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Preface

The topic of this thesis dates back to Sophus Lie, who introduced Lie algebras of
vector fields for his study of differential equations. Lie worked especially hard to classify
the finite-dimensional transitive Lie algebras up to coordinate changes; he completed
the case of two variables, and published many classes of transitive Lie algebras in three
variables. This thesis presents a variety of results on finite-dimensional, often transitive,
Lie algebras of vector fields in any number of variables, without trying to perform the
hopeless job of classifying them.

The Realization Theorem of Guillemin and Sternberg translates transitive Lie al-
gebras in n variables with formal power series coefficients to pairs (g, k), where k is an
ideal-free subalgebra of codimension n in the Lie algebra g. Blattner’s proof of their
theorem leads to an explicit formula for a realization of such an abstract pair. This
Realization Formula and its consequences are treated in Chapter 2.

Once we are able to compute realizations with formal power series coefficients,
the question arises whether smaller algebras of coefficients suffice. For example, in
Section 2.3 we prove that our Realization Formula always leads to absolutely convergent
coefficients. More restrictively, Lie conjectured that each finite-dimensional transitive
Lie algebra has a conjugate in which the coefficients are polynomials in the variables
xi and the exponential functions exp(λxi) for some constants λ; in Chapter 2 we prove
this conjecture in several special cases, in particular the case where n ≤ 3. However, the
arguments needed for n = 3 are already so ad hoc that I am tempted to disbelieve the
conjecture for n sufficiently large. In analogy, section 2.7 treats the question of whether
any transitive Lie algebra has a conjugate with coefficients that are algebraic functions.
This is true for n = 1, but we show that it is not true for n ≥ 2. It seems to me that
a similar trick should eventually settle Lie’s conjecture. The main results of Chapter
2 are Theorem 2.3.1, which presents the explicit realization formula mentioned above;
Theorem 2.3.4, stating the equivalence of classification of formal transitive Lie algebras
with classification of convergent ones; Theorem 2.2.4, which proves a special case of
Lie’s conjecture; and Theorem 2.2.5, which proves Lie’s conjecture in codimensions up
to three.

Chapter 3 deals with a particularly nice class of transitive Lie algebras, namely
those corresponding to pairs (g, k) as before, with the additional condition that k be
maximal in g. There is a natural notion of inclusion of one such pair in another one of
the same codimension, and this chapter investigates the existence and non-existence of
inclusions between such pairs. Not surprisingly, these results have meanings in terms of
realizations, and in terms of embeddings between homogeneous spaces in the algebraic
group setting. The main results of Chapter 3 are Theorem 3.4.4, showing that there
are only few inclusions among so-called simple-parabolic pairs; and Theorem 3.5.9,
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ii PREFACE

Conjecture 3.5.12 and Theorem 3.5.15, which are similar non-existence statements on
embeddings into simple-parabolic pairs.

Polynomial coefficients appear in the context of Blattner’s realization, see Section
2.4, but also in the setting of algebraic group actions, which are the topic of Chapter
4. Indeed, if an affine algebraic group G acts on an algebraic variety V, then there is a
natural action of the Lie algebra g of G by derivations on the sheaf of regular functions
on V. In particular, on an open subset U of V that is isomorphic to an affine space, this
yields a realization of g by means of polynomial vector fields. More generally, if U is an
open affine subset of V, then we have an action of g by derivations on the affine algebra
K[U ]. This raises a natural inverse question: given a Lie algebra g acting by derivations
on an affine algebra K[U ], does this action correspond to an algebraic group action on
U, or on an algebraic variety containing U as an open dense subset? This question, too,
is treated in Chapter 4. The main results of this chapter are Theorems 4.4.2 and 4.5.4,
presenting necessary and sufficient conditions, in the locally finite and the general case
respectively, for a Lie algebra of vector fields to integrate to an algebraic group action;
and their consequences, Theorems 4.1.1, 4.1.2 and 4.1.3.

