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2The main theorem

Main Theorem
Let X1 ⊇ X2 ⊇ . . . closed subsets of a polynomial functor P.
Then ∃i0 : Xi0 = Xi0+1 = . . .

equivalently:

Main Theorem
For any closed subset X of P there is a fin-dim vector space U such
that for each V , X(V) ⊆ P(V) equals

⋂
ϕ∈Hom(V,U) P(ϕ)−1X(U).
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Example
Let P(V) = V⊗3 and X(V) = {v1 ⊗ A23 + v2 ⊗ A13}, a subset of the
tensors of slice rank ≤ 2.

+
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Example
Let P(V) = V⊗3 and X(V) = {v1 ⊗ A23 + v2 ⊗ A13}, a subset of the
tensors of slice rank ≤ 2.

+

X(V) is closed (notes by Tao-Sawin), and for ϕ : V → W have
P(ϕ)(X(V)) ⊆ X(W). Theorem implies X(V) is defined by equa-
tions of bounded degree independent of V .
In fact, degrees 3 and 6 suffice (Oosterhof)—set-theoretically.

Question: also ideal-theoretically?



4Polynomial functors

Setting
K an infinite field
Vec the category of finite-dimensional K-vector spaces

Definition
P : Vec → Vec is polynomial of degree ≤ d if P : Hom(V,W) →
Hom(P(V), P(W)) is polynomial of degree ≤ d for all V,W.



4Polynomial functors

Setting
K an infinite field
Vec the category of finite-dimensional K-vector spaces

Definition
P : Vec → Vec is polynomial of degree ≤ d if P : Hom(V,W) →
Hom(P(V), P(W)) is polynomial of degree ≤ d for all V,W.

Examples
• P(V) = a fixed U, of degree 0
• P(V) = V , of degree 1
• P(V) = V⊗d with P(ϕ)v1 ⊗ · · · ⊗ vd = (ϕv1) ⊗ · · · ⊗ (ϕvd)
• P(V) = S dV = V⊗d/〈{v1 ⊗ · · · ⊗ vd − vπ(1) ⊗ · · · ⊗ vπ(d)}〉

• char K = p > 0, P(V) = S p(V)/〈 f p | f ∈ V〉K
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5Some background

Polynomial functors P:
• behave like univariate polynomials
• can be added (direct sum) and multiplied (tensor product)
• admit a homogeneous decomposition P = P0 ⊕ · · · ⊕ Pd with
Pe(V) = {q ∈ P(V) | ∀t ∈ K : P(t1V )q = teq}

Lemma (Friedlander-Suslin) (we’ll use this)
For fixed d and U ∈ Vec with dim U ≥ d the map
{poly functors of deg ≤ d} → {poly GL(U)-modules of deg ≤ d},
P 7→ P(U) is an equivalence of Abelian categories.

Theorem (we won’t use this)
In char 0, Schur functors S λ(V) := HomS d (Uλ,V⊗d), λ ` d form a
basis of the Abelian category of polynomial functors.



6Quasi-inverse in Friedlander-Suslin’s lemma

U a finite-dimensional vector space
µ : End(U) × End(U)→ End(U) multiplication
µ∗ : K[End(U)]≤d → K[End(U)]≤d ⊗ K[End(U)]≤d comult

A := K[End(U)]∗
≤d associative algebra with multiplication (x, y) 7→

(x ⊗ y) ◦ µ∗; natural map End(U)→ A is algebra homomorphism.
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6Quasi-inverse in Friedlander-Suslin’s lemma

U a finite-dimensional vector space
µ : End(U) × End(U)→ End(U) multiplication
µ∗ : K[End(U)]≤d → K[End(U)]≤d ⊗ K[End(U)]≤d comult

A := K[End(U)]∗
≤d associative algebra with multiplication (x, y) 7→

(x ⊗ y) ◦ µ∗; natural map End(U)→ A is algebra homomorphism.

