Polynomial functors: topological Noetherianity and applications

Jan Draisma
Universität Bern
and TU Eindhoven

Ann Arbor, August 2018

Main Theorem

Let $X_1 \supseteq X_2 \supseteq \dots$ closed subsets of a polynomial functor P.

Then
$$\exists i_0 : X_{i_0} = X_{i_0+1} = \dots$$

equivalently:

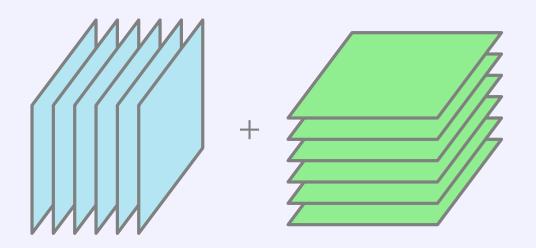
Main Theorem

For any closed subset X of P there is a fin-dim vector space U such that for each $V, X(V) \subseteq P(V)$ equals $\bigcap_{\varphi \in \text{Hom}(V,U)} P(\varphi)^{-1} X(U)$.

Example: slice rank

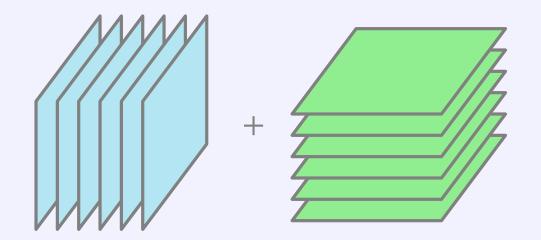
Example

Let $P(V) = V^{\otimes 3}$ and $X(V) = \{v_1 \otimes A_{23} + v_2 \otimes A_{13}\}$, a subset of the tensors of *slice rank* ≤ 2 .



Example

Let $P(V) = V^{\otimes 3}$ and $X(V) = \{v_1 \otimes A_{23} + v_2 \otimes A_{13}\}$, a subset of the tensors of *slice rank* ≤ 2 .



X(V) is closed (notes by Tao-Sawin), and for $\varphi:V\to W$ have $P(\varphi)(X(V))\subseteq X(W)$. Theorem implies X(V) is defined by equations of bounded degree independent of V.

In fact, degrees 3 and 6 suffice (Oosterhof)—set-theoretically.

Question: also ideal-theoretically?

Setting

K an infinite field

Vec the category of finite-dimensional *K*-vector spaces

Definition

 $P: \mathbf{Vec} \to \mathbf{Vec}$ is *polynomial* of degree $\leq d$ if $P: \mathrm{Hom}(V, W) \to \mathrm{Hom}(P(V), P(W))$ is polynomial of degree $\leq d$ for all V, W.

Setting

K an infinite field

Vec the category of finite-dimensional *K*-vector spaces

Definition

 $P: \mathbf{Vec} \to \mathbf{Vec}$ is *polynomial* of degree $\leq d$ if $P: \mathrm{Hom}(V, W) \to \mathrm{Hom}(P(V), P(W))$ is polynomial of degree $\leq d$ for all V, W.

Examples

- P(V) = a fixed U, of degree 0
- \bullet P(V) = V, of degree 1
- $P(V) = V^{\otimes d}$ with $P(\varphi)v_1 \otimes \cdots \otimes v_d = (\varphi v_1) \otimes \cdots \otimes (\varphi v_d)$
- $\bullet P(V) = S^d V = V^{\otimes d} / \langle \{v_1 \otimes \cdots \otimes v_d v_{\pi(1)} \otimes \cdots \otimes v_{\pi(d)} \} \rangle$
- char K = p > 0, $P(V) = S^p(V)/\langle f^p \mid f \in V \rangle_K$

• behave like univariate polynomials

- behave like univariate polynomials
- can be added (direct sum) and multiplied (tensor product)

- behave like univariate polynomials
- can be added (direct sum) and multiplied (tensor product)
- admit a homogeneous decomposition $P = P_0 \oplus \cdots \oplus P_d$ with $P_e(V) = \{q \in P(V) \mid \forall t \in K : P(t1_V)q = t^e q\}$

- behave like univariate polynomials
- can be added (direct sum) and multiplied (tensor product)
- admit a homogeneous decomposition $P = P_0 \oplus \cdots \oplus P_d$ with $P_e(V) = \{q \in P(V) \mid \forall t \in K : P(t1_V)q = t^e q\}$

Lemma (Friedlander-Suslin)

(we'll use this)

For fixed d and $U \in \mathbf{Vec}$ with dim $U \ge d$ the map $\{\text{poly functors of deg} \le d\} \rightarrow \{\text{poly GL}(U)\text{-modules of deg} \le d\},$ $P \mapsto P(U)$ is an equivalence of Abelian categories.

- behave like univariate polynomials
- can be added (direct sum) and multiplied (tensor product)
- admit a homogeneous decomposition $P = P_0 \oplus \cdots \oplus P_d$ with $P_e(V) = \{q \in P(V) \mid \forall t \in K : P(t1_V)q = t^e q\}$

Lemma (Friedlander-Suslin)

(we'll use this)

For fixed d and $U \in \mathbf{Vec}$ with dim $U \ge d$ the map $\{\text{poly functors of deg} \le d\} \rightarrow \{\text{poly GL}(U)\text{-modules of deg} \le d\},$ $P \mapsto P(U)$ is an equivalence of Abelian categories.

Theorem

(we won't use this)

In char 0, Schur functors $S_{\lambda}(V) := \operatorname{Hom}_{S_d}(U_{\lambda}, V^{\otimes d}), \lambda \vdash d$ form a basis of the Abelian category of polynomial functors.

