

Log: $(\mathbb{C}^*)^n \to \mathbb{R}^n$, $(z_1, ..., z_n) \mapsto (\log |z_1|, ..., \log |z_n|)$ $X \subseteq (\mathbb{C}^*)^n$ irreducible closed subvariety

Definition

 $\mathcal{A}(X) := \operatorname{Log}(X)$ amoeba of X (essentially semi-algebraic) $\operatorname{Trop}(X) := \lim_{t \to \infty} \frac{1}{t} \operatorname{Log}(X)$ tropicalisation of X

Log : $(\mathbb{C}^*)^n \to \mathbb{R}^n$, $(z_1, ..., z_n) \mapsto (\log |z_1|, ..., \log |z_n|)$ $X \subseteq (\mathbb{C}^*)^n$ irreducible closed subvariety

Definition

 $\mathcal{A}(X) := \operatorname{Log}(X)$ amoeba of X (essentially semi-algebraic)

 $\mathsf{Trop}(X) := \lim_{t \to \infty} \frac{1}{t} \mathsf{Log}(X) \ \textit{tropicalisation} \ \mathsf{of} \ X$

Example 1

$$X = \{(x, y) \mid x + y = 1\}$$

Log :
$$(\mathbb{C}^*)^n \to \mathbb{R}^n$$
, $(z_1, ..., z_n) \mapsto (\log |z_1|, ..., \log |z_n|)$
 $X \subseteq (\mathbb{C}^*)^n$ irreducible closed subvariety

Definition

 $\mathcal{A}(X) := \operatorname{Log}(X)$ amoeba of X (essentially semi-algebraic) $\operatorname{Trop}(X) := \lim_{t \to \infty} \frac{1}{t} \operatorname{Log}(X)$ tropicalisation of X

Example 1

$$X = \{(x, y) \mid x + y = 1\}$$

Example 2

$$X = \{(x, y) \mid x \cdot y = 1\}$$

Log: $(\mathbb{C}^*)^n \to \mathbb{R}^n$, $(z_1, ..., z_n) \mapsto (\log |z_1|, ..., \log |z_n|)$ $X \subseteq (\mathbb{C}^*)^n$ irreducible closed subvariety

Definition

A(X) := Log(X) amoeba of X (essentially semi-algebraic)

$$\mathsf{Trop}(X) := \lim_{t \to \infty} \frac{1}{t} \mathsf{Log}(X) \ \textit{tropicalisation} \ \mathsf{of} \ X$$

Example 1

$$X = \{(x, y) \mid x + y = 1\}$$

Example 2

$$X = \{(x, y) \mid x \cdot y = 1\}$$

Example 3

$$\mathsf{Trop}(X) = \mathcal{A}(X)$$

 $T \subseteq (\mathbb{C}^*)^n$ a k-dimensional torus $\rightsquigarrow \mathcal{A}(T) = \text{Trop}(T)$ a k-dim real subspace of \mathbb{R}^n spanned by rational vectors.

$$X \subseteq (\mathbb{C}^*)^n$$

 $\mathsf{Trop}(X)$ is a finite union of $\mathsf{dim}_{\mathbb{C}} X$ -dimensional polyhedra.

$$X \subseteq (\mathbb{C}^*)^n$$

 $\mathsf{Trop}(X)$ is a finite union of $\dim_{\mathbb{C}} X$ -dimensional polyhedra.

Question (Nisse-Sottile)

What about $\dim_{\mathbb{R}}(\mathcal{A}(X))$? When smaller than $2 \cdot \dim_{\mathbb{C}} X$?

$$X \subseteq (\mathbb{C}^*)^n$$

 $\mathsf{Trop}(X)$ is a finite union of $\mathsf{dim}_{\mathbb{C}} X$ -dimensional polyhedra.

Question (Nisse-Sottile)

What about $\dim_{\mathbb{R}}(\mathcal{A}(X))$? When smaller than $2 \cdot \dim_{\mathbb{C}} X$?

Observation (Nisse-Sottile)

X invariant under k-dimensional subtorus $T \subseteq (\mathbb{C}^*)^n$

$$\rightsquigarrow X/T \subseteq (\mathbb{C}^*)^n/T \cong (\mathbb{C}^*)^{n-k}$$

 $\rightsquigarrow \mathcal{A}(X) \rightarrow \mathcal{A}(X/T)$ has fibres $\cong \mathcal{A}(T)$ of dimension k

$$\rightsquigarrow \dim_{\mathbb{R}}(\mathcal{A}(X)) = \dim_{\mathbb{R}}(\mathcal{A}(X/T)) + 1 \cdot \dim_{\mathbb{C}}(T)$$

$$X \subseteq (\mathbb{C}^*)^n$$

 $\mathsf{Trop}(X)$ is a finite union of $\mathsf{dim}_{\mathbb{C}} X$ -dimensional polyhedra.

