Algebro-geometric problems arising from statistics

Jan Draisma

Groningen, 16 March 2010

 \blacktriangleleft \blacktriangle \blacktriangleright \blacktriangleright

Parametric statistical models

 Θ : parameter space

 Ω : sample space

 $\mathcal{M} = \{P_{\theta}, \ \theta \in \Theta\}$ probability distributions on Ω

often $\Theta \subseteq \mathbb{R}^d$ semi-algebraic and $\theta \mapsto P_\theta$ "polynomial" \leadsto "algebraic statistics"

Vignette:

Types of algebro-geometric problems

equations for $\{P_{\theta} \mid \theta \in \Theta\}$?

 \rightsquigarrow test $P_{\text{empirical}} = P_{\theta}$ for some θ ?

→ implicitisation problem

identifiability?

→ too many parameters?

relations among models in **families**?
→ increasing # random variables

. . .

Today:

two theorems one well-known conjecture (perhaps one puzzle)

General Markov Model

```
T=(V,E,r) : finite (rooted) tree \Omega_v,\ v\in V : finite sets \Theta=\{[\pi_r,(A_{u\to v})_{u\to v\in E}]\} A_{u\to v} stochastic matrix X_u\to X_v \Omega=\prod_{v\ \mathrm{leaf}\ \mathrm{of}\ T}\Omega_v
```

$$\theta = (A_{u \to v}) \mapsto P_{\theta}$$
:
 π_r on Ω_r
 $u \to v$ mutate according to $A_{u \to v}$

[Transmutation of species, 1837]

```
Gene: BCCIP (ENSPTRG00000003043)

Location: Chromosome 10: 126,795,545-126,826,189 forward strand.

Pan_troglodytes CGGGCCCCTGCACGCCCGCGGGCCTCGG....

Homo_sapiens CGGGCCCCTGCACGCCCGCGGGCCTCGG....

Pongo_pygmaeus CGGGCCCCTGCACGACCGCGGGCCTCGG....

Macaca_mulatta TGGGCCCCTGCATGCCCGCGGGCCTCGG....

[Data from www.ensembl.org]
```

General Markov Model, continued

Two operations:

$$\begin{array}{l} \text{flattening at } r \\ \mathcal{M}(T) \subseteq \mathcal{M}(\flat_r T) \\ \text{eqs}(\mathcal{M}(T)) \supseteq \text{eqs}(\mathcal{M}(\flat_r (T))) \end{array}$$

moving r: $\mathcal{M}(T,r) = \mathcal{M}(T,s)$

$$\rightsquigarrow \mathcal{M}(T) \subseteq \mathcal{M}(\flat_v T) \text{ for all } v \in V(T)$$

Theorem (Allman-Rhodes 2008) (D-Kuttler 2009):
$$\mathcal{M}(T) = \bigcap_{v \in V(T)} \mathcal{M}(\flat_v T) \qquad \text{eqs}(\mathcal{M}(T)) = \sum_{v \in V(T)} \text{eqs}(\mathcal{M}(\flat_v T))$$

Gaussian factor analysis

$$Z_1, \ldots, Z_k \sim \mathcal{N}(0, 1)$$
 independent factors X_1, \ldots, X_n observed $X_i = \sum_{j=1}^k s_{ij} Z_j + \epsilon_i$ $\epsilon_i \sim \mathcal{N}(0, v_i)$ independent noise $\theta \mapsto P_\theta$: $(S, v) \mapsto SS^T + \operatorname{diag}(v)$ $\mathcal{M}_{k,n} = \{\Sigma = SS^T + \operatorname{diag}(v) \mid (S, v) \in \Theta\}$

Raymond Cattell (1971): **fluid** vs **crystallised** intelligence

Proposal (Drton, Sturmfels, Sullivant 07): use polynomial relations among entries of Σ to test the model against data

Example
$$k = 2, n = 5$$
:
$$\sum_{\pi \in \text{Sym}(5)} \text{sgn}(\pi) \sigma_{\pi(1)\pi(2)} \sigma_{\pi(2)\pi(3)} \sigma_{\pi(3)\pi(4)} \sigma_{\pi(4)\pi(5)} \sigma_{\pi(5)\pi(1)} = 0, \text{ the pentad}$$

Gaussian factor analysis, continued

Observation:

$$\Sigma \in \mathcal{M}_{k,n} \Rightarrow \Sigma[I] \in \mathcal{M}_{k,\#I}$$

Question:

equations for $\mathcal{M}_{k,n}$ as $n \to \infty$?