U a finite-dimensional vector space

 $\mu : \operatorname{End}(U) \times \operatorname{End}(U) \to \operatorname{End}(U)$ multiplication

 $\mu^* : K[\operatorname{End}(U)]_{\leq d} \to K[\operatorname{End}(U)]_{\leq d} \otimes K[\operatorname{End}(U)]_{\leq d} \text{ comult}$

 $A := K[\operatorname{End}(U)]_{\leq d}^*$ associative algebra with multiplication $(x, y) \mapsto (x \otimes y) \circ \mu^*$; natural map $\operatorname{End}(U) \to A$ is algebra homomorphism.

U a finite-dimensional vector space

 $\mu : \operatorname{End}(U) \times \operatorname{End}(U) \to \operatorname{End}(U)$ multiplication

 $\mu^* : K[\operatorname{End}(U)]_{\leq d} \to K[\operatorname{End}(U)]_{\leq d} \otimes K[\operatorname{End}(U)]_{\leq d} \text{ comult}$

 $A := K[\operatorname{End}(U)]_{\leq d}^*$ associative algebra with multiplication $(x, y) \mapsto (x \otimes y) \circ \mu^*$; natural map $\operatorname{End}(U) \to A$ is algebra homomorphism.

For a polynomial GL(U)-module M of degree $\leq d$, get a map $A \otimes M \to M \rightsquigarrow$ bijection between polynomial GL(U)-modules of degree $\leq d$ and A-modules.

U a finite-dimensional vector space

 $\mu : \operatorname{End}(U) \times \operatorname{End}(U) \to \operatorname{End}(U)$ multiplication

 $\mu^* : K[\operatorname{End}(U)]_{\leq d} \to K[\operatorname{End}(U)]_{\leq d} \otimes K[\operatorname{End}(U)]_{\leq d} \text{ comult}$

 $A := K[\operatorname{End}(U)]_{\leq d}^*$ associative algebra with multiplication $(x, y) \mapsto (x \otimes y) \circ \mu^*$; natural map $\operatorname{End}(U) \to A$ is algebra homomorphism.

For a polynomial GL(U)-module M of degree $\leq d$, get a map $A \otimes M \to M \rightsquigarrow$ bijection between polynomial GL(U)-modules of degree $\leq d$ and A-modules.

For a vector space V, $K[\text{Hom}(U, V)]^*_{\leq d}$ is a *right A*-module.

Map back sends M to $V \mapsto K[\operatorname{Hom}(U, V)]_{\leq d}^* \otimes_A M$.

 $P \rightsquigarrow$ a functor **Vec** \rightarrow **Top**, where P(V) has the Zariski topology

Definition

A **Vec**-closed subset X of P assigns to each V a closed subset $X(V) \subseteq P(V)$, such that for all $\varphi : V \to W$ the map $P(\varphi)$ maps X(V) into X(W). (So I(X(W)) pulls back into I(X(V)).)

 $P \rightsquigarrow$ a functor **Vec** \rightarrow **Top**, where P(V) has the Zariski topology

Definition

A **Vec**-closed subset X of P assigns to each V a closed subset $X(V) \subseteq P(V)$, such that for all $\varphi : V \to W$ the map $P(\varphi)$ maps X(V) into X(W). (So I(X(W)) pulls back into I(X(V)).)

Examples

- Segre: $X(V) = \{v_1 \otimes \cdots \otimes v_d\} \subseteq V^{\otimes d}$
- Veronese: $X(V) = \{v^{\otimes d}\} \subseteq \Gamma^d V$
- joins (X + Y)(V) := X(V) + Y(V), tangential varieties, \cup , \cap , etc.

 $P \rightsquigarrow$ a functor **Vec** \rightarrow **Top**, where P(V) has the Zariski topology

Definition

A **Vec**-closed subset X of P assigns to each V a closed subset $X(V) \subseteq P(V)$, such that for all $\varphi : V \to W$ the map $P(\varphi)$ maps X(V) into X(W). (So I(X(W)) pulls back into I(X(V)).)

Examples

- Segre: $X(V) = \{v_1 \otimes \cdots \otimes v_d\} \subseteq V^{\otimes d}$
- Veronese: $X(V) = \{v^{\otimes d}\} \subseteq \Gamma^d V$
- joins (X + Y)(V) := X(V) + Y(V), tangential varieties, \cup , \cap , etc.

Main Theorem (Noetherianity for polynomial functors)

In a polynomial functor P of finite degree, any chain $X_1 \supseteq X_2 \supseteq \ldots$ of **Vec**-closed subsets stabilises: $X_{i_0} = X_{i_0+1} = \ldots$ for some i_0 .

Known before

- degree 0 (finite-dimensional vector spaces, Hilbert, 1890)
- degree 1 (Cohen 1967)
- degree ≤ 2 (tuples of matrices, Eggermont 2014)
- for S^3V (cubics, Derksen-Eggermont-Snowden 2016)
- much stronger statement in char 0 for S^2V (Abeasis 1980, Nagpal-Sam-Snowden 2015)

Known before

- degree 0 (finite-dimensional vector spaces, Hilbert, 1890)
- degree 1 (Cohen 1967)
- degree ≤ 2 (tuples of matrices, Eggermont 2014)
- for S^3V (cubics, Derksen-Eggermont-Snowden 2016)
- much stronger statement in char 0 for S^2V (Abeasis 1980, Nagpal-Sam-Snowden 2015)

Slice rank revisited

 $X_1(V) := \{T \in V^{\otimes d} \mid \exists i \in [d], v \in V, S \in \bigotimes_{j \neq i} V : T = v \otimes S\}$ $X_k := X_1 + \dots + X_1 \text{ tensors of } slice \ rank \leq k$ In fact, no closure is needed (Tao-Sawin).

