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The main theorem 2

Main Theorem
Let X; 2 X, 2 ... closed subsets of a polynomial functor P.
Then Ell() . Xio = Ajy+l = ..

equivalently:

Main Theorem
For any closed subset X of P there is a fin-dim vector space U such

that for each V, X(V) C P(V) equals (ycpomv.t) P(®) ' X(U).
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Example
Let P(V) = V® and X(V) = {v;{ ® A»3 + v» ® A3}, a subset of the
tensors of slice rank < 2.

M /
W/

NINNNN




Example: slice rank 3

Example
Let P(V) = V® and X(V) = {v; ® A»z + v ® A3}, a subset of the
tensors of slice rank < 2.
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X(V) 1s closed (notes by Tao-Sawin), and for ¢ : V — W have
P(p)(X(V)) € X(W). Theorem implies X(V) 1s defined by equa-
tions of bounded degree independent of V.

In fact, degrees 3 and 6 suffice (Oosterhof)—set-theoretically.

Question: also ideal-theoretically?
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Setting
K an infinite field
Vec the category of finite-dimensional K-vector spaces

Definition
P : Vec — Vec is polynomial of degree < d if P : Hom(V, W) —
Hom(P(V), P(W)) i1s polynomial of degree < d for all V, W.



Setting
K an infinite field
Vec the category of finite-dimensional K-vector spaces

Definition
P : Vec — Vec 1s polynomial of degree < d if P : Hom(V, W) —
Hom(P(V), P(W)) is polynomial of degree < d for all V, W.

Examples

e P(V) =afixed U, of degree 0

e P(V) =V, of degree 1

o P(V) = V® with P(o)v; ® -+ Q@ vz = (ov]) ® - - ® (¢vy)
o P(V) = Sy = V®d/<{\/1 R QVg —Vp(1) Q- & Vﬂ(d)}>
echarK=p>0 P(\V)=SP(V)/{fP | f € V)k
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Polynomial functors P:

e behave like univariate polynomials

e can be added (direct sum) and multiplied (tensor product)

e admit a homogeneous decomposition P = Py @ - - - & P, with
P.(V)={qe P(V)|Vte K : P(tly)g = t°g}

Lemma (Friedlander-Suslin) (we’ll use this)
For fixed d and U € Vec with dim U > d the map

{poly functors of deg < d} — {poly GL(U)-modules of deg < d},
P — P(U) 1s an equivalence of Abelian categories.



Polynomial functors P:

e behave like univariate polynomials

e can be added (direct sum) and multiplied (tensor product)

e admit a homogeneous decomposition P = Py @ - - - & P, with
P.(V)={qe P(V)|Vte K : P(tly)g = t°g}

Lemma (Friedlander-Suslin) (we’ll use this)
For fixed d and U € Vec with dim U > d the map

{poly functors of deg < d} — {poly GL(U)-modules of deg < d},
P — P(U) 1s an equivalence of Abelian categories.

Theorem (we won’t use this)

In char O, Schur functors S 4(V) := Homg ,(U,, Ve A+ d form a
basis of the Abelian category of polynomial functors.
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U a finite-dimensional vector space
u : End(U) X End(U) — End(U) multiplication
u” : KI[End(U)]<; — K[End(U)]<; ® K[End(U)]<; comult

A := K[End(U)]_ , associative algebra with multiplication (x, y) —
(x ® y) o u*; natural map End(U) — A is algebra homomorphism.
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A® M — M ~» bijection between polynomial GL(U)-modules
of degree < d and A-modules.



Quasi-inverse 1n Friedlander-Suslin’s lemma 6

U a finite-dimensional vector space
u : End(U) X End(U) — End(U) multiplication
u” : KI[End(U)]<; — K[End(U)]<; ® K[End(U)]<; comult

A := K[End(U)]_ , associative algebra with multiplication (x, y) —
(x ® y) o u*; natural map End(U) — A is algebra homomorphism.

For a polynomial GL(U)-module M of degree < d, get a map

A® M — M ~» bijection between polynomial GL(U)-modules
of degree < d and A-modules.