For a polynomial GL(U)-module M of degree ≤ d, get a map
A ⊗ M → M  bijection between polynomial GL(U)-modules
of degree ≤ d and A-modules.

For a vector space V , K[Hom(U,V)]∗
≤d is a right A-module.

Map back sends M to V 7→ K[Hom(U,V)]∗
≤d ⊗A M.



7Subvarieties of polynomial functors

P a functor Vec→ Top, where P(V) has the Zariski topology

Definition
A Vec-closed subset X of P assigns to each V a closed subset
X(V) ⊆ P(V), such that for all ϕ : V → W the map P(ϕ) maps
X(V) into X(W). (So I(X(W)) pulls back into I(X(V)).)
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P a functor Vec→ Top, where P(V) has the Zariski topology

Definition
A Vec-closed subset X of P assigns to each V a closed subset
X(V) ⊆ P(V), such that for all ϕ : V → W the map P(ϕ) maps
X(V) into X(W). (So I(X(W)) pulls back into I(X(V)).)

Examples
• Segre: X(V) = {v1 ⊗ · · · ⊗ vd} ⊆ V⊗d

• Veronese: X(V) = {v⊗d} ⊆ ΓdV
• joins (X + Y)(V) := X(V) + Y(V), tangential varieties, ∪, ∩, etc.

Main Theorem (Noetherianity for polynomial functors)
In a polynomial functor P of finite degree, any chain X1 ⊇ X2 ⊇ . . .
of Vec-closed subsets stabilises: Xi0 = Xi0+1 = . . . for some i0.



8Consequences and special cases

Known before
• degree 0 (finite-dimensional vector spaces, Hilbert, 1890)
• degree 1 (Cohen 1967)
• degree ≤ 2 (tuples of matrices, Eggermont 2014)
• for S 3V (cubics, Derksen-Eggermont-Snowden 2016)
• much stronger statement in char 0 for S 2V (Abeasis 1980,
Nagpal-Sam-Snowden 2015)
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Xk := X1 + · · · + X1 tensors of slice rank ≤ k
In fact, no closure is needed (Tao-Sawin).



8Consequences and special cases

Known before
• degree 0 (finite-dimensional vector spaces, Hilbert, 1890)
• degree 1 (Cohen 1967)
• degree ≤ 2 (tuples of matrices, Eggermont 2014)
• for S 3V (cubics, Derksen-Eggermont-Snowden 2016)
• much stronger statement in char 0 for S 2V (Abeasis 1980,
Nagpal-Sam-Snowden 2015)

Slice rank revisited
X1(V) := {T ∈ V⊗d | ∃i ∈ [d], v ∈ V, S ∈

⊗
j,i V : T = v ⊗ S }

Xk := X1 + · · · + X1 tensors of slice rank ≤ k
In fact, no closure is needed (Tao-Sawin).
The Main Theorem implies: Xk(V) is defined set-theoretically by
equations of bounded degree independent of V .



9Consequences and special cases

Twisted commutative algebras
P contravariant functor V 7→ K[P(V)] from Vec to K-algebras

Over K = C, this is a twisted commutative algebra (Sam-
Snowden). The Main Theorem implies that finitely generated tcas
are topologically Noetherian. Ring-theoretically remains open.



9Consequences and special cases

Twisted commutative algebras
P contravariant functor V 7→ K[P(V)] from Vec to K-algebras

Over K = C, this is a twisted commutative algebra (Sam-
Snowden). The Main Theorem implies that finitely generated tcas
are topologically Noetherian. Ring-theoretically remains open.

Variants of Stillman’s conjecture [Erman-Sam-Snowden]
Let c be any natural number, and fix degrees d1, . . . , dk. Then the
number of codim-c linear subspaces of Pn contained in a projec-
tive variety defined by k polynomials of degrees d1, . . . , dk is either
infinite or at most some number which doesn’t depend on n.

For k = 1, d1 = 3, c = 2, N is at least 27:

(Uses the main theorem for
⊕k

i=1 S di (V).
A single non-rigid such space already counts as∞.)