Known before

- degree 0 (finite-dimensional vector spaces, Hilbert, 1890)
- degree 1 (Cohen 1967)
- degree ≤ 2 (tuples of matrices, Eggermont 2014)
- for S^3V (cubics, Derksen-Eggermont-Snowden 2016)
- much stronger statement in char 0 for S^2V (Abeasis 1980, Nagpal-Sam-Snowden 2015)

Slice rank revisited

 $X_1(V) := \{T \in V^{\otimes d} \mid \exists i \in [d], v \in V, S \in \bigotimes_{j \neq i} V : T = v \otimes S\}$ $X_k := X_1 + \dots + X_1 \text{ tensors of } slice \ rank \leq k$ In fact, no closure is needed (Tao-Sawin).

The Main Theorem implies: $X_k(V)$ is defined set-theoretically by equations of bounded degree independent of V.

Twisted commutative algebras

 $P \rightsquigarrow$ contravariant functor $V \mapsto K[P(V)]$ from **Vec** to *K*-algebras

Over $K = \mathbb{C}$, this is a *twisted commutative algebra* (Sam-Snowden). The Main Theorem implies that finitely generated toas are topologically Noetherian. Ring-theoretically remains open.

Twisted commutative algebras

 $P \rightsquigarrow$ contravariant functor $V \mapsto K[P(V)]$ from **Vec** to K-algebras

Over $K = \mathbb{C}$, this is a twisted commutative algebra (Sam-Snowden). The Main Theorem implies that finitely generated toas are topologically Noetherian. Ring-theoretically remains open.

Variants of Stillman's conjecture [Erman-Sam-Snowden]

Let c be any natural number, and fix degrees d_1, \ldots, d_k . Then the number of codim-c linear subspaces of \mathbb{P}^n contained in a projective variety defined by k polynomials of degrees d_1, \ldots, d_k is either infinite or at most some number which doesn't depend on n.

(Uses the main theorem for $\bigoplus_{i=1}^k S^{d_i}(V)$. A single non-rigid such space already counts as ∞ .) For $k = 1, d_1 = 3, c = 2, N$ is at least 27:

For a polynomial functor P define $P_{\infty} := \lim_{\leftarrow n} P(K^n)$. This is dual to the countable-dimensional space $\lim_{n\to} P(K^n)^*$, whose elements we think of as coordinates on P_{∞} . We give P_{∞} the Zariskitopology and write $K[P_{\infty}]$ for the coordinate ring.

Limits

For a polynomial functor P define $P_{\infty} := \lim_{\leftarrow n} P(K^n)$. This is dual to the countable-dimensional space $\lim_{n\to} P(K^n)^*$, whose elements we think of as coordinates on P_{∞} . We give P_{∞} the Zariskitopology and write $K[P_{\infty}]$ for the coordinate ring.

The group $GL_{\infty} := \bigcup GL_n$ acts on P_{∞} and its space of coordinates, by homeomorphisms.

Limits

For a polynomial functor P define $P_{\infty} := \lim_{\leftarrow n} P(K^n)$. This is dual to the countable-dimensional space $\lim_{n\to} P(K^n)^*$, whose elements we think of as coordinates on P_{∞} . We give P_{∞} the Zariskitopology and write $K[P_{\infty}]$ for the coordinate ring.

The group $GL_{\infty} := \bigcup GL_n$ acts on P_{∞} and its space of coordinates, by homeomorphisms.

Example

- For P(V) = V, $P_{\infty} = K^{\mathbb{N}}$ with coordinates $x_1, x_2, ...$, and GL_{∞} acts by matrix-vector multiplication.
- For $P(V) = V \otimes V$, $P_{\infty} = K^{\mathbb{N} \times \mathbb{N}}$ with coordinates x_{ij} , and GL_{∞} acts by $(g, A) \mapsto gAg^{T}$.
- For $P(V) = S^3 V$, P_{∞} is the space of infinite cubics $a_{111}x_1^3 + a_{112}x_1^2x_2 + \cdots + a_{ijk}x_ix_jx_k$ and GL_{∞} acts by coordinate substitutions.

Given a **Vec**-closed subset $X \subseteq P$, set $X_{\infty} := \lim_{\leftarrow n} X(K^n) \subseteq P_{\infty}$.

Exercise

The map $X \mapsto X_{\infty}$ is a bijection between **Vec**-closed subsets of P and GL_{∞} -stable closed subsets of P_{∞} .

(Show also that $Y \subseteq P_{\infty}$ closed and GL_{∞} -stable implies that the image of Y in $P(K^n)$ is closed.)

Limits

Given a **Vec**-closed subset $X \subseteq P$, set $X_{\infty} := \lim_{\leftarrow n} X(K^n) \subseteq P_{\infty}$.

Exercise

The map $X \mapsto X_{\infty}$ is a bijection between **Vec**-closed subsets of P and GL_{∞} -stable closed subsets of P_{∞} .

(Show also that $Y \subseteq P_{\infty}$ closed and GL_{∞} -stable implies that the image of Y in $P(K^n)$ is closed.)

Leads to another reformulation of the main theorem:

Theorem

For each GL_{∞} -stable, closed subset $Y \subseteq P_{\infty}$ there exists polynomials $f_1, \ldots, f_k \in K[P_{\infty}]$ such that $Y = \bigcap_{g \in GL_{\infty}} \bigcap_i V(gf_i)$.

 $P(V) := \{ \text{symmetric tensors in } V \otimes V \} = \Gamma^2 V, \text{ assume char } K = 0$ $P_{\infty} = \{ \text{infinite-by-infinite symmetric matrices} \} \text{ with } K[P_{\infty}] = K[x_{ij}]/\langle (x_{ij} - x_{ji})_{i,j} \rangle.$

 $P(V) := \{\text{symmetric tensors in } V \otimes V\} = \Gamma^2 V, \text{ assume char } K = 0$

 $P_{\infty} = \{\text{infinite-by-infinite symmetric matrices}\}\ \text{with } K[P_{\infty}] = K[x_{ij}]/\langle (x_{ij}-x_{ji})_{i,j} \rangle.$

Let be $X \subseteq P_{\infty}$ closed and $\operatorname{GL}_{\infty}$ -stable and $f \in I(X) \cap K[x_{ij}|i, j \le n]/(x_{ij}-x_{ji})$ homogeneous of minimal degree vanishing on X. After acting with GL_n , may assume that x_{nn} appears in f.