For a vector space V, K[Hom(U, V)]_ , 1s a right A-module.

Map back sends M to V — K[Hom(U, V)];d ®4 M.
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P ~» a functor Vec — Top, where P(V) has the Zariski topology

Definition

A Vec-closed subset X of P assigns to each V a closed subset
X(V) € P(V), such that for all ¢ : V — W the map P(¢) maps
X(V) into X(W). (So Z(X(W)) pulls back into 1(X(V)).)
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e Veronese: X(V) = {y®¢} Cc TV

e joins (X + Y)(V) := X(V) + Y(V), tangential varieties, U, N, etc.




P ~» a functor Vec — Top, where P(V) has the Zariski topology

Definition

A Vec-closed subset X of P assigns to each V a closed subset
X(V) € P(V), such that for all ¢ : V — W the map P(¢) maps
X(V) into X(W). (So Z(X(W)) pulls back into 1(X(V)).)

Examples

e Segre: X(V)={vi®:---®v,} C yed

e Veronese: X(V) = {y®¢} Cc TV

e joins (X + Y)(V) := X(V) + Y(V), tangential varieties, U, N, etc.

Main Theorem (Noetherianity for polynomial functors)
In a polynomial functor P of finite degree, any chain X; 2 X, D ...
of Vec-closed subsets stabilises: X;, = X;,+1 = ... for some iy.



Consequences and special cases

Known before

e degree O (finite-dimensional vector spaces, Hilbert, 1890)
e degree 1 (Cohen 1967)

e degree < 2 (tuples of matrices, Eggermont 2014)

e for S3V (cubics, Derksen-Eggermont-Snowden 2016)

e much stronger statement in char 0 for S°V (Abeasis 1980,
Nagpal-Sam-Snowden 2015)
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e degree < 2 (tuples of matrices, Eggermont 2014)

e for S3V (cubics, Derksen-Eggermont-Snowden 2016)

e much stronger statement in char 0 for S°V (Abeasis 1980,
Nagpal-Sam-Snowden 2015)

Slice rank revisited

X\(V):={T e V® |Fie[d]l,ve V,S e (X)jiiV T =v®S)
X := X1 +--- + X, tensors of slice rank < k

In fact, no closure is needed (Tao-Sawin).

The Main Theorem 1mplies: X;(V) 1s defined set-theoretically by
equations of bounded degree independent of V.



Consequences and special cases 0

Twisted commutative algebras
P ~» contravariant functor V +— K[P(V)] from Vec to K-algebras

Over K = C, this 1s a twisted commutative algebra (Sam-
Snowden). The Main Theorem 1mplies that finitely generated tcas
are topologically Noetherian. Ring-theoretically remains open.



Consequences and special cases 0

Twisted commutative algebras
P ~» contravariant functor V +— K[P(V)] from Vec to K-algebras

Over K = C, this 1s a twisted commutative algebra (Sam-
Snowden). The Main Theorem 1mplies that finitely generated tcas
are topologically Noetherian. Ring-theoretically remains open.

Variants of Stillman’s conjecture [Erman-Sam-Snowden]
Let ¢ be any natural number, and fix degrees d;, ..., d;. Then the
number of codim-c linear subspaces of P" contained 1n a projec-
tive variety defined by k polynomials of degrees di, . . ., di 1s either
infinite or at most some number which doesn’t depend on n.

(Uses the main theorem for EB; S V).
A single non-rigid such space already counts as oo.)
Fork=1,di =3,c =2, N 1s at least 27:
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For a polynomial functor P define P, := lim., P(K"). This 1s
dual to the countable-dimensional space lim,,_, P(K")*, whose ele-
ments we think of as coordinates on P,,. We give P, the Zariski-
topology and write K[P.] for the coordinate ring.
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The group GL, := | GL,, acts on P, and its space of coordinates,
by homeomorphisms.
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For a polynomial functor P define P, := lim., P(K"). This 1s
dual to the countable-dimensional space lim,,_, P(K")*, whose ele-
ments we think of as coordinates on P,,. We give P, the Zariski-
topology and write K[P.] for the coordinate ring.