10Limits

For a polynomial functor P define P∞ := lim←n P(Kn). This is
dual to the countable-dimensional space limn→ P(Kn)∗, whose ele-
ments we think of as coordinates on P∞. We give P∞ the Zariski-
topology and write K[P∞] for the coordinate ring.
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For a polynomial functor P define P∞ := lim←n P(Kn). This is
dual to the countable-dimensional space limn→ P(Kn)∗, whose ele-
ments we think of as coordinates on P∞. We give P∞ the Zariski-
topology and write K[P∞] for the coordinate ring.

Example
• For P(V) = V , P∞ = KN with coordinates x1, x2, . . ., and GL∞
acts by matrix-vector multiplication.
• For P(V) = V ⊗ V , P∞ = KN×N with coordinates xi j, and GL∞
acts by (g, A) 7→ gAgT .
• For P(V) = S 3V , P∞ is the space of infinite cubics a111x3

1 +

a112x2
1x2+· · ·+ai jk xix jxk and GL∞ acts by coordinate substitutions.

The group GL∞ :=
⋃

GLn acts on P∞ and its space of coordinates,
by homeomorphisms.

1
g

. . .



11Limits

Given a Vec-closed subset X ⊆ P, set X∞ := lim←n X(Kn) ⊆ P∞.

Exercise
The map X 7→ X∞ is a bijection between Vec-closed subsets of P
and GL∞-stable closed subsets of P∞.

(Show also that Y ⊆ P∞ closed and GL∞-stable implies that the
image of Y in P(Kn) is closed.)



11Limits

Given a Vec-closed subset X ⊆ P, set X∞ := lim←n X(Kn) ⊆ P∞.

Exercise
The map X 7→ X∞ is a bijection between Vec-closed subsets of P
and GL∞-stable closed subsets of P∞.

(Show also that Y ⊆ P∞ closed and GL∞-stable implies that the
image of Y in P(Kn) is closed.)

Leads to another reformulation of the main theorem:

Theorem
For each GL∞-stable, closed subset Y ⊆ P∞ there exists polyno-
mials f1, . . . , fk ∈ K[P∞] such that Y =

⋂
g∈GL∞

⋂
i V(g fi).
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P(V) := {symmetric tensors inV ⊗ V} = Γ2V , assume char K = 0

P∞ = {infinite-by-infinite symmetric matrices} with K[P∞] =

K[xi j]/〈(xi j − x ji)i, j〉.
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n]/(xi j− x ji) homogeneous of minimal degree vanishing on X. Af-
ter acting with GLn, may assume that xnn appears in f .
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P(V) := {symmetric tensors inV ⊗ V} = Γ2V , assume char K = 0

P∞ = {infinite-by-infinite symmetric matrices} with K[P∞] =

K[xi j]/〈(xi j − x ji)i, j〉.

Let be X ⊆ P∞ closed and GL∞-stable and f ∈ I(X) ∩ K[xi j|i, j ≤
n]/(xi j− x ji) homogeneous of minimal degree vanishing on X. Af-
ter acting with GLn, may assume that xnn appears in f .

Compute action of En,n+1 ∈ gl∞ by (1 + tEn,n+1)A(1 + tEn,n+1)T

mod t2 action is by
∑

j xn+1, j
∂

∂xn, j
+
∑

i xi,n+1
∂

∂xi,n
on K[P∞]. Now

f̃ := E2
n,n+1 f also vanishes on X. Have f̃ = xn+1,n+1h + r where

h ∈ K[xi j | i, j ≤ n] and r does not involve xn+1,n+1.