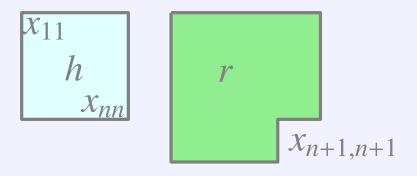
 $P(V) := \{\text{symmetric tensors in } V \otimes V\} = \Gamma^2 V, \text{ assume char } K = 0$

 $P_{\infty} = \{\text{infinite-by-infinite symmetric matrices}\}\ \text{with } K[P_{\infty}] = K[x_{ij}]/\langle (x_{ij}-x_{ji})_{i,j}\rangle.$

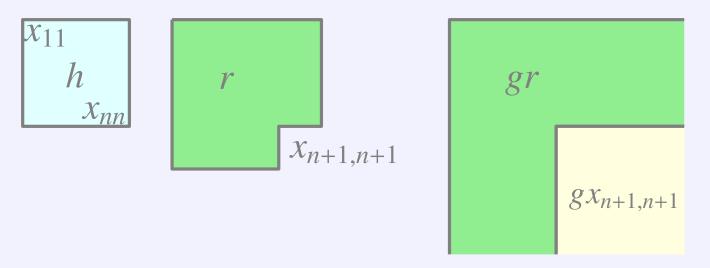
Let be $X \subseteq P_{\infty}$ closed and $\operatorname{GL}_{\infty}$ -stable and $f \in \mathcal{I}(X) \cap K[x_{ij}|i,j \le n]/(x_{ij}-x_{ji})$ homogeneous of minimal degree vanishing on X. After acting with GL_n , may assume that x_{nn} appears in f.

Compute action of $E_{n,n+1} \in \mathfrak{gl}_{\infty}$ by $(1 + tE_{n,n+1})A(1 + tE_{n,n+1})^T$ mod $t^2 \rightsquigarrow$ action is by $\sum_j x_{n+1,j} \frac{\partial}{\partial x_{n,j}} + \sum_i x_{i,n+1} \frac{\partial}{\partial x_{i,n}}$ on $K[P_{\infty}]$. Now $\tilde{f} := E_{n,n+1}^2 f$ also vanishes on X. Have $\tilde{f} = x_{n+1,n+1}h + r$ where $h \in K[x_{ij} \mid i, j \leq n]$ and r does not involve $x_{n+1,n+1}$.

Have found $\tilde{f} = x_{n+1,n+1}h + r \in \mathcal{I}(X)$ with supports of h and r as follows:

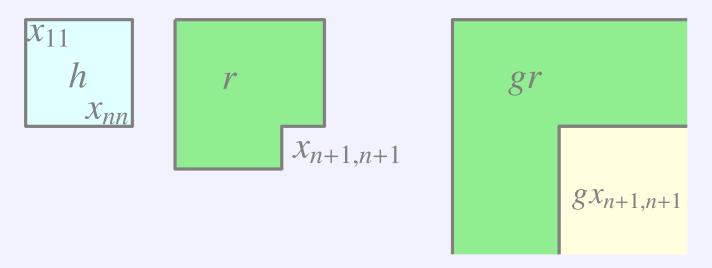


Have found $\tilde{f} = x_{n+1,n+1}h + r \in \mathcal{I}(X)$ with supports of h and r as follows:



For any $g \in GL_{\infty}$ fixing e_1, \ldots, e_n find $g\tilde{f} = (gx_{n+1,n+1})h + gr \in I(X)$. So on the locus in X where $h \neq 0$, we can express the yellow coordinates in the green coordinates.

Have found $\tilde{f} = x_{n+1,n+1}h + r \in \mathcal{I}(X)$ with supports of h and r as follows:



For any $g \in GL_{\infty}$ fixing e_1, \ldots, e_n find $g\tilde{f} = (gx_{n+1,n+1})h + gr \in I(X)$. So on the locus in X where $h \neq 0$, we can express the yellow coordinates in the green coordinates.

Decompose $X = Y \sqcup Z$ where $Y = X \cap \bigcap_{g \in GL_{\infty}} V(gh)$ and $Z = \bigcup_{g \in GL_{\infty}} g(X \setminus V(h))$.

Now:

- \bullet on Y, a lower-degree polynomial vanishes (namely, h), so it is Noetherian by induction;
- $X \setminus V(h)$ is isomorphic to a subset in the limit of a smaller polynomial functor, namely, $V \mapsto (\Gamma^2 K^n) \oplus (K^n \otimes V) \oplus (V \otimes K^n)$ with the green coordinates. So it is Noetherian by induction.

We conclude that *X* is Noetherian.

Now:

- \bullet on Y, a lower-degree polynomial vanishes (namely, h), so it is Noetherian by induction;
- $X \setminus V(h)$ is isomorphic to a subset in the limit of a smaller polynomial functor, namely, $V \mapsto (\Gamma^2 K^n) \oplus (K^n \otimes V) \oplus (V \otimes K^n)$ with the green coordinates. So it is Noetherian by induction.

We conclude that X is Noetherian.

Note that the smaller functor is obtained from P by taking the quotient of $P(K^n \oplus V) = (\Gamma^2 K^n) \oplus (K^n \otimes V) \oplus (V \oplus K^n) \oplus (\Gamma^2 V)$ by the top-degree part $\Gamma^2 V$.