Question (Nisse-Sottile)

What about $\dim_{\mathbb{R}}(\mathcal{A}(X))$? When smaller than $2 \cdot \dim_{\mathbb{C}} X$?

Observation (Nisse-Sottile)

X invariant under k-dimensional subtorus $T \subseteq (\mathbb{C}^*)^n$

$$\rightsquigarrow X/T \subseteq (\mathbb{C}^*)^n/T \cong (\mathbb{C}^*)^{n-k}$$

 $\rightsquigarrow \mathcal{A}(X) \rightarrow \mathcal{A}(X/T)$ has fibres $\cong \mathcal{A}(T)$ of dimension k

 $\operatorname{Hom}_{\mathbb{R}}(\mathcal{A}(X)) = \dim_{\mathbb{R}}(\mathcal{A}(X/T)) + 1 \cdot \dim_{\mathbb{C}}(T)$

Theorem (Nisse-Sottile)

 $\dim_{\mathbb{R}} \mathcal{A}(X) \geq 1 \cdot \dim_{\mathbb{C}} X$ with $= \inf X$ is a torus orbit.

$$X \subseteq (\mathbb{C}^*)^n$$
 of dimension $> n/2$
 $\rightsquigarrow \dim_{\mathbb{R}}(\mathcal{A}(X)) \leq n < 2 \cdot \dim_{\mathbb{C}} X$.

 $X \subseteq (\mathbb{C}^*)^n$ of dimension > n/2 $\rightsquigarrow \dim_{\mathbb{R}}(\mathcal{A}(X)) \leq n < 2 \cdot \dim_{\mathbb{C}} X$.

Definition (Nisse-Sottile, D-Rau-Yuen)

If $T \subseteq (\mathbb{C}^*)^n$ subtorus such that $\mathcal{A}(T) \subseteq T_p \mathcal{A}(X)$ for almost all $p \in \mathcal{A}(X)$, then we say T nearly acts on X.

Example 2: $(\mathbb{C}^*)^2$ nearly acts on X.

 $X \subseteq (\mathbb{C}^*)^n$ of dimension > n/2 $\rightsquigarrow \dim_{\mathbb{R}}(\mathcal{A}(X)) \leq n < 2 \cdot \dim_{\mathbb{C}} X$.

Definition (Nisse-Sottile, D-Rau-Yuen)

If $T \subseteq (\mathbb{C}^*)^n$ subtorus such that $\mathcal{A}(T) \subseteq T_p \mathcal{A}(X)$ for almost all $p \in \mathcal{A}(X)$, then we say T nearly acts on X.

Example 2: $(\mathbb{C}^*)^2$ nearly acts on X.

Proposition (D-Rau-Yuen)

 $\dim_{\mathbb{R}}(\mathcal{A}(X)) < 2 \cdot \dim_{\mathbb{C}}(X) \Rightarrow \text{ some } T, \ \dim_{\mathbb{C}}(T) > 0,$ nearly acts on X. And then $\dim_{\mathbb{R}} \mathcal{A}(X) = \dim_{\mathbb{R}}(\mathcal{A}(\overline{T \cdot X})).$

 $X \subseteq (\mathbb{C}^*)^n$ of dimension > n/2 $\rightsquigarrow \dim_{\mathbb{R}}(\mathcal{A}(X)) \leq n < 2 \cdot \dim_{\mathbb{C}} X$.

Definition (Nisse-Sottile, D-Rau-Yuen)

If $T \subseteq (\mathbb{C}^*)^n$ subtorus such that $\mathcal{A}(T) \subseteq T_p \mathcal{A}(X)$ for almost all $p \in \mathcal{A}(X)$, then we say T nearly acts on X.

Example 2: $(\mathbb{C}^*)^2$ nearly acts on X.