13Warm-up: symmetric matrices

Have found f̃ = xn+1,n+1h + r ∈ I(X) with supports of h and r as
follows:

x11

xnn
h r

xn+1,n+1
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Have found f̃ = xn+1,n+1h + r ∈ I(X) with supports of h and r as
follows:

x11

xnn
h r

xn+1,n+1

For any g ∈ GL∞ fixing e1, . . . , en find g f̃ = (gxn+1,n+1)h + gr ∈
I(X). So on the locus in X where h , 0, we can express the yellow
coordinates in the green coordinates.

gr

gxn+1,n+1



13Warm-up: symmetric matrices

Have found f̃ = xn+1,n+1h + r ∈ I(X) with supports of h and r as
follows:

x11

xnn
h r

xn+1,n+1

For any g ∈ GL∞ fixing e1, . . . , en find g f̃ = (gxn+1,n+1)h + gr ∈
I(X). So on the locus in X where h , 0, we can express the yellow
coordinates in the green coordinates.

gr

gxn+1,n+1

Decompose X = Y t Z where Y = X ∩
⋂

g∈GL∞ V(gh) and
Z =
⋃

g∈GL∞ g(X \ V(h)).



14Warm-up: symmetric matrices

Now:
• on Y , a lower-degree polynomial vanishes (namely, h), so it is
Noetherian by induction;
• X \ V(h) is isomorphic to a subset in the limit of a smaller poly-
nomial functor, namely, V 7→ (Γ2Kn) ⊕ (Kn ⊗ V) ⊕ (V ⊗ Kn) with
the green coordinates. So it is Noetherian by induction.

We conclude that X is Noetherian. �
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14Warm-up: symmetric matrices

Now:
• on Y , a lower-degree polynomial vanishes (namely, h), so it is
Noetherian by induction;
• X \ V(h) is isomorphic to a subset in the limit of a smaller poly-
nomial functor, namely, V 7→ (Γ2Kn) ⊕ (Kn ⊗ V) ⊕ (V ⊗ Kn) with
the green coordinates. So it is Noetherian by induction.

We conclude that X is Noetherian. �

Note that the smaller functor is obtained from P by taking the quo-
tient of P(Kn ⊕ V) = (Γ2Kn) ⊕ (Kn ⊗ V) ⊕ (V ⊕ Kn) ⊕ (Γ2V) by the
top-degree part Γ2V .

The general case will be similar; we’ll assume deg P > 0 as
degree-zero case follows from Hilbert’s basis theorem.



15Proof ingredients

The shift functor
U a fixed vector space ShU : Vec→ Vec,V 7→ U ⊕ V

Exercise
If P is a polynomial functor of degree d, then P ◦ ShU is also a
polynomial functor of degree d, and Pd � (P ◦ ShU)d.
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Note that (P ◦ S U)e is larger than Pe for e < d.



15Proof ingredients

The shift functor
U a fixed vector space ShU : Vec→ Vec,V 7→ U ⊕ V

Exercise
If P is a polynomial functor of degree d, then P ◦ ShU is also a
polynomial functor of degree d, and Pd � (P ◦ ShU)d.

Example
ShU(V) = S d(U ⊕ V) =

⊕d
e=0 S d−eU ⊗ S eV = S dV + · · ·

Note that (P ◦ S U)e is larger than Pe for e < d.

Remark
In the proof for S 2, we used U = Kn.
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A lexicographic order
Define Q ≺ P if Q � P and for the largest e with Qe � Pe the
former is a homomorphic image of the latter.

By [FS], a well-founded order on finite-degree polynomial func-
tors. Do induction, and assume the theorem holds for all Q ≺ P.
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A lexicographic order
Define Q ≺ P if Q � P and for the largest e with Qe � Pe the
former is a homomorphic image of the latter.

By [FS], a well-founded order on finite-degree polynomial func-
tors. Do induction, and assume the theorem holds for all Q ≺ P.

Splitting of a term of highest degree
Let R ⊆ Pd be an irreducible subfunctor, and π : P→ Q := P/R.

For X ⊆ P let XQ be the closure of the image in Q. Think of
X as a variety over XQ. Accordingly, IX(V) is the ideal of X in
K[π(V)−1(XQ(V))] � K[XQ(V)] ⊗ K[R(V)] (non-canonically).