Now:

- \bullet on Y, a lower-degree polynomial vanishes (namely, h), so it is Noetherian by induction;
- $X \setminus V(h)$ is isomorphic to a subset in the limit of a smaller polynomial functor, namely, $V \mapsto (\Gamma^2 K^n) \oplus (K^n \otimes V) \oplus (V \otimes K^n)$ with the green coordinates. So it is Noetherian by induction.

We conclude that X is Noetherian.

Note that the smaller functor is obtained from P by taking the quotient of $P(K^n \oplus V) = (\Gamma^2 K^n) \oplus (K^n \otimes V) \oplus (V \oplus K^n) \oplus (\Gamma^2 V)$ by the top-degree part $\Gamma^2 V$.

The general case will be similar; we'll assume $\deg P > 0$ as degree-zero case follows from Hilbert's basis theorem.

Proof ingredients

The shift functor

U a fixed vector space $\leadsto \operatorname{Sh}_U : \operatorname{Vec} \to \operatorname{Vec}, V \mapsto U \oplus V$

Exercise

If P is a polynomial functor of degree d, then $P \circ \operatorname{Sh}_U$ is also a polynomial functor of degree d, and $P_d \cong (P \circ \operatorname{Sh}_U)_d$.

The shift functor

U a fixed vector space $\leadsto \operatorname{Sh}_U : \operatorname{Vec} \to \operatorname{Vec}, V \mapsto U \oplus V$

Exercise

If P is a polynomial functor of degree d, then $P \circ \operatorname{Sh}_U$ is also a polynomial functor of degree d, and $P_d \cong (P \circ \operatorname{Sh}_U)_d$.

Example

$$Sh_U(V) = S^d(U \oplus V) = \bigoplus_{e=0}^d S^{d-e}U \otimes S^eV = S^dV + \cdots$$

Note that $(P \circ S_U)_e$ is larger than P_e for e < d.

The shift functor

U a fixed vector space $\leadsto \operatorname{Sh}_U : \operatorname{Vec} \to \operatorname{Vec}, V \mapsto U \oplus V$

Exercise

If P is a polynomial functor of degree d, then $P \circ \operatorname{Sh}_U$ is also a polynomial functor of degree d, and $P_d \cong (P \circ \operatorname{Sh}_U)_d$.

Example

$$Sh_U(V) = S^d(U \oplus V) = \bigoplus_{e=0}^d S^{d-e}U \otimes S^eV = S^dV + \cdots$$

Note that $(P \circ S_U)_e$ is larger than P_e for e < d.

Remark

In the proof for S^2 , we used $U = K^n$.

A lexicographic order

Define $Q \prec P$ if $Q \not\cong P$ and for the largest e with $Q_e \not\cong P_e$ the former is a homomorphic image of the latter.

By [FS], a well-founded order on finite-degree polynomial functors. Do induction, and assume the theorem holds for all Q < P.

A lexicographic order

Define $Q \prec P$ if $Q \not\cong P$ and for the largest e with $Q_e \not\cong P_e$ the former is a homomorphic image of the latter.

By [FS], a well-founded order on finite-degree polynomial functors. Do induction, and assume the theorem holds for all Q < P.

Splitting of a term of highest degree

Let $R \subseteq P_d$ be an irreducible subfunctor, and $\pi: P \to Q := P/R$.

 $Q \prec P$ but we'll need other functors smaller than P

A lexicographic order

Define $Q \prec P$ if $Q \not\cong P$ and for the largest e with $Q_e \not\cong P_e$ the former is a homomorphic image of the latter.

By [FS], a well-founded order on finite-degree polynomial functors. Do induction, and assume the theorem holds for all Q < P.

Splitting of a term of highest degree

Let $R \subseteq P_d$ be an irreducible subfunctor, and $\pi: P \to Q := P/R$.

 $Q \prec P$ but we'll need other functors smaller than P

For $X \subseteq P$ let X_Q be the closure of the image in Q. Think of X as a variety over X_Q . Accordingly, $\mathcal{I}_X(V)$ is the ideal of X in $K[\pi(V)^{-1}(X_Q(V))] \cong K[X_Q(V)] \otimes K[R(V)]$ (non-canonically).

Another well-founded order

Define $\delta_X \in \{1, 2, ..., \infty\}$ as the minimal degree of a nonzero polynomial in $\mathcal{I}_X(V)$ over all V. $(\delta_X > 0?)$

For $X, Y \subseteq P$ say X > Y if $X_Q \supseteq Y_Q$ or $X_Q = Y_Q$ and $\delta_X > \delta_Y$. As $Q \prec P$, Q is Noetherian by the induction hypothesis, so this is a well-founded order.

Another well-founded order

Define $\delta_X \in \{1, 2, ..., \infty\}$ as the minimal degree of a nonzero polynomial in $\mathcal{I}_X(V)$ over all V. $(\delta_X > 0?)$

For $X, Y \subseteq P$ say X > Y if $X_Q \supseteq Y_Q$ or $X_Q = Y_Q$ and $\delta_X > \delta_Y$. As $Q \prec P$, Q is Noetherian by the induction hypothesis, so this is a well-founded order.

Second induction hypothesis

All Y < X are Noetherian.

Now if $\delta_X = \infty$, X Noetherian. So assume $\delta_X \in \mathbb{Z}_{\geq 1}$.

Another well-founded order

Define $\delta_X \in \{1, 2, ..., \infty\}$ as the minimal degree of a nonzero polynomial in $\mathcal{I}_X(V)$ over all V. $(\delta_X > 0?)$

For $X, Y \subseteq P$ say X > Y if $X_Q \supseteq Y_Q$ or $X_Q = Y_Q$ and $\delta_X > \delta_Y$. As $Q \prec P$, Q is Noetherian by the induction hypothesis, so this is a well-founded order.

Second induction hypothesis

All Y < X are Noetherian.

Now if $\delta_X = \infty$, X Noetherian. So assume $\delta_X \in \mathbb{Z}_{\geq 1}$.