Proposition (D-Rau-Yuen)

 $\dim_{\mathbb{R}}(\mathcal{A}(X)) < 2 \cdot \dim_{\mathbb{C}}(X) \Rightarrow \text{ some } T, \ \dim_{\mathbb{C}}(T) > 0,$ nearly acts on X. And then $\dim_{\mathbb{R}} \mathcal{A}(X) = \dim_{\mathbb{R}}(\mathcal{A}(\overline{T \cdot X})).$

Theorem (D-Rau-Yuen)

 $\dim_{\mathbb{R}} \mathcal{A}(X) = \min\{2 \cdot \dim_{\mathbb{C}} \overline{T \cdot X} - \dim_{\mathbb{C}} T \mid T \text{ subtorus}\}$

$\mathsf{Trop}(X)$ knows $\mathsf{dim}_{\mathbb{R}}\,\mathcal{A}(X)$

Theorem (D-Rau-Yuen)

 $\dim_{\mathbb{R}} \mathcal{A}(X) = \min\{2 \cdot \dim_{\mathbb{C}} \overline{T \cdot X} - \dim_{\mathbb{C}} T \mid T \text{ subtorus}\}$

Corollary

 $\dim_{\mathbb{R}} \mathcal{A}(X) = \min\{2 \cdot \dim_{\mathbb{R}}(\operatorname{Trop}(X) + T) - \dim_{\mathbb{R}}(T) \mid T \subseteq \mathbb{R}^n \text{ subspace spanned by rational vectors}\}$

$\mathsf{Trop}(X)$ knows $\mathsf{dim}_{\mathbb{R}}\,\mathcal{A}(X)$

Theorem (D-Rau-Yuen)

$$\dim_{\mathbb{R}} \mathcal{A}(X) = \min\{2 \cdot \dim_{\mathbb{C}} \overline{T \cdot X} - \dim_{\mathbb{C}} T \mid T \text{ subtorus}\}$$

Corollary

$$\dim_{\mathbb{R}} \mathcal{A}(X) = \min\{\mathbf{2} \cdot \dim_{\mathbb{R}}(\operatorname{Trop}(X) + T) - \dim_{\mathbb{R}}(T) \mid T \subseteq \mathbb{R}^n \text{ subspace spanned by rational vectors}\}$$

Open

Is this computable from the data of finitely many polyhedra?

 $\mathsf{Trop}(X)$ knows $\mathsf{dim}_{\mathbb{R}}\,\mathcal{A}(X)$

Theorem (D-Rau-Yuen)

$$\dim_{\mathbb{R}} \mathcal{A}(X) = \min\{2 \cdot \dim_{\mathbb{C}} \overline{T \cdot X} - \dim_{\mathbb{C}} T \mid T \text{ subtorus}\}$$

Corollary

$$\dim_{\mathbb{R}} \mathcal{A}(X) = \min\{\mathbf{2} \cdot \dim_{\mathbb{R}}(\operatorname{Trop}(X) + T) - \dim_{\mathbb{R}}(T) \mid T \subseteq \mathbb{R}^n \text{ subspace spanned by rational vectors}\}$$

Open

Is this computable from the data of finitely many polyhedra?

Observation

If $X = V \cap (\mathbb{C}^*)^n$, where $V \subseteq \mathbb{C}^n$ is a \mathbb{C} -linear subspace $\leadsto \operatorname{Trop}(X) = \operatorname{Bergman} \ \operatorname{fan} \ B(M_V) \ \operatorname{of} \ \operatorname{matroid} \ M_V \ \operatorname{on} \ [n].$ Can $\dim_{\mathbb{R}} \mathcal{A}(X)$ be computed efficiently in this case?

Amoeba dimensions of linear spaces

$$X = V \cap (\mathbb{C}^*)^n$$
, $M = M_V$ the matroid of V

$$X = V \cap (\mathbb{C}^*)^n$$
, $M = M_V$ the matroid of V

Theorem (D-Eggleston-Pendavingh-Rau-Yuen)

$$\dim_{\mathbb{R}} \mathcal{A}(X) = \min\{\sum_{i=1}^{k} (2 \cdot \operatorname{rk}_{M}(P_{i}) - 1) \mid [n] = P_{1} \sqcup \cdots \sqcup P_{k}, \text{ all } P_{i} \neq \emptyset\} =: (*)$$

and this can be computed deterministically in polynomial time in the bitsize of a matrix with row span V.

 $X = V \cap (\mathbb{C}^*)^n$, $M = M_V$ the matroid of V

Theorem (D-Eggleston-Pendavingh-Rau-Yuen)

$$\dim_{\mathbb{R}} \mathcal{A}(X) = \min\{\sum_{i=1}^{k} (2 \cdot \operatorname{rk}_{M}(P_{i}) - 1) \mid [n] = P_{1} \sqcup \cdots \sqcup P_{k}, \text{ all } P_{i} \neq \emptyset\} =: (*)$$

and this can be computed deterministically in polynomial time in the bitsize of a matrix with row span V.