The group GL, := | GL,, acts on P, and its space of coordinates,
by homeomorphisms.

Example

e For P(V) = V, P, = K" with coordinates xi, x, ..., and GL,
acts by matrix-vector multiplication.

e For P(V) = V@V, P, = K" with coordinates x;;, and GL
acts by (g, A) — gAg!.

e For P(V) = S°V, P is the space of infinite cubics ajq1x; +
a12x7 X2+ - -+a;jpxi X jx; and GLq, acts by coordinate substitutions.
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Given a Vec-closed subset X C P, set X, := lim_, X(K") C P..

Exercise
The map X — X 1s a bijection between Vec-closed subsets of P
and GL,-stable closed subsets of P,.

(Show also that ¥ C P, closed and GL,-stable implies that the
image of ¥ in P(K") 1s closed.)
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Given a Vec-closed subset X C P, set X, := lim_, X(K") C P..

Exercise
The map X — X 1s a bijection between Vec-closed subsets of P
and GL,-stable closed subsets of P,.

(Show also that ¥ C P, closed and GL,-stable implies that the
image of ¥ in P(K") 1s closed.)

Leads to another reformulation of the main theorem.

Theorem
For each GL,-stable, closed subset ¥ C P, there exists polyno-

mials fi,..., fx € K[Pw] suchthat Y = (\,eqr, () V(&)
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P(V) := {symmetric tensors inV ® V} = I'>V, assume char K = 0

P., = f{infinite-by-infinite symmetric matrices} with K[P,] =
K{xi;1/{(xij — xji)ij)-
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n]/(x;; — x;;) homogeneous of minimal degree vanishing on X. Af-
ter acting with GL,,, may assume that x,,, appears in f.
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P(V) := {symmetric tensors inV ® V} = I'>V, assume char K = 0

P., = f{infinite-by-infinite symmetric matrices} with K[P,] =
K{xi;1/{(xij — xji)ij)-

Let be X C P, closed and GL-stable and f € 7(X) N K[x;jli, j <
n]/(x;; — x;;) homogeneous of minimal degree vanishing on X. Af-
ter acting with GL,,, may assume that x,,, appears in f.

Compute action of E, ;1 € gl by (1 +tE, n+1)A(1 + tE, 1)t
mod #* ~» action is by Y ; X1 ]a -+ 3 Xl a on K[P.,]. Now

~/

f = E}%n .1 also vanishes on X. Have f = xn+1,n+1h + r where
h € K[x;; | i, j < n]and r does not involve x,.1 +1.



Warm-up: symmetric matrices 13

Have found f = Xp+1n+1h + r € 1(X) with supports of 4 and r as
follows:

Xn+1,n+1
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Have found f = X,41 010 + r € T(X) with supports of 4 and r as
follows:

Xn+1,n+1

8Xn+1,n+1

For any g € GL, fixing ey, ..., e, find gf = (gXps1041)h + g €
I (X). So on the locus in X where h +# 0, we can express the yellow
coordinates in the green coordinates.



Warm-up: symmetric matrices 13

Have found f = X,41 010 + r € T(X) with supports of 4 and r as
follows:

Xn+1,n+1

8Xn+1,n+1

For any g € GL, fixing ey, ..., e, find gf = (gXps1041)h + g €
I (X). So on the locus in X where h +# 0, we can express the yellow
coordinates in the green coordinates.

Decompose X = Y U Z where Y = X N (,eqr, V(gh) and
Z = Ugear. &X \ V().
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Now:

e on Y, a lower-degree polynomial vanishes (namely, /), so it 1s
Noetherian by induction;

e X \ V(h) 1s 1somorphic to a subset in the limit of a smaller poly-
nomial functor, namely, V — (I'?’K") ® (K" ® V) ® (V ® K") with
the green coordinates. So it 1s Noetherian by induction.

