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2 - 1Amoebas

Log : (C∗)n → Rn, (z1, ... , zn) 7→ (log |z1|, ... , log |zn|)
X ⊆ (C∗)n irreducible closed subvariety

Definition
A(X ) := Log(X ) amoeba of X (essentially semi-algebraic)
Trop(X ) := limt→∞

1
t Log(X ) tropicalisation of X
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Definition
A(X ) := Log(X ) amoeba of X (essentially semi-algebraic)
Trop(X ) := limt→∞

1
t Log(X ) tropicalisation of X

Example 1
X = {(x , y) | x + y = 1} Trop(X )

A(X )Example 2
X = {(x , y) | x · y = 1}

Trop(X ) = A(X )



2 - 4Amoebas

Log : (C∗)n → Rn, (z1, ... , zn) 7→ (log |z1|, ... , log |zn|)
X ⊆ (C∗)n irreducible closed subvariety

Definition
A(X ) := Log(X ) amoeba of X (essentially semi-algebraic)
Trop(X ) := limt→∞

1
t Log(X ) tropicalisation of X

Example 1
X = {(x , y) | x + y = 1} Trop(X )

A(X )Example 2
X = {(x , y) | x · y = 1}

Trop(X ) = A(X )Example 3
T ⊆ (C∗)n a k -dimensional torus  A(T ) = Trop(T ) a k -
dim real subspace of Rn spanned by rational vectors.
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 dimR(A(X )) = dimR(A(X /T )) + 1 · dimC(T )



3 - 4Amoeba dimensions?

X ⊆ (C∗)n

Theorem (Bergman, Bieri-Groves, . . . )
Trop(X ) is a finite union of dimC X -dimensional polyhedra.

Question (Nisse-Sottile)
What about dimR(A(X ))? When smaller than 2 · dimC X?

Observation (Nisse-Sottile)
X invariant under k -dimensional subtorus T ⊆ (C∗)n

 X /T ⊆ (C∗)n/T ∼= (C∗)n−k

 A(X )→ A(X /T ) has fibres ∼= A(T ) of dimension k
 dimR(A(X )) = dimR(A(X /T )) + 1 · dimC(T )

Theorem (Nisse-Sottile)
dimRA(X ) ≥ 1 · dimC X with = iff X is a torus orbit.



4 - 1Dimension drop and near torus actions

Example 4
X ⊆ (C∗)n of dimension > n/2
 dimR(A(X )) ≤ n < 2 · dimC X .
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Example 4
X ⊆ (C∗)n of dimension > n/2
 dimR(A(X )) ≤ n < 2 · dimC X .

Definition (Nisse-Sottile, D-Rau-Yuen)
If T ⊆ (C∗)n subtorus such that A(T ) ⊆ TpA(X ) for almost
all p ∈ A(X ), then we say T nearly acts on X .

Example 2: (C∗)2 nearly acts on X .



4 - 3Dimension drop and near torus actions

Example 4
X ⊆ (C∗)n of dimension > n/2
 dimR(A(X )) ≤ n < 2 · dimC X .

Definition (Nisse-Sottile, D-Rau-Yuen)
If T ⊆ (C∗)n subtorus such that A(T ) ⊆ TpA(X ) for almost
all p ∈ A(X ), then we say T nearly acts on X .

Example 2: (C∗)2 nearly acts on X .

Proposition (D-Rau-Yuen)
dimR(A(X )) < 2 · dimC(X ) ⇒ some T , dimC(T ) > 0,
nearly acts on X . And then dimRA(X ) = dimR(A(T · X )).



4 - 4Dimension drop and near torus actions

Example 4
X ⊆ (C∗)n of dimension > n/2
 dimR(A(X )) ≤ n < 2 · dimC X .

Definition (Nisse-Sottile, D-Rau-Yuen)
If T ⊆ (C∗)n subtorus such that A(T ) ⊆ TpA(X ) for almost
all p ∈ A(X ), then we say T nearly acts on X .

Example 2: (C∗)2 nearly acts on X .

Proposition (D-Rau-Yuen)
dimR(A(X )) < 2 · dimC(X ) ⇒ some T , dimC(T ) > 0,
nearly acts on X . And then dimRA(X ) = dimR(A(T · X )).