Q ≺ P but we’ll need other functors smaller than P
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Another well-founded order
Define δX ∈ {1, 2, . . . ,∞} as the minimal degree of a nonzero poly-
nomial in IX(V) over all V . (δX > 0?)

For X,Y ⊆ P say X > Y if XQ ) YQ or XQ = YQ and δX > δY . As
Q ≺ P, Q is Noetherian by the induction hypothesis, so this is a
well-founded order.
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Another well-founded order
Define δX ∈ {1, 2, . . . ,∞} as the minimal degree of a nonzero poly-
nomial in IX(V) over all V . (δX > 0?)

For X,Y ⊆ P say X > Y if XQ ) YQ or XQ = YQ and δX > δY . As
Q ≺ P, Q is Noetherian by the induction hypothesis, so this is a
well-founded order.

Second induction hypothesis
All Y < X are Noetherian.

Now if δX = ∞, X Noetherian. So assume δX ∈ Z≥1.

Let X ⊇ X1 ⊇ X2 ⊇ . . . chain of Vec-closed subsets of X.
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• Pick an r0 ∈ R(U) such that h := ∂r0 f is nonzero.
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embedding Z′ → B, where B is the basic open set given by h , 0.
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• Take f ∈ IX(U) nonzero, homog of degree δX , dim U minimal
• Pick an r0 ∈ R(U) such that h := ∂r0 f is nonzero.

• Define Y(V) := {q ∈ X(V) | ∀ϕ : V → U, h(P(ϕ)q) = 0}.
• Then either YQ ( XQ or else YQ = XQ and δY ≤ deg h < δX , so Y
is Noetherian, so (Y ∩ Xi)i stabilises.
• Define Z(V) := X(V) \ Y(V). Goal: (Z ∩ Xi)i also stabilises.
• Define X′ := X ◦ ShU , P′ := P ◦ ShU ; then Q′ := P′/R ≺ P, so
Q′ is Noetherian.
• Define Z′(V) := {q ∈ X′(V) | h(P(πU)q) , 0} ⊆ Z(U ⊕ V).
• Prove that the projection P′ → Q′ restricts to a closed
embedding Z′ → B, where B is the basic open set given by h , 0.
• Hence (Z′ ∩ (Xi ◦ ShU))i stabilises, and hence (Z ∩ Xi)i

stabilises. �



19Recap

Theorem
Every polynomial functor P is topologically Noetherian.

• For X ⊆ P find an equation f of smallest degree vanishing on it
• Set h := ∂r0 f for some r0 in an irreducible subfunctor R in the
top-degree part of P.
• Split X = Y ∪ Z, where Y is defined by h = 0 and Z embeds in a
smaller polynomial functor Q′.
• Y is Noetherian since deg h < deg f and Z because it sits in Q′.



20Remarks

• In positive characteristic, might have ∂r0 f = 0 for all r0 ∈ R(U).
In that case, f is a polynomial in the pe-th powers of the coordi-
nates on R(U), with coefficients from K[XQ(U)]. Take e maximal
with this property argument doesn’t change much.
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• In positive characteristic, might have ∂r0 f = 0 for all r0 ∈ R(U).
In that case, f is a polynomial in the pe-th powers of the coordi-
nates on R(U), with coefficients from K[XQ(U)]. Take e maximal
with this property argument doesn’t change much.

• [DES] prove Noetherianity of S 3 but avoid characteristics 2, 3. I
think this is because the composition series of S 3 is longer in those
cases.

• In characteristic zero, can find a morphism ι : B′ → P such that
ι ◦ π′Q is the identity on Z′ (ongoing work with Bik-Eggermont-
Snowden); see Eggermont’s talk on strength.
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Will discuss:
• vary the functor, e.g.

∧p V with varying p
• an algorithmic proof of Stillman’s conjecture.

Difficult:
Is the contravariant functor Vec→ {K-algebras}, V 7→ K[P(V)]
Noetherian?