We conclude that X 1s Noetherian. O
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Now:

e on Y, a lower-degree polynomial vanishes (namely, /), so it 1s
Noetherian by induction;

e X \ V(h) 1s 1somorphic to a subset in the limit of a smaller poly-
nomial functor, namely, V — (I'?’K") ® (K" ® V) ® (V ® K") with
the green coordinates. So it 1s Noetherian by induction.

We conclude that X 1s Noetherian. O

Note that the smaller functor 1s obtained from P by taking the quo-
tient of P(K"® V) = I?’K") @ (K" V)® (Ve K")® (I'*V) by the
top-degree part V.
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Now:

e on Y, a lower-degree polynomial vanishes (namely, &), so it 1s
Noetherian by induction;

e X \ V(h) 1s 1somorphic to a subset in the limit of a smaller poly-
nomial functor, namely, V — (I'?’K") ® (K" ® V) ® (V ® K") with
the green coordinates. So it 1s Noetherian by induction.

We conclude that X 1s Noetherian. O

Note that the smaller functor 1s obtained from P by taking the quo-
tient of P(K"® V) = I?’K") @ (K" V)® (Ve K")® (I'*V) by the
top-degree part V.

The general case will be similar; we’ll assume deg P > 0 as
degree-zero case follows from Hilbert’s basis theorem.
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The shift functor
U a fixed vector space ~» Shy; : Vec — Vee, V- UV

Exercise
If P 1s a polynomial functor of degree d, then P o Shy; 1s also a
polynomial functor of degree d, and P; = (P o Shy),.
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Note that (P o Sy),. is larger than P, for e < d.



15

The shift functor
U a fixed vector space ~» Shy; : Vec — Vee, V- UV

Exercise
If P 1s a polynomial functor of degree d, then P o Shy; 1s also a
polynomial functor of degree d, and P; = (P o Shy),.

Example
Shy(V) =S4U e V)= P! S U SV =8V+-..

Note that (P o Sy),. is larger than P, for e < d.

Remark
In the proof for S?, we used U = K".
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A lexicographic order
Define Q < P if Q # P and for the largest e with Q, # P, the
former 1s a homomorphic image of the latter.

By [FS], a well-founded order on finite-degree polynomial func-
tors. Do 1induction, and assume the theorem holds for all O < P.
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A lexicographic order
Define Q < P if Q # P and for the largest e with Q, # P, the
former 1s a homomorphic image of the latter.

By [FS], a well-founded order on finite-degree polynomial func-
tors. Do 1induction, and assume the theorem holds for all O < P.

Splitting of a term of highest degree
Let R C P, be an irreducible subfunctor, and 7 : P —» QO := P/R.

O < P but we’ll need other functors smaller than P

For X C P let Xy be the closure of the image in . Think of

X as a variety over Xp. Accordingly, Jx(V) 1s the 1deal of X in
Kx(V)" 1 (Xo(V))] = K[Xp(V)] ® K[R(V)] (non-canonically).
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Another well-founded order
Define 0x € {1, 2, ..., oo} as the minimal degree of a nonzero poly-
nomial in £ x(V) over all V. (6x > 07)

For X, Y C PS&YX > YleQ D) YQ OI'XQ = YQ andéX > 5y. As
0 < P, O 1s Noetherian by the induction hypothesis, so this 1s a
well-founded order.
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well-founded order.

Second induction hypothesis
All Y < X are Noetherian.

Now 1f 0x = co, X Noetherian. So assume 0x € Z-;.
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Another well-founded order
Define 0x € {1, 2, ..., oo} as the minimal degree of a nonzero poly-

nomial in Z x(V) over all V. (0x > 07?)

For X, Y C PS&YX > YleQ D) YQ OI'XQ = YQ andéX > 5y. As
0 < P, O 1s Noetherian by the induction hypothesis, so this 1s a
well-founded order.

Second induction hypothesis
All Y < X are Noetherian.

Now 1f 0x = co, X Noetherian. So assume 0x € Z-;.