Theorem (D-Rau-Yuen)
dimRA(X ) = min{2 · dimC T · X − dimC T | T subtorus}



5 - 1Trop(X ) knows dimRA(X )

Corollary
dimRA(X ) = min{2 · dimR(Trop(X ) + T )− dimR(T ) |

T ⊆ Rn subspace spanned by rational vectors}

Theorem (D-Rau-Yuen)
dimRA(X ) = min{2 · dimC T · X − dimC T | T subtorus}
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5 - 3Trop(X ) knows dimRA(X )

Corollary
dimRA(X ) = min{2 · dimR(Trop(X ) + T )− dimR(T ) |

T ⊆ Rn subspace spanned by rational vectors}

Theorem (D-Rau-Yuen)
dimRA(X ) = min{2 · dimC T · X − dimC T | T subtorus}

Open
Is this computable from the data of finitely many polyhedra?

Observation
If X = V ∩ (C∗)n, where V ⊆ Cn is a C-linear subspace
 Trop(X ) = Bergman fan B(MV ) of matroid MV on [n].
Can dimRA(X ) be computed efficiently in this case?



6 - 1Amoeba dimensions of linear spaces

X = V ∩ (C∗)n, M = MV the matroid of V
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X = V ∩ (C∗)n, M = MV the matroid of V

Theorem (D-Eggleston-Pendavingh-Rau-Yuen)
dimRA(X ) = min{∑k

i=1(2 · rkM (Pi )− 1) |
[n] = P1 t · · · t Pk , all Pi 6= ∅} =: (∗)

and this can be computed deterministically in polynomial
time in the bitsize of a matrix with row span V .
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X = V ∩ (C∗)n, M = MV the matroid of V

Remarks
• ≤ follows from V ⊆ ∏i VPi

so that A(X ) ⊆ ∏i A(XPi
)

• Proof of ≥ is independent of DRY.
• (∗) defines a matroid M ′, 1 · rk(M) ≤ rk(M ′) ≤ 2 · rk(M).
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6 - 4Amoeba dimensions of linear spaces

X = V ∩ (C∗)n, M = MV the matroid of V

Remarks
• ≤ follows from V ⊆ ∏i VPi

so that A(X ) ⊆ ∏i A(XPi
)

• Proof of ≥ is independent of DRY.
• (∗) defines a matroid M ′, 1 · rk(M) ≤ rk(M ′) ≤ 2 · rk(M).

Open: Does this hold for all loop-free matroids on [n]?
(∗) = min{2 · dimR(B(M) + T )− dimR(T ) |

T ⊆ Rn subspace spanned by rational vectors}

Theorem (D-Eggleston-Pendavingh-Rau-Yuen)
dimRA(X ) = min{∑k

i=1(2 · rkM (Pi )− 1) |
[n] = P1 t · · · t Pk , all Pi 6= ∅} =: (∗)

and this can be computed deterministically in polynomial
time in the bitsize of a matrix with row span V .
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• W.l.o.g. 1 := (1, ... , 1) ∈ X has d1Log : T1X = V → Rn

has maximal rank. If 2 · dimC V − 1, done.
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• W.l.o.g. 1 := (1, ... , 1) ∈ X has d1Log : T1X = V → Rn

has maximal rank. If 2 · dimC V − 1, done.

• Otherwise, dpLog is the map v 7→ <(v/p), and
ker d1Log = V ∩ iRn 6= {i · 1}.
• Ψ : X → HomR(V , Rn), p 7→ dpLog has derivative at 1

= w 7→ (v 7→ coefficient of ε in <(v/(1 + εw))
= w 7→ (v 7→ <(−vw))

• Near 1, dpLog has constant rank v 7→ <(−vw) maps
ker(d1Log) = V ∩ iRn into im(d1Log) for all w ∈ V . So
(V ∩ iRn) · V ⊆ im(d1Log) + iRn ⊆ V + iRn and
(V ∩Rn) · V ⊆ V + Rn. So (V ∩Rn) · (V + Rn) ⊆ V + Rn

• V + Rn closed under multiplying with powers of u ∈ (V ∩
[0, 1]n) \R1 gives a split [n] = P1 t P2; do induction. �

Thank you!
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