For instance:
Does every increasing chain of GL∞-stable ideals in K[xi j] under
the action (g, x) 7→ gxgT stabilise?

Probably much easier:
Is there a Z-version of the topological results discussed here?
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This is an example of varying the polynomial functor.

Definition
A Plücker variety is a sequence Xp ⊆

∧p, p = 0, 1, 2, 3, . . . of Vec-
closed subsets such that for all V ∈ Vec and x ∈ V∗, contraction
with v maps Xp(V) into Xp−1(V).
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This is an example of varying the polynomial functor.

Definition
A Plücker variety is a sequence Xp ⊆

∧p, p = 0, 1, 2, 3, . . . of Vec-
closed subsets such that for all V ∈ Vec and x ∈ V∗, contraction
with v maps Xp(V) into Xp−1(V).

Examples
Grassmannians, tangential/secant varieties to Grassmanians,
joins, . . .

Theorem (D-Eggermont)
Every Plücker variety is defined set-theoretically by equations of
bounded degree (uniform in p and V).



23Plücker varieties

Proof sketch: take p0 and U and a minimal-degree f on
∧p0 U

that vanishes on Xp0 . Using the same technique as in the proof
for polynomial functors, find a derivative h, and let Y ⊆ X be
the Plücker subvariety defined by h = 0. Prove that any Plücker
subvariety X′ ⊆ X is uniquely determined by X′ ∩ Y, X′0, . . . , X

′
p0

.
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Proof sketch: take p0 and U and a minimal-degree f on
∧p0 U

that vanishes on Xp0 . Using the same technique as in the proof
for polynomial functors, find a derivative h, and let Y ⊆ X be
the Plücker subvariety defined by h = 0. Prove that any Plücker
subvariety X′ ⊆ X is uniquely determined by X′ ∩ Y, X′0, . . . , X

′
p0

.

Remark: Robert Laudone has a much better theorem for secants
of Grassmannians, which implies that their ideals and higher syzy-
gies are generated in bounded degree.



24Stillman’s conjecture

Theorem (Ananyan-Hochster, Erman-Sam-Snowden)
Fix d1, . . . , dk. Then there exists an N such that for any field K and
any n and any homogeneous f1, . . . , fk ∈ K[x1, . . . , xn] of degrees
d1, . . . , dk the projective dimension of 〈 f1, . . . , fk〉 is at most N.

Long history: arbitrary number of quadrics (A-H), three cubics
(Engheta), . . .
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Theorem (Ananyan-Hochster, Erman-Sam-Snowden)
Fix d1, . . . , dk. Then there exists an N such that for any field K and
any n and any homogeneous f1, . . . , fk ∈ K[x1, . . . , xn] of degrees
d1, . . . , dk the projective dimension of 〈 f1, . . . , fk〉 is at most N.

Long history: arbitrary number of quadrics (A-H), three cubics
(Engheta), . . .

Theorem (D-Łasoń-Leykin)
There exists a finite algorithm that on input d1, . . . , dk outputs all
possible generic grevlex initial ideals of such ideals.

• implies the previous theorem, since projective dimension is
preserved under passing to (generic) grevlex initial ideals
• proof is similar in spirit to, and uses results of, E-S-S.



25Grevlex initial ideals

Construction (generic initial ideals)
• Let < be a monomial order on K[x1, . . . , xn] and let I ⊆
K[x1, . . . , xn] a homogeneous ideal.
• Write in<I for the ideal spanned by the leading (largest) mono-
mials of elements of I.
• The set of g ∈ GLn where in<gI is a fixed ideal is a constructible
set, and finitely many of these partition GLn.
• So one of these is dense; this leading ideal is called the generic
leading ideal of I w.r.t. <
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Construction (generic initial ideals)
• Let < be a monomial order on K[x1, . . . , xn] and let I ⊆
K[x1, . . . , xn] a homogeneous ideal.
• Write in<I for the ideal spanned by the leading (largest) mono-
mials of elements of I.
• The set of g ∈ GLn where in<gI is a fixed ideal is a constructible
set, and finitely many of these partition GLn.
• So one of these is dense; this leading ideal is called the generic
leading ideal of I w.r.t. <

Definition (grevlex)
We use < on K[x1, . . . , xn] defined by xα < xβ if

∑
i αi <

∑
i βi or

= and then the last nonzero element of α − β is negative.