Let X 2 X; D X; D...chain of Vec-closed subsets of X.



Proof steps (char zero)

e Take f € 1 x(U) nonzero, homog of degree dx, dim U minimal
e Pick an rg € R(U) such that z := 0,, f 1s nonzero.
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e Take f € 1 x(U) nonzero, homog of degree 6x, dim U minimal
e Pick an rg € R(U) such that z := 0,, f 1s nonzero.
e Define Y(V) :={ge X(V) | Vo :V — U, h(P(¢p)q) = 0}.

e Then either Yy C Xp orelse Yp = Xp and 0y < degh < d0x,s0Y
1S Noetherian, so (Y N X;); stabilises.



Proof steps (char zero) 18

e Take f € 1 x(U) nonzero, homog of degree 6x, dim U minimal
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e Prove that the projection P* — Q' restricts to a closed
embedding Z' — B, where B is the basic open set given by h # 0.
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e Take f € 1 x(U) nonzero, homog of degree 6x, dim U minimal
e Pick an rg € R(U) such that z := 0,, f 1s nonzero.

e Define Y(V) i={ge X(V) | Vo :V — U, h(P(p)g) = 0}.

e Then either Yy C Xp orelse Yp = Xp and 6y < degh < dx,s0Y
1S Noetherian, so (Y N X;); stabilises.

e Define Z(V) := X(V) \ Y(V). Goal: (Z N X;); also stabilises.

e Define X’ := X o Shy, P’ := Po Shy; then Q" := P’/R < P, so
('’ 1s Noetherian.

e Define Z'(V) i={g e X'(V) | h(P(rry)q) # 0} CZ(U V).

e Prove that the projection P* — Q' restricts to a closed
embedding Z' — B, where B is the basic open set given by h # 0.

e Hence (Z’ N (X; o Shy)); stabilises, and hence (Z N X;);
stabilises. O
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Theorem
Every polynomial functor P 1s topologically Noetherian.

e For X C P find an equation f of smallest degree vanishing on it
e Set h := 0,, f for some ry in an irreducible subfunctor R in the
top-degree part of P.

e Split X = Y U Z, where Y i1s defined by 2 = 0 and Z embeds in a
smaller polynomial functor Q’.

e Y 1s Noetherian since deg i < deg f and Z because it sits in Q’.
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e In positive characteristic, might have 0,, f = O for all ro € R(U).
In that case, f 1s a polynomial 1n the p®-th powers of the coordi-
nates on R(U), with coethicients from K[X,(U)]. Take ¢ maximal
with this property ~» argument doesn’t change much.
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nates on R(U), with coethicients from K[X,(U)]. Take ¢ maximal
with this property ~» argument doesn’t change much.

e [DES] prove Noetherianity of S but avoid characteristics 2, 3. 1
think this is because the composition series of S is longer in those
cases.
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e In positive characteristic, might have 0,, f = O for all ro € R(U).
In that case, f 1s a polynomial 1n the p®-th powers of the coordi-
nates on R(U), with coethicients from K[X,(U)]. Take ¢ maximal
with this property ~» argument doesn’t change much.

e [DES] prove Noetherianity of S but avoid characteristics 2, 3. 1
think this is because the composition series of S is longer in those
cases.

e In characteristic zero, can find a morphism ¢ : B — P such that
L o 7, 18 the identity on Z" (ongoing work with Bik-Eggermont-
Snowden); see Eggermont’s talk on strength.
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Will discuss:
e vary the functor, e.g. A V with varying p
e an algorithmic proof of Stillman’s conjecture.
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Does every increasing chain of GL,-stable ideals in K[x;;] under
the action (g, x) — gxg! stabilise?
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Will discuss:
e vary the functor, e.g. A V with varying p
e an algorithmic proof of Stillman’s conjecture.

Difficult:
Is the contravariant functor Vec — {K-algebras}, V — K[P(V)]
Noetherian?

For instance:
Does every increasing chain of GL,-stable ideals in K[x;;] under
the action (g, x) — gxg! stabilise?

