unfortunately, $F_{k,n}$ was not parameterised by monomials (except for k = 1, forgetting diagonal), so this does not help there. But it does elsewhere!

 $\Gamma = (V, E)$ finite, simple, undirected graph for each v have a finite set S_v of *states* for each (max) clique $C \subseteq V$ have function $\phi_C : \prod_{v \in C} S_v \to \mathbb{R}_+$ \rightsquigarrow a probability distribution on $\prod_{v \in V} S_v$ by $P(\mathbf{i}) = \prod_C \phi_C(\mathbf{i}|_C)$

Question

What are the polynomial relations among the $P(\mathbf{i})$ as the ϕ_C vary?

Examples

 $P(i, j, k) = a_i b_j c_k$ (independence, rank-one tensors)

ideal generated by quadratic equations, independently of the $|S_v|$.

$$K_{3,N}$$
 $P(i_1, i_2, i_3, j_1, \dots, j_n) = \prod_{l=1}^{N} a_{i_1, j_l} b_{i_2, j_l} c_{i_3, j_l}$

Theorem (Rauh-Sullivant) for $K_{3,N}$, if all $|S_v| = 2$, ideal generated in degree ≤ 12 , independently of N.

use the result about monomial maps.

Theorem (Hillar-Sullivant)

Let $U \subseteq V$ be an independent set. Then the relations among the $P(\mathbf{i})$ stabilise as $|S_v| \to \infty$ for $u \in U$, while the S_v with $v \in V \setminus U$ remain fixed.

Proof

```
\prod_{u \in U} S_u \mapsto K[p_i | \mathbf{i} \in \prod_{v \in V} S_v] \text{ defines a f.g. FI}^U \text{-algebra} \\
\text{Consider the homomorphism } \phi : p_i \mapsto P(\mathbf{i}) = \prod_C \phi_C(\mathbf{i}|_C) \\
= \prod_{C \cap U = \emptyset} \phi_C(\mathbf{i}|_C) \cdot \prod_{u \in U} (\prod_{C \ni u} \phi_C(\mathbf{i}|_C)) \qquad \text{(each } |C \cap U| \le 1) \\
\text{constant stuff} \qquad \qquad \qquad \downarrow \text{only one index unbounded}
```

Theorem (in progress, with Oosterhof, Rauh, Sullivant)

Let U be an independent set. Now keep all state set sizes equal, but repeatedly clone vertices in U, along with their sets S_u . Then the relations among the $P(\mathbf{i})$ stabilise up to symmetry.

For simplicity |U| = 1. Denote by W the set of clones, including the original vertex. (So W is independent in the new graph.)

$$P(\mathbf{i}) = \prod_{C \cap W = \emptyset} \phi_C(\mathbf{i}|_C) \cdot \prod_{w \in W} (\prod_{C \ni w} \phi_C(\mathbf{i}|_C)) \quad (\text{each } |C \cap W| \le 1)$$

For each fixed value of $\mathbf{i}|_{V\setminus W}$ you see the entries of a rank-one tensor in $\mathbb{R}^{\otimes W}$. We'll prove a theorem about tuples of rank-one tensors.

An FS^{op}-algebras

Recall

FS is the category of finite maps with surjections

Theorem (Sam-Snowden)

f.g. FS^{op}-modules are Noetherian

Example of an FS^{op}-algebra

fix $n \in \mathbb{N}$, then surjection $S \to S'$ gives injection $[n]^{S'} \to [n]^S$ and hence algebra injection $K[y_{\alpha} \mid \alpha \in [n]^{S'}] \to K[y_{\alpha} \mid \alpha \in [n]^S]$. This is a f.g. FS^{op} algebra T_n (for tensor), coord ring of $(K^n)^{\otimes S}$.

Theorem (Draisma-Kuttler)

For each fixed r, this algebra has a finitely generated FS^{op}-ideal whose zero set is the variety of border-rank-r tensors.

In T_n , let I_n denote the ideal of the rank-one tensors.

Theorem (D-O-R-S)

 $Q_n := T_n/I_n$ is a Noetherian OS^{op}-algebra; also for several copies.

Recall

OS has linearly ordered finite sets [k] and morphisms $f:[k] \to [l]$ such that i < j implies $\max f^{-1}(i) < \max f^{-1}(j)$

 $Q_n([l])$ is the monoid algebra of the additive monoid of matrices in $(\mathbb{Z}_{>0})^{n\times l}$ with constant column sum.

Let $A \in (\mathbb{Z}_{\geq 0})^{n \times l}$ and $B \in (\mathbb{Z}_{\geq 0})^{n \times k}$ be such matrices. Call $A \leq B$ if \exists ordered surjective $f : [k] \to [l]$ such that $b_{ij} \geq a_{if(j)}$ for all i, j.

Proposition

This is a w.p.o.

To each A associate the monomial ideal J_A in $K[x_1, ..., x_n]$ generated by the x^{α} with α running over the columns of A.

Theorem (Maclagan)

These monomial ideals are w.p.o. by reverse inclusion: in any sequence $J_1, J_2, ... \exists i < j : J_i \supseteq J_j$.

- Suppose there are bad sequences A_1, A_2, \ldots
- Then these exist such that $J_{A_1} \supseteq J_{A_2} \supseteq \dots (*)$.
- Take a minimal such bad sequence and write $A_i = (a_i|B_i)$.
- Find $i_1 < i_2 < \dots$ such that $a_{i_1} \le a_{i_2} \le \dots$ and moreover $J_{B_{i_1}} \supseteq J_{B_{i_2}} \supseteq \dots$

Claim: $A_1, \ldots, A_{i_1-1}, B_{i_1}, B_{i_2}, \ldots$ is smaller bad sequence.

- suppose $A_i \le B_j$, witnessed by $f:[l_j-1] \to [l_i]$. Then $A_i \le A_j$, witnessed by $g:[l_j] \to [l_i]$ with g(m) = f(m-1), m > 1 and g(1) = r such that r-th column of $A_i \le$ first column of A_j (exists by (*)).
- suppose that $B_i \le B_j$, witnessed by $f:[l_j-1] \to [l_i-1]$. Then $A_i \le A_j$ witnessed by $g:[l_j] \to [l_i]$ defined by g(m) = f(m-1) + 1 and g(1) = 1.

The ideals in the second independent set theorem are FS^{op} -ideals in T_n (actually, a tensor product of copies), hence f.g.

There are many more graphical models, e.g. from phylogenetics, where stabilisation occurs!

Definition

 $M \in \mathbb{R}_{\geq 0}^{m \times n}$ has nonnegative rank $\leq r$ if $M = A \cdot B$ with $A \in \mathbb{R}_{\geq 0}^{m \times r}$ and $B \in \mathbb{R}_{> 0}^{r \times k}$.

Consider the boundary $B_r^{m \times n}$ of the set of matrices of nonnegative rank $\leq r$ in the variety of matrices of rank $\leq r$.

Theorem (Mond-Smith-v. Straten) for r = 3 this has $3 S_m \times S_n$ -orbits of components, independent of m, n.

(Quantifier-free description by Kubjas-Robeva-Sturmfels, and ideals by Eggermont-Horobet-Kubjas.)

Higher rank r? Ongoing work by Horobet-Chen.