So x3
1 > x2

1x2 > x1x2
2 > x3

2 > x2
1x3 > x1x2x3 > x2

2x3 > x1x2
3 > . . .
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Definition
R = RK = the ring of bounded-degree series in x1, x2, x3, . . .

So a homogeneous cubic element of R looks like
a111x3

1 + a112x2
1x2 + a122x1x2

2 + a222x3
2 + a113x2

1x3 + · · ·
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Definition
R = RK = the ring of bounded-degree series in x1, x2, x3, . . .

So a homogeneous cubic element of R looks like
a111x3

1 + a112x2
1x2 + a122x1x2

2 + a222x3
2 + a113x2

1x3 + · · ·

Theorem (Erman-Sam-Snowden)
Assume K is perfect. Then R is isomorphic to a polynomial ring
(in uncountably many variables).

Let f1, . . . , fk ∈ R be homogeneous. Define
πn : R→ K[x1, . . . , xn] the projection.

Proposition (using Erman-Sam-Snowden)
The map Syz(πn+1( f1), . . . , πn+1( fk))→ Syz(πn( f1), . . . , πn( fk)) is
surjective for n � 0.



27Grevlex Gröbner bases in R

Proposition
Let f1, . . . , fk ∈ R. Then 〈 f1, . . . , fk〉 has a finite grevlex Gröbner
basis.

(Run Buchberger’s algorithm for the truncations πn( f1), . . . , πn( fk)
dragging along but ignoring the terms divisible by xi with i > n
until the computation is finished, and then increase n by one. By
the proposition on syzygies, this terminates.)



28Proof of the D-L-L theorem

Proof sketch of the theorem on generic initial ideals
• Start running the Buchberger algorithm, but now regard the coef-
ficients of the fi as indeterminates (coordinates on S d1

∞ ⊕ · · · ⊕ S dk
∞).

•Whenever you need to decide if some polynomial p in these co-
efficients is zero, branch the computation into:
• An open branch where p is assumed nonzero (localise);
• A closed branch, where the entire GL∞-orbit of p is set to zero.
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Proof sketch of the theorem on generic initial ideals
• Start running the Buchberger algorithm, but now regard the coef-
ficients of the fi as indeterminates (coordinates on S d1

∞ ⊕ · · · ⊕ S dk
∞).

•Whenever you need to decide if some polynomial p in these co-
efficients is zero, branch the computation into:
• An open branch where p is assumed nonzero (localise);
• A closed branch, where the entire GL∞-orbit of p is set to zero.

• By Noetherianity of S d1 ⊕ · · · ⊕ S dk , in each path in this
computation, only finitely many closed branches are followed.
• Hence all paths eventually only follow open branches. But then
they are performing a Gröbner basis computation in RL for some
extension field L of K, hence they terminate.

Hence the entire tree of computations is finite. �
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• A finite-degree polynomial functor is topologically Noetherian.

• This ensures finiteness results for classes of algebraic varieties,
e.g. algebro-statistical models.

• It also has applications to commutative algebra.
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• A finite-degree polynomial functor is topologically Noetherian.

• This ensures finiteness results for classes of algebraic varieties,
e.g. algebro-statistical models.

• It also has applications to commutative algebra.

• But it would be much better to have ideal-theoretic Noetherianity
for polynomial functors.

• Completely new ideas will be needed there. E.g. the cur-
rent ideas also show that the dual infinite wedge is topologically
Noetherian, but it certainly isn’t ideal-theoretically Noetherian.

Thank you!
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