Probably much easier:
Is there a Z-version of the topological results discussed here?



Pliicker varieties 2

This 1s an example of varying the polynomial functor.

Definition

A Pliicker variety is a sequence X, € A?,p=0,1,2,3,... of Vec-
closed subsets such that for all V € Vec and x € V*, contraction
with v maps X,(V) into X,,_;(V).
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This 1s an example of varying the polynomial functor.

Definition

A Pliicker variety is a sequence X, € A?,p=0,1,2,3,... of Vec-
closed subsets such that for all V € Vec and x € V*, contraction
with v maps X,(V) into X,,_;(V).

Examples
Grassmannians, tangential/secant varieties to Grassmanians,
joins, ...

Theorem (D-Eggermont)
Every Pliicker variety 1s defined set-theoretically by equations of
bounded degree (uniform in p and V).



Pliicker varieties 23

Proof sketch: take py and U and a minimal-degree f on AP U
that vanishes on X,,. Using the same technique as in the proof
for polynomial functors, find a derivative A, and let ¥ C X be
the Pliicker subvariety defined by 4 = 0. Prove that any Pliicker
subvariety X* C X is uniquely determined by X' N ¥, X{,..., X, .
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Proof sketch: take py and U and a minimal-degree f on AP U
that vanishes on X,,. Using the same technique as in the proof
for polynomial functors, find a derivative A, and let ¥ C X be
the Pliicker subvariety defined by 4 = 0. Prove that any Pliicker
subvariety X* C X is uniquely determined by X' N ¥, X{,..., X, .

Remark: Robert Laudone has a much better theorem for secants
of Grassmannians, which implies that their 1deals and higher syzy-
gies are generated in bounded degree.



Stillman’s conjecture 24

Theorem (Ananyan-Hochster, Erman-Sam-Snowden)
Fix dy, ..., d;. Then there exists an N such that for any field K and

any n and any homogeneous fi,..., fr € K[x,...,x,] of degrees
di,...,d; the projective dimension of (fi,..., fi) 1s at most V.

Long history: arbitrary number of quadrics (A-H), three cubics
(Engheta), ...
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Theorem (Ananyan-Hochster, Erman-Sam-Snowden)

Fix dy, ..., d;. Then there exists an N such that for any field K and
any n and any homogeneous fi,..., fr € K[x,...,x,] of degrees
di,...,d; the projective dimension of (fi,..., fi) 1s at most V.

Long history: arbitrary number of quadrics (A-H), three cubics
(Engheta), ...

Theorem (D-f.ason-Leykin)
There exists a finite algorithm that on input d4, ..., d; outputs all
possible generic greviex initial ideals of such 1deals.

e implies the previous theorem, since projective dimension 1s
preserved under passing to (generic) grevlex initial ideals
e proof 1s similar in spirit to, and uses results of, E-S-S.
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Construction (generic initial ideals)

e et < be a monomial order on K|[x,...,x,] and let I C
K[xi,...,x,] ahomogeneous ideal.

e Write in./ for the ideal spanned by the leading (largest) mono-
mials of elements of /1.

e The set of g € GL,, where in_g/ 1s a fixed 1deal 1s a constructible
set, and finitely many of these partition GL,,.

e So one of these 1s dense; this leading 1deal 1s called the generic
leading 1deal of 7 w.r.t. <
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Construction (generic initial ideals)

e et < be a monomial order on K|[x,...,x,] and let I C
K[xi,...,x,] ahomogeneous ideal.

e Write in./ for the ideal spanned by the leading (largest) mono-
mials of elements of /1.

e The set of g € GL,, where in_g/ 1s a fixed 1deal 1s a constructible
set, and finitely many of these partition GL,,.

e So one of these 1s dense; this leading 1deal 1s called the generic
leading ideal of I w.r.t. <

Definition (grevlex)
We use < on K[x1,...,x,] defined by x* < ¥’ if 3. a; < >, B; or
= and then the last nonzero element of « — 8 1s negative.