 $\exists ? n_0 \ \forall n \geq n_0 \ \text{all equations for} \ \mathcal{M}_{k,n} \ \text{are generated by those for} \ \mathcal{M}_{k,n_0}$

Theorem:

```
yes for k = 1 (n_0 = 4, de Loera, Sturmfels, Thomas 1995) yes for k = 2 (n_0 = 6, Brouwer-D, 2010) set-theoretically yes for all k (D, 2010)
```

Independence and its first mixture

Independence:

 X_1, X_2, X_3, \ldots binary, independent assume $\lambda := P(\forall i : X_i = 0) > 0$ $p_i := P(X_i = 1)/P(X_i = 0)$ $p_I := \lambda \prod_{i \in I} p_i, \ I \subseteq \mathbb{N}$ finite polynomial relations:

$$p_I p_J - p_K p_L = 0 \text{ if } I \stackrel{\cdot}{\cup} J = K \stackrel{\cdot}{\cup} L$$

Second copy:

 Y_1, Y_2, Y_3, \dots binary, independent $q_i := P(Y_i = 1)/P(Y_i = 0)$, q_I etc.

Mixture:

H binary, P(H=1) = s $Z_i := \begin{cases} X_i & \text{if } H=0 \\ Y_j & \text{if } H=1 \end{cases}$

Independence and its first mixture, continued

$$r_I := P(Z_i = 1 \text{ if } i \in I \text{ and } 0 \text{ if } i \notin I) = (1 - s)p_I + sq_I$$

Polynomial relations?

Certainly
$$\sum_{\pi \in S_3} \operatorname{sgn}(\pi) r_{I_1 \cup J_{\pi(1)}} r_{I_2 \cup J_{\pi(2)}} r_{I_3 \cup J_{\pi(3)}}$$
 where $(I_1 \cup I_2 \cup I_3) \cap (J_1 \cup J_2 \cup J_3) = \emptyset$

Conjecture (Garcia, Stillman, and Sturmfels 2005): these cubic determinants generate all equations among the r_I

Remark:

proved set-theoretically by Landsberg and Manivel 2004

(Realistic?) Dream:

a finite computer calculation might settle GSS!

Higher mixtures of independence

Puzzle: take $n \neq 4$ write $2^n = q(n+1) + r$ with $0 \leq r < n+1$ by repeated cutting with hyperplanes decompose $\{0,1\}^n \subseteq \mathbb{R}^n$ into: q affinely independent (n+1)-sets 1 affinely independent $2^n - k(n+1)$ -set

→ identifiability of higher (tropical) mixtures of independence

Bibliography

- [1] Elizabeth S. Allman and John A. Rhodes. Phylogenetic ideals and varieties for the general Markov model. *Adv. Appl. Math.*, 40(2):127–148, 2008.
- [2] Andries E. Brouwer and Jan Draisma. Equivariant Gröbner bases and the two-factor model. *Math. Comput.*, 2010. To appear; preprint available from http://arxiv.org/abs/0908.1530.
- [3] Jan Draisma. A tropical approach to secant dimensions. *J. Pure Appl. Algebra*, 212(2):349–363, 2008.
- [4] Jan Draisma. Finiteness for the k-factor model and chirality varieties. *Adv. Math.*, 223:243–256, 2010.
- [5] Jan Draisma and Jochen Kuttler. On the ideals of equivariant tree models. *Math. Ann.*, 344(3):619–644, 2009.
- [6] Mathias Drton, Bernd Sturmfels, and Seth Sullivant. Algebraic factor analysis: tetrads, pentads and beyond. *Probab. Theory Relat. Fields*, 138(3–4):463–493, 2007.
- [7] Mathias Drton, Bernd Sturmfels, and Seth Sullivant. *Lectures on Algebraic Statistics*. Oberwolfach Seminars 39. Birkhäuser, Basel, 2009.
- [8] Luis D. Garcia, Michael Stillman, and Bernd Sturmfels. Algebraic geometry of Bayesian networks. *J. Symb. Comp.*, 39(3–4):331–355, 2005.
- [9] Joseph M. Landsberg and Laurent Manivel. On the ideals of secant varieties of Segre varieties. *Found. Comput. Math.*, 4(4):397–422, 2004.

11/11