Chapter 5 deals with representation theory connected with certain transitive Lie
algebras, namely the simple graded Lie algebras of depth 1. Both Blattner’s realization
and the algebraic group argument show that such a Lie algebra g has a graded transi-
tive embedding into the Lie algebra D of derivations on a polynomial algebra, and we
investigate the structure of D as a g-module. This structure is closely related to the
beautiful theory of (generalized) Verma modules and the category O. The main results
of this chapter are Theorem 5.4.2 and Conjectures 5.4.4 and 5.4.5, which describe the
irreducible composition factors of D.
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CHAPTER 1

Introduction

The intention of this introduction is threefold. First, it is meant to present the
subject of this thesis and to expose the relations between the rather diverse themes of the
subsequent chapters. Second, this chapter will give a brief overview of the history of the
area, touching, however, only those contributions that are indispensable to appreciate
the general theme of the present work. Third, this introduction serves its name well in
introducing some terminology that is used throughout the thesis at hand.

When describing the history of a mathematical subject, it is convenient to have
the modern terminology of the area at one’s avail, which is after all the product of an
evolution in which suitability to explain known phenomena and to explore new ones is
the main selection rule. Therefore, I choose to start with Guillemin and Sternberg’s de-
scription of transitive differential geometry, before describing the works of Lie, Morozov,
and Dynkin.

1.1. Formal Transitive Differential Geometry

There is a close analogy between Guillemin and Sternberg’s theory of transitive
differential geometry and the notion of transitive group actions, so we first review the
latter briefly.

A pair (G,H) of groups, where H is a subgroup of G, defines the homogeneous
space G/H with base point eH, on which G acts transitively. The action is faithful (or
‘effective’) if and only if H contains no non-trivial normal subgroups of G, and primitive
if and only if H is a maximal subgroup of G. Conversely, if G acts transitively on a set
V , and if p0 ∈ V , then V can be identified, as a set with G-action, with G/Gp0 , where
Gp0 is the stabilizer of p0 in G.

There is yet another point of view: if G acts on a set V (not necessarily transitively),
and if K is a field, then G acts on the set KV of K-valued functions on V by gf(p) =
f(g−1p) for all g ∈ G, f ∈ KV and p ∈ V . Pointwise multiplication and addition
defines the structure of a K-algebra on KV , and for all g ∈ G the map f 7→ gf is
an automorphism of this algebra. Conversely, under additional assumptions on K and
V , and when restricting to some subalgebra R of KV , one may recover V from R as
the set of all maximal ideals of the latter. This is the case, for example, when V is
finite and R = KV , or when K is algebraically closed, V is an affine algebraic variety
over K, and R = K[V ] is the algebra of regular functions on V ([5], AG.5). If, in
addition, R is invariant under the action of G defined above, then G permutes the
maximal ideals of R, and we thus recover the action of G on V . In the case where V is
finite and R = KV , this condition is automatically fulfilled; in the second example, the
condition that G be an affine algebraic group over K and that the action of G on V be
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2 CHAPTER 1. INTRODUCTION

a morphism G×V → V of algebraic varieties, is sufficient for invariance of K[V ] under
G. Somewhat imprecisely, we thus find a correspondence between pairs (G,H) where
H is a subgroup of the group G, and triples (G,R, I) where G acts by automorphisms
on the commutative algebra R permuting the maximal ideals transitively, and where I
is a maximal ideal in R.

Formal transitive differential geometry constructs a similar correspondence between
pairs (g, h) where h is a subalgebra of the Lie algebra g, and—in some sense transitive—
actions of g by derivations on some algebra. To introduce the latter, let A be an
associative (not necessarily commutative) algebra over a field K and let M be a A-
bimodule. Then DerK(A,M) is the space of all K-linear maps X : A → M satisfying
Leibniz’ rule: X(ab) = X(a)b+ aX(b) for all a, b ∈ A. Note that, if A is commutative,
then we can turn any left A-module M into an A-bimodule by setting ma = am for
all a ∈ A and m ∈ M . The elements of DerK(A,M) are called derivations on A with
values in M . In particular, we write DerK(A) for DerK(A,A), where the left action
and the right action of A on itself are left and right multiplication, respectively. The
elements of DerK(A) are simply called derivations on A. They are also defined for non-
associative K-algebras, and DerK(A) is a Lie algebra with respect to the commutator.
If A is a finitely generated commutative integral domain, then derivations of A may be
interpreted as vector fields on the affine algebraic variety SpecK(A).