Let $X \supseteq X_1 \supseteq X_2 \supseteq \dots$ chain of **Vec**-closed subsets of X.

- Take $f \in \mathcal{I}_X(U)$ nonzero, homog of degree δ_X , dim U minimal
- Pick an $r_0 \in R(U)$ such that $h := \partial_{r_0} f$ is nonzero.

- Take $f \in \mathcal{I}_X(U)$ nonzero, homog of degree δ_X , dim U minimal
- Pick an $r_0 \in R(U)$ such that $h := \partial_{r_0} f$ is nonzero.
- Define $Y(V) := \{q \in X(V) \mid \forall \varphi : V \to U, h(P(\varphi)q) = 0\}.$
- Then either $Y_Q \subsetneq X_Q$ or else $Y_Q = X_Q$ and $\delta_Y \leq \deg h < \delta_X$, so Y is Noetherian, so $(Y \cap X_i)_i$ stabilises.

- Take $f \in \mathcal{I}_X(U)$ nonzero, homog of degree δ_X , dim U minimal
- Pick an $r_0 \in R(U)$ such that $h := \partial_{r_0} f$ is nonzero.
- Define $Y(V) := \{q \in X(V) \mid \forall \varphi : V \to U, h(P(\varphi)q) = 0\}.$
- Then either $Y_Q \subsetneq X_Q$ or else $Y_Q = X_Q$ and $\delta_Y \leq \deg h < \delta_X$, so Y is Noetherian, so $(Y \cap X_i)_i$ stabilises.
- Define $Z(V) := X(V) \setminus Y(V)$. Goal: $(Z \cap X_i)_i$ also stabilises.
- Define $X' := X \circ \operatorname{Sh}_U, P' := P \circ \operatorname{Sh}_U$; then $Q' := P'/R \prec P$, so Q' is Noetherian.

- Take $f \in \mathcal{I}_X(U)$ nonzero, homog of degree δ_X , dim U minimal
- Pick an $r_0 \in R(U)$ such that $h := \partial_{r_0} f$ is nonzero.
- Define $Y(V) := \{q \in X(V) \mid \forall \varphi : V \to U, h(P(\varphi)q) = 0\}.$
- Then either $Y_Q \subsetneq X_Q$ or else $Y_Q = X_Q$ and $\delta_Y \leq \deg h < \delta_X$, so Y is Noetherian, so $(Y \cap X_i)_i$ stabilises.
- Define $Z(V) := X(V) \setminus Y(V)$. Goal: $(Z \cap X_i)_i$ also stabilises.
- Define $X' := X \circ \operatorname{Sh}_U, P' := P \circ \operatorname{Sh}_U$; then $Q' := P'/R \prec P$, so Q' is Noetherian.
- Define $Z'(V) := \{q \in X'(V) \mid h(P(\pi_U)q) \neq 0\} \subseteq Z(U \oplus V)$.
- Prove that the projection $P' \to Q'$ restricts to a closed embedding $Z' \to B$, where B is the basic open set given by $h \neq 0$.

- Take $f \in \mathcal{I}_X(U)$ nonzero, homog of degree δ_X , dim U minimal
- Pick an $r_0 \in R(U)$ such that $h := \partial_{r_0} f$ is nonzero.
- Define $Y(V) := \{q \in X(V) \mid \forall \varphi : V \to U, h(P(\varphi)q) = 0\}.$
- Then either $Y_Q \subsetneq X_Q$ or else $Y_Q = X_Q$ and $\delta_Y \leq \deg h < \delta_X$, so Y is Noetherian, so $(Y \cap X_i)_i$ stabilises.
- Define $Z(V) := X(V) \setminus Y(V)$. Goal: $(Z \cap X_i)_i$ also stabilises.
- Define $X' := X \circ \operatorname{Sh}_U, P' := P \circ \operatorname{Sh}_U$; then $Q' := P'/R \prec P$, so Q' is Noetherian.
- Define $Z'(V) := \{q \in X'(V) \mid h(P(\pi_U)q) \neq 0\} \subseteq Z(U \oplus V)$.
- Prove that the projection $P' \to Q'$ restricts to a closed embedding $Z' \to B$, where B is the basic open set given by $h \neq 0$.
- Hence $(Z' \cap (X_i \circ \operatorname{Sh}_U))_i$ stabilises, and hence $(Z \cap X_i)_i$ stabilises.

Theorem

Every polynomial functor *P* is topologically Noetherian.

- For $X \subseteq P$ find an equation f of smallest degree vanishing on it
- Set $h := \partial_{r_0} f$ for some r_0 in an irreducible subfunctor R in the top-degree part of P.
- Split $X = Y \cup Z$, where Y is defined by h = 0 and Z embeds in a smaller polynomial functor Q'.
- Y is Noetherian since $\deg h < \deg f$ and Z because it sits in Q'.

• In positive characteristic, might have $\partial_{r_0} f = 0$ for all $r_0 \in R(U)$. In that case, f is a polynomial in the p^e -th powers of the coordinates on R(U), with coefficients from $K[X_Q(U)]$. Take e maximal with this property \rightsquigarrow argument doesn't change much.

- In positive characteristic, might have $\partial_{r_0} f = 0$ for all $r_0 \in R(U)$. In that case, f is a polynomial in the p^e -th powers of the coordinates on R(U), with coefficients from $K[X_Q(U)]$. Take e maximal with this property \rightsquigarrow argument doesn't change much.
- [DES] prove Noetherianity of S^3 but avoid characteristics 2, 3. I think this is because the composition series of S^3 is longer in those cases.