Remarks

- \leq follows from $V \subseteq \prod_i V_{P_i}$ so that $\mathcal{A}(X) \subseteq \prod_i \mathcal{A}(X_{P_i})$
- \bullet Proof of \geq is independent of DRY.
- (*) defines a matroid M', $1 \cdot \text{rk}(M) \leq \text{rk}(M') \leq 2 \cdot \text{rk}(M)$.

$$X = V \cap (\mathbb{C}^*)^n$$
, $M = M_V$ the matroid of V

Theorem (D-Eggleston-Pendavingh-Rau-Yuen)

$$\dim_{\mathbb{R}} \mathcal{A}(X) = \min \{ \sum_{i=1}^{k} (2 \cdot \operatorname{rk}_{M}(P_{i}) - 1) \mid [n] = P_{1} \sqcup \cdots \sqcup P_{k}, \text{ all } P_{i} \neq \emptyset \} =: (*)$$

and this can be computed deterministically in polynomial time in the bitsize of a matrix with row span V.

Remarks

- \leq follows from $V \subseteq \prod_i V_{P_i}$ so that $\mathcal{A}(X) \subseteq \prod_i \mathcal{A}(X_{P_i})$
- \bullet Proof of \geq is independent of DRY.
- (*) defines a matroid M', $1 \cdot \text{rk}(M) \leq \text{rk}(M') \leq 2 \cdot \text{rk}(M)$.

Open: Does this hold for *all* loop-free matroids on [n]? $(*) = \min\{2 \cdot \dim_{\mathbb{R}}(B(M) + T) - \dim_{\mathbb{R}}(T) \mid$

 $T \subseteq \mathbb{R}^n$ subspace spanned by rational vectors

7 - 1

Proof of first part

• W.I.o.g. $\mathbb{1} := (1, ..., 1) \in X$ has $d_{\mathbb{1}} \text{Log} : T_{\mathbb{1}} X = V \to \mathbb{R}^n$ has maximal rank. If $2 \cdot \dim_{\mathbb{C}} V - 1$, done.

Proof of first part

- W.I.o.g. $\mathbb{1} := (1, ..., 1) \in X$ has $d_{\mathbb{1}} \text{Log} : T_{\mathbb{1}} X = V \to \mathbb{R}^n$ has maximal rank. If $2 \cdot \dim_{\mathbb{C}} V 1$, done.
- Otherwise, d_p Log is the map $v \mapsto \Re(v/p)$, and $\ker d_1$ Log = $V \cap i\mathbb{R}^n \neq \{i \cdot 1\}$.

Proof of first part

- W.I.o.g. $\mathbb{1} := (1, ..., 1) \in X$ has $d_{\mathbb{1}} \text{Log} : T_{\mathbb{1}} X = V \to \mathbb{R}^n$ has maximal rank. If $2 \cdot \dim_{\mathbb{C}} V 1$, done.
- Otherwise, d_p Log is the map $v \mapsto \Re(v/p)$, and $\ker d_1$ Log = $V \cap i\mathbb{R}^n \neq \{i \cdot 1\}$.
- $\Psi: X \to \operatorname{Hom}_{\mathbb{R}}(V, \mathbb{R}^n), p \mapsto d_p \operatorname{Log}$ has derivative at $\mathbb{1}$ = $w \mapsto (v \mapsto \operatorname{coefficient} \operatorname{of} \epsilon \operatorname{in} \Re(v/(\mathbb{1} + \epsilon w))$ = $w \mapsto (v \mapsto \Re(-vw))$

- W.I.o.g. $\mathbb{1} := (1, ..., 1) \in X$ has $d_{\mathbb{1}} \text{Log} : T_{\mathbb{1}} X = V \to \mathbb{R}^n$ has maximal rank. If $2 \cdot \dim_{\mathbb{C}} V 1$, done.
- Otherwise, d_p Log is the map $v \mapsto \Re(v/p)$, and $\ker d_1$ Log = $V \cap i\mathbb{R}^n \neq \{i \cdot 1\}$.
- $\Psi: X \to \operatorname{Hom}_{\mathbb{R}}(V, \mathbb{R}^n), p \mapsto d_p \operatorname{Log}$ has derivative at $\mathbb{1}$ = $w \mapsto (v \mapsto \operatorname{coefficient} \operatorname{of} \varepsilon \operatorname{in} \Re(v/(\mathbb{1} + \varepsilon w))$ = $w \mapsto (v \mapsto \Re(-vw))$
- Near $\mathbb{1}$, d_p Log has constant rank $\leadsto v \mapsto \Re(-vw)$ maps $\ker(d_{\mathbb{1}}\mathsf{Log}) = V \cap i\mathbb{R}^n$ into $\operatorname{im}(d_{\mathbb{1}}\mathsf{Log})$ for all $w \in V$. So $(V \cap i\mathbb{R}^n) \cdot V \subseteq \operatorname{im}(d_{\mathbb{1}}\mathsf{Log}) + i\mathbb{R}^n \subseteq V + i\mathbb{R}^n$ and $(V \cap \mathbb{R}^n) \cdot V \subseteq V + \mathbb{R}^n$. So $(V \cap \mathbb{R}^n) \cdot (V + \mathbb{R}^n) \subseteq V + \mathbb{R}^n$