Let K be a field of characteristic zero, let n be a positive integer, and let x =
(x1, x2, . . . , xn) denote a list of indeterminates. Denote by K[[x1, . . . , xn]] = K[[x]] the
K-algebra of formal power series in the xi with coefficients from K. Its elements are
written as

f =
∑

m∈Nn
cmxm,

where xm :=
∏n
i=1 x

mi
i for m = (m1, . . . ,mn) a multi-index. The algebra K[[x]] is local

with maximal ideal
M := {f ∈ K[[x]] | f(0) = 0}.

The powers of M are of the form

Md =

{ ∑
m∈Nn

cmxm | cm = 0 for |m| < d

}
,

where |m| := m1 + . . .+mn is the total degree of m. They form a fundamental system
of neighbourhoods of 0 in the so-called M -adic topology. Automorphisms of K[[x]] leave
M , whence every power of M , invariant, and are therefore continuous in the M -adic
topology; they are also called coordinate changes. Similarly, derivations of K[[x]] map
Md into Md−1, and are also continuous. Therefore, elements of AutK(K[[x]]) and
DerK(K[[x]]) are determined by their values on the xi; this implies that elements of the
latter space can be written as

n∑
i=1

fi∂i,

where the fi are elements of K[[x]] and the derivations ∂i are defined by

∂i

( ∑
m∈Nn

cmxm

)
:=

∑
m∈Nn

cm+ei(mi + 1)xm,
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in which ei denotes the i-th standard basis vector of Nn. The formal power series fi
are called the coefficients of the derivation. The commutator turns DerK(K[[x]]) into
a Lie algebra over K, which we shall denote by D̂(n) if we want to stress the number of
variables, and by D̂ otherwise. Its elements are also called (formal) vector fields.

The Lie algebra D̂ has a natural filtration

D̂ = D̂−1 ⊃ D̂0 ⊃ D̂1 ⊃ D̂2 ⊃ . . .

where D̂d consists of those derivations all of whose coefficients are in Md+1, or, equi-
valently,

D̂d := {X ∈ D̂ | X(Me) ⊆Md+e for all e ∈ N}.
Note that D̂0 contains no non-zero D̂-ideals: let X be a non-zero element of D̂ and let
m ∈ Nn be such that xm occurs in some coefficient of X. Then it is easily seen that

ad(∂1)m1 · · · ad(∂n)mnX

is an element of D̂−1\D̂0; here we use the fact that charK = 0. We have now introduced
all terminology needed for the notion of transitive Lie algebras.

Definition 1.1.1. A subalgebra l of D̂(n) is called transitive if l∩ D̂0 has codimen-
sion n in l, and intransitive otherwise.

For any subalgebra l of D̂(n) we have codiml(l ∩ D̂
(n)
0 ) ≤ codimD̂(n) D̂

(n)
0 = n; l is

transitive if and only if equality holds. A note regarding the terminology ‘transitive’
is in order here. We can think of a subalgebra l of D̂(n) as describing the infinitesimal
action of a Lie group near the point 0. The condition that l be transitive means that
evaluation at 0 maps l surjectively to the tangent space at 0, i.e., the Lie group action
moves the origin in all directions.

This completes one point of view on formal transitive differential geometry. The
second deals with pairs (g, k), where g is a Lie algebra over K and k is a subalgebra of
g. Such pairs form a category, in which the morphisms (g1, k1) → (g2, k2) are the Lie
algebra homomorphisms φ : g1 → g2 with the property that φ−1(k2) = k1; such a φ
induces an embedding g1/k1 → g2/k2 of vector spaces. The following definition relates
the pairs (g, k) to formal vector fields.