- In positive characteristic, might have $\partial_{r_0} f = 0$ for all $r_0 \in R(U)$. In that case, f is a polynomial in the p^e -th powers of the coordinates on R(U), with coefficients from $K[X_Q(U)]$. Take e maximal with this property \rightsquigarrow argument doesn't change much.
- [DES] prove Noetherianity of S^3 but avoid characteristics 2, 3. I think this is because the composition series of S^3 is longer in those cases.
- In characteristic zero, can find a morphism $\iota: B' \to P$ such that $\iota \circ \pi'_Q$ is the identity on Z' (ongoing work with Bik-Eggermont-Snowden); see Eggermont's talk on strength.

Will discuss:

- vary the functor, e.g. $\bigwedge^p V$ with varying p
- an algorithmic proof of Stillman's conjecture.

Outlook

Will discuss:

- vary the functor, e.g. $\bigwedge^p V$ with varying p
- an algorithmic proof of Stillman's conjecture.

Difficult:

Is the contravariant functor $\mathbf{Vec} \to \{K\text{-algebras}\}, V \mapsto K[P(V)]$ Noetherian? Outlook

Will discuss:

- vary the functor, e.g. $\bigwedge^p V$ with varying p
- an algorithmic proof of Stillman's conjecture.

Difficult:

Is the contravariant functor $\mathbf{Vec} \to \{K\text{-algebras}\}, V \mapsto K[P(V)]$ Noetherian?

For instance:

Does every increasing chain of GL_{∞} -stable ideals in $K[x_{ij}]$ under the action $(g, x) \mapsto gxg^T$ stabilise?

Outlook

Will discuss:

- vary the functor, e.g. $\bigwedge^p V$ with varying p
- an algorithmic proof of Stillman's conjecture.

Difficult:

Is the contravariant functor $\mathbf{Vec} \to \{K\text{-algebras}\}, V \mapsto K[P(V)]$ Noetherian?

For instance:

Does every increasing chain of GL_{∞} -stable ideals in $K[x_{ij}]$ under the action $(g, x) \mapsto gxg^T$ stabilise?

Probably much easier:

Is there a \mathbb{Z} -version of the topological results discussed here?

This is an example of varying the polynomial functor.

Definition

A *Plücker variety* is a sequence $X_p \subseteq \bigwedge^p$, p = 0, 1, 2, 3, ... of **Vec**-closed subsets such that for all $V \in \mathbf{Vec}$ and $x \in V^*$, contraction with v maps $X_p(V)$ into $X_{p-1}(V)$.

This is an example of varying the polynomial functor.

Definition

A *Plücker variety* is a sequence $X_p \subseteq \bigwedge^p$, p = 0, 1, 2, 3, ... of **Vec**-closed subsets such that for all $V \in \mathbf{Vec}$ and $x \in V^*$, contraction with v maps $X_p(V)$ into $X_{p-1}(V)$.

Examples

Grassmannians, tangential/secant varieties to Grassmanians, joins, . . .

This is an example of varying the polynomial functor.

Definition

A *Plücker variety* is a sequence $X_p \subseteq \bigwedge^p$, p = 0, 1, 2, 3, ... of **Vec**-closed subsets such that for all $V \in \mathbf{Vec}$ and $x \in V^*$, contraction with v maps $X_p(V)$ into $X_{p-1}(V)$.

Examples

Grassmannians, tangential/secant varieties to Grassmanians, joins, ...

Theorem (D-Eggermont)

Every Plücker variety is defined set-theoretically by equations of bounded degree (uniform in p and V).

Proof sketch: take p_0 and U and a minimal-degree f on $\bigwedge^{p_0} U$ that vanishes on X_{p_0} . Using the same technique as in the proof for polynomial functors, find a derivative h, and let $Y \subseteq X$ be the Plücker subvariety defined by h = 0. Prove that any Plücker subvariety $X' \subseteq X$ is uniquely determined by $X' \cap Y, X'_0, \ldots, X'_{p_0}$.

Proof sketch: take p_0 and U and a minimal-degree f on $\bigwedge^{p_0} U$ that vanishes on X_{p_0} . Using the same technique as in the proof for polynomial functors, find a derivative h, and let $Y \subseteq X$ be the Plücker subvariety defined by h = 0. Prove that any Plücker subvariety $X' \subseteq X$ is uniquely determined by $X' \cap Y, X'_0, \ldots, X'_{p_0}$.

Remark: Robert Laudone has a much better theorem for secants of Grassmannians, which implies that their ideals and higher syzygies are generated in bounded degree.

Theorem (Ananyan-Hochster, Erman-Sam-Snowden)

Fix d_1, \ldots, d_k . Then there exists an N such that for any field K and any n and any homogeneous $f_1, \ldots, f_k \in K[x_1, \ldots, x_n]$ of degrees d_1, \ldots, d_k the projective dimension of $\langle f_1, \ldots, f_k \rangle$ is at most N.

Long history: arbitrary number of quadrics (A-H), three cubics (Engheta), ...

Theorem (Ananyan-Hochster, Erman-Sam-Snowden)

Fix d_1, \ldots, d_k . Then there exists an N such that for any field K and any n and any homogeneous $f_1, \ldots, f_k \in K[x_1, \ldots, x_n]$ of degrees d_1, \ldots, d_k the projective dimension of $\langle f_1, \ldots, f_k \rangle$ is at most N.

Long history: arbitrary number of quadrics (A-H), three cubics (Engheta), ...

Theorem (D-Łasoń-Leykin)

There exists a finite algorithm that on input d_1, \ldots, d_k outputs all possible *generic grevlex initial ideals* of such ideals.

- implies the previous theorem, since projective dimension is preserved under passing to (generic) grevlex initial ideals
- proof is similar in spirit to, and uses results of, E-S-S.