2 2 3 2 2 2

So x> > X{X2 > X1X5 > X5 > X7X3 > X{XpX3 > X5X3 > X[X3 > ...

1



A big polynomial ring

Definition

R = Rg = the ring of bounded-degree series 1n xq, x», x3, . ..

So a homogeneous cubic element of R looks like
3 2 2 3 2
apx; + appx{xe + apXx1x; + axox, +ayjzxyxs + -

26
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Assume K 1s perfect. Then R 1s isomorphic to a polynomial ring
(1n uncountably many variables).
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Definition
R = Rg = the ring of bounded-degree series 1n xq, x», x3, . ..

So a homogeneous cubic element of R looks like
3 2 2 3 2
apx; + appx{xe + apXx1x; + axox, +ayjzxyxs + -

Theorem (Erman-Sam-Snowden)
Assume K 1s perfect. Then R 1s isomorphic to a polynomial ring
(1n uncountably many variables).

Let fi,..., fx € R be homogeneous. Define
m, : R — K[x1,...,x,] the projection.

Proposition (using Erman-Sam-Snowden)

The map Syz(ﬂ-n+1(f1)a e 7Tn+1(fk)) — Syz(ﬂ'n(fl), e ﬂn(fk)) iS
surjective for n > 0.



Grevlex Grobner bases in R 27

Proposition
Let fi,..., fr € R. Then (fi,..., fr) has a finite grevlex Grobner
basis.

(Run Buchberger’s algorithm for the truncations ,,(f1), ..., 7, (fr)
dragging along but ignoring the terms divisible by x; with i > n
until the computation 1s finished, and then increase n by one. By
the proposition on syzygies, this terminates.)
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Proof sketch of the theorem on generic initial ideals

e Start running the Buchberger algorithm, but now regard the coet-
ficients of the f; as indeterminates (coordinates on S “hey...pS fi’i).
e Whenever you need to decide 1f some polynomial p in these co-
eflicients 1s zero, branch the computation 1nto:

e An open branch where p 1s assumed nonzero (localise);

e A closed branch, where the entire GL.-orbit of p 1s set to zero.
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Proof sketch of the theorem on generic initial ideals

e Start running the Buchberger algorithm, but now regard the coet-
ficients of the f; as indeterminates (coordinates on S “hey...pS fi’i).
e Whenever you need to decide 1f some polynomial p in these co-
eflicients 1s zero, branch the computation 1nto:

e An open branch where p 1s assumed nonzero (localise);

e A closed branch, where the entire GL.-orbit of p 1s set to zero.

e By Noetherianity of S @ --- @ S %, in each path in this
computation, only finitely many closed branches are followed.

e Hence all paths eventually only follow open branches. But then
they are performing a Grobner basis computation in R; for some
extension field L of K, hence they terminate.

Hence the entire tree of computations is finite. O



Summarising 29

e A finite-degree polynomial functor 1s topologically Noetherian.

e This ensures finiteness results for classes of algebraic varieties,
e.g. algebro-statistical models.

e It also has applications to commutative algebra.
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e A finite-degree polynomial functor 1s topologically Noetherian.

e This ensures finiteness results for classes of algebraic varieties,
e.g. algebro-statistical models.

e It also has applications to commutative algebra.

e But it would be much better to have ideal-theoretic Noetherianity
for polynomial functors.

e Completely new 1deas will be needed there. E.g. the cur-
rent 1deas also show that the dual infinite wedge 1s topologically
Noetherian, but it certainly 1sn’t ideal-theoretically Noetherian.
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e A finite-degree polynomial functor 1s topologically Noetherian.

e This ensures finiteness results for classes of algebraic varieties,
e.g. algebro-statistical models.

e It also has applications to commutative algebra.

e But it would be much better to have ideal-theoretic Noetherianity
for polynomial functors.

e Completely new 1deas will be needed there. E.g. the cur-
rent 1deas also show that the dual infinite wedge 1s topologically
Noetherian, but it certainly 1sn’t ideal-theoretically Noetherian.

Thank you!
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