- W.I.o.g. $\mathbb{1} := (1, ..., 1) \in X$ has $d_{\mathbb{1}} \text{Log} : T_{\mathbb{1}} X = V \to \mathbb{R}^n$ has maximal rank. If $2 \cdot \dim_{\mathbb{C}} V 1$, done.
- Otherwise, d_p Log is the map $v \mapsto \Re(v/p)$, and $\ker d_1$ Log = $V \cap i\mathbb{R}^n \neq \{i \cdot 1\}$.
- $\Psi: X \to \operatorname{Hom}_{\mathbb{R}}(V, \mathbb{R}^n), p \mapsto d_p\operatorname{Log}$ has derivative at $\mathbb{1}$ = $w \mapsto (v \mapsto \operatorname{coefficient} \operatorname{of} \varepsilon \operatorname{in} \Re(v/(\mathbb{1} + \varepsilon w))$ = $w \mapsto (v \mapsto \Re(-vw))$
- Near 1, d_p Log has constant rank $\rightsquigarrow v \mapsto \Re(-vw)$ maps $\ker(d_1 \text{Log}) = V \cap i\mathbb{R}^n$ into $\operatorname{im}(d_1 \text{Log})$ for all $w \in V$. So $(V \cap i\mathbb{R}^n) \cdot V \subseteq \operatorname{im}(d_1 \text{Log}) + i\mathbb{R}^n \subseteq V + i\mathbb{R}^n$ and $(V \cap \mathbb{R}^n) \cdot V \subseteq V + \mathbb{R}^n$. So $(V \cap \mathbb{R}^n) \cdot (V + \mathbb{R}^n) \subseteq V + \mathbb{R}^n$
- $V + \mathbb{R}^n$ closed under multiplying with powers of $u \in (V \cap [0,1]^n) \setminus \mathbb{R}1 \rightsquigarrow$ gives a split $[n] = P_1 \sqcup P_2$; do induction. \square

Proof of first part

Thank you!

- W.I.o.g. $\mathbb{1} := (1, ..., 1) \in X$ has $d_{\mathbb{1}} \text{Log} : T_{\mathbb{1}} X = V \to \mathbb{R}^n$ has maximal rank. If $2 \cdot \dim_{\mathbb{C}} V 1$, done.
- Otherwise, d_p Log is the map $v \mapsto \Re(v/p)$, and $\ker d_1$ Log = $V \cap i\mathbb{R}^n \neq \{i \cdot 1\}$.
- $\Psi: X \to \operatorname{Hom}_{\mathbb{R}}(V, \mathbb{R}^n), p \mapsto d_p\operatorname{Log}$ has derivative at $\mathbb{1}$ = $w \mapsto (v \mapsto \operatorname{coefficient} \operatorname{of} \varepsilon \operatorname{in} \Re(v/(\mathbb{1} + \varepsilon w))$ = $w \mapsto (v \mapsto \Re(-vw))$
- Near 1, d_p Log has constant rank $\leadsto v \mapsto \Re(-vw)$ maps $\ker(d_1 \text{Log}) = V \cap i\mathbb{R}^n$ into $\operatorname{im}(d_1 \text{Log})$ for all $w \in V$. So $(V \cap i\mathbb{R}^n) \cdot V \subseteq \operatorname{im}(d_1 \text{Log}) + i\mathbb{R}^n \subseteq V + i\mathbb{R}^n$ and $(V \cap \mathbb{R}^n) \cdot V \subseteq V + \mathbb{R}^n$. So $(V \cap \mathbb{R}^n) \cdot (V + \mathbb{R}^n) \subseteq V + \mathbb{R}^n$
- $V + \mathbb{R}^n$ closed under multiplying with powers of $u \in (V \cap [0,1]^n) \setminus \mathbb{R}\mathbb{1} \rightsquigarrow$ gives a split $[n] = P_1 \sqcup P_2$; do induction. \square