Construction (generic initial ideals)

- Let < be a monomial order on $K[x_1, ..., x_n]$ and let $I \subseteq K[x_1, ..., x_n]$ a homogeneous ideal.
- Write $in_{<}I$ for the ideal spanned by the leading (largest) monomials of elements of I.
- The set of $g \in GL_n$ where $in_{<}gI$ is a fixed ideal is a constructible set, and finitely many of these partition GL_n .
- So one of these is dense; this leading ideal is called the generic leading ideal of *I* w.r.t. <

Construction (generic initial ideals)

- Let < be a monomial order on $K[x_1, ..., x_n]$ and let $I \subseteq K[x_1, ..., x_n]$ a homogeneous ideal.
- Write $in_{<}I$ for the ideal spanned by the leading (largest) monomials of elements of I.
- The set of $g \in GL_n$ where $\text{in}_{<}gI$ is a fixed ideal is a constructible set, and finitely many of these partition GL_n .
- So one of these is dense; this leading ideal is called the generic leading ideal of *I* w.r.t. <

Definition (grevlex)

We use < on $K[x_1, ..., x_n]$ defined by $x^{\alpha} < x^{\beta}$ if $\sum_i \alpha_i < \sum_i \beta_i$ or = and then the last nonzero element of $\alpha - \beta$ is *negative*.

So
$$x_1^3 > x_1^2 x_2 > x_1 x_2^2 > x_2^3 > x_1^2 x_3 > x_1 x_2 x_3 > x_2^2 x_3 > x_1 x_3^2 > \dots$$

Definition

 $R = R_K$ = the ring of bounded-degree series in x_1, x_2, x_3, \dots

So a homogeneous cubic element of *R* looks like $a_{111}x_1^3 + a_{112}x_1^2x_2 + a_{122}x_1x_2^2 + a_{222}x_2^3 + a_{113}x_1^2x_3 + \cdots$

Definition

 $R = R_K$ = the ring of bounded-degree series in x_1, x_2, x_3, \dots

So a homogeneous cubic element of *R* looks like

$$a_{111}x_1^3 + a_{112}x_1^2x_2 + a_{122}x_1x_2^2 + a_{222}x_2^3 + a_{113}x_1^2x_3 + \cdots$$

Theorem (Erman-Sam-Snowden)

Assume *K* is perfect. Then *R* is isomorphic to a polynomial ring (in uncountably many variables).

Definition

 $R = R_K$ = the ring of bounded-degree series in x_1, x_2, x_3, \dots

So a homogeneous cubic element of *R* looks like

$$a_{111}x_1^3 + a_{112}x_1^2x_2 + a_{122}x_1x_2^2 + a_{222}x_2^3 + a_{113}x_1^2x_3 + \cdots$$

Theorem (Erman-Sam-Snowden)

Assume *K* is perfect. Then *R* is isomorphic to a polynomial ring (in uncountably many variables).

Let $f_1, \ldots, f_k \in R$ be homogeneous. Define

 $\pi_n: R \to K[x_1, \dots, x_n]$ the projection.

Proposition (using Erman-Sam-Snowden)

The map $\operatorname{Syz}(\pi_{n+1}(f_1), \dots, \pi_{n+1}(f_k)) \to \operatorname{Syz}(\pi_n(f_1), \dots, \pi_n(f_k))$ is surjective for $n \gg 0$.

Proposition

Let $f_1, \ldots, f_k \in R$. Then $\langle f_1, \ldots, f_k \rangle$ has a finite grevlex Gröbner basis.

(Run Buchberger's algorithm for the truncations $\pi_n(f_1), \ldots, \pi_n(f_k)$ dragging along but ignoring the terms divisible by x_i with i > n until the computation is finished, and then increase n by one. By the proposition on syzygies, this terminates.)

Proof sketch of the theorem on generic initial ideals

- Start running the Buchberger algorithm, but now regard the coefficients of the f_i as indeterminates (coordinates on $S_{\infty}^{d_1} \oplus \cdots \oplus S_{\infty}^{d_k}$).
- Whenever you need to decide if some polynomial *p* in these coefficients is zero, branch the computation into:
- An *open branch* where p is assumed nonzero (localise);
- A *closed branch*, where the *entire* GL_{∞} -orbit of p is set to zero.

Proof sketch of the theorem on generic initial ideals

- Start running the Buchberger algorithm, but now regard the coefficients of the f_i as indeterminates (coordinates on $S_{\infty}^{d_1} \oplus \cdots \oplus S_{\infty}^{d_k}$).
- Whenever you need to decide if some polynomial *p* in these coefficients is zero, branch the computation into:
- An *open branch* where *p* is assumed nonzero (localise);
- A *closed branch*, where the *entire* GL_{∞} -*orbit* of p is set to zero.
- By Noetherianity of $S^{d_1} \oplus \cdots \oplus S^{d_k}$, in each path in this computation, only finitely many closed branches are followed.
- Hence all paths eventually only follow open branches. But then they are performing a Gröbner basis computation in R_L for some extension field L of K, hence they terminate.

Hence the entire tree of computations is finite.

Summarising

- A finite-degree polynomial functor is topologically Noetherian.
- This ensures finiteness results for classes of algebraic varieties, e.g. algebro-statistical models.
- It also has applications to commutative algebra.

Summarising

- A finite-degree polynomial functor is topologically Noetherian.
- This ensures finiteness results for classes of algebraic varieties, e.g. algebro-statistical models.
- It also has applications to commutative algebra.
- But it would be much better to have ideal-theoretic Noetherianity for polynomial functors.
- Completely new ideas will be needed there. E.g. the current ideas also show that the dual infinite wedge is topologically Noetherian, but it certainly isn't ideal-theoretically Noetherian.

Summarising

- A finite-degree polynomial functor is topologically Noetherian.
- This ensures finiteness results for classes of algebraic varieties, e.g. algebro-statistical models.
- It also has applications to commutative algebra.
- But it would be much better to have ideal-theoretic Noetherianity for polynomial functors.
- Completely new ideas will be needed there. E.g. the current ideas also show that the dual infinite wedge is topologically Noetherian, but it certainly isn't ideal-theoretically Noetherian.

Thank you!