Definition 1.1.2. A realization of (g, k) in n variables is a morphism φ : (g, k) →
(D̂(n), D̂

(n)
0 ). The realization is called transitive if the image is transitive in the sense

of Definition 1.1.1. The coefficients of derivations in the image φ(g) are called the
coefficients of φ.

A realization of (g, k) in n variables induces an embedding of vector spaces g/k →
D̂(n)/D̂

(n)
0 . As the latter vector space is n-dimensional, the pair (g, k) can only have a

realization in n variables if codimg k ≤ n. Moreover, a realization of (g, k) in n variables
is transitive if and only if codimg k = n.

Now suppose that we have a transitive realization φ of (g, k) in n variables. Then
kerφ is the maximal g-ideal i contained in k (which exists because the sum of all g-ideals
contained in k is again a g-ideal, and contained in k). Indeed, we have

kerφ = φ−1(0) ⊆ φ−1(D̂0) = k,



4 CHAPTER 1. INTRODUCTION

so that kerφ ⊆ i. Conversely, as φ(g) is transitive, D̂ is spanned by φ(g) and D̂0, so
that U(D̂) = U(D̂0)U(φ(g)), where U(l) denotes the universal enveloping algebra of l.
Hence, with respect to the U(D̂)-module structure on D̂ extending the adjoint action
of D̂ on itself we have

U(D̂)φ(i) = U(D̂0)U(φ(g))φ(i) = U(D̂0)φ(i) ⊆ D̂0,

where the second equality follows from the fact that i is a g-ideal. We conclude that
U(D̂)φ(i) is a D̂-ideal contained in D̂0, whence zero by an earlier observation.

We thus find that a transitive realization φ of a pair (g, k) is injective if and only if
k contains no non-zero g-ideal; compare this with the fact that the action of a group G
on a homogeneous space G/H is faithful if and only if H contains no non-trivial normal
subgroups of G. This analogy gives rise to the following definition.

Definition 1.1.3. The pair (g, k) is called effective if k contains no non-zero g-ideal.
The pair (g/i, k/i), where i is the maximal g-ideal contained in k, is called the effective
quotient of (g, k). The pair (g, k) is called primitive if k is maximal in g, and imprimitive
otherwise. It is called finite-dimensional if g is finite-dimensional. The codimension of
k in g is called the codimension of the pair (g, k). A transitive subalgebra l if D̂ is called
primitive if (l, l ∩ D̂0) is a primitive pair; otherwise, it is called imprimitive.

From the above it follows that transitive realizations of a pair (g, k) are in bijective
correspondence with realizations of its effective quotient.

A few remarks on this definition are in order here. The first one concerns the word
‘maximal’: throughout this thesis, a subalgebra k of a Lie algebra g is called maximal if
k is maximal, with respect to inclusion, among the proper subalgebras of g. Second, the
maximal g-ideal i contained in k can be computed using the Weisfeiler filtration [30]:
define g−1 = g, g0 := k, and for d ≥ 0,

gd+1 := {X ∈ gd | [X, g−1] ⊆ gd};

then i =
⋂∞
d=−1 gd. Moreover, the Weisfeiler filtration of (D̂, D̂0) coincides with the

filtration introduced earlier, and a transitive realization of (g, k) is a homomorphism
g → D̂ of filtered Lie algebras. Third, we will usually not be interested in the whole
category of pairs (g, k), but in its full subcategories consisting of pairs of a fixed (and
finite) codimension. Put differently, we will only compare pairs of the same codimension.

There exists a different (weaker) notion of primitivity in the literature, studied by
Golubitsky in [21]. The following example explains the motivation for this notion.

Example 1.1.4. Let G be the Lie group SL2(R) and let H be the Cartan subgroup
{diag(t, t−1) | t ∈ R∗}. Denote by g and h the Lie algebras of G and H, respectively.
The normalizer normGH of H in G is the union of H and the set{(

0 t
−t−1 0

)
| t ∈ R∗

}
.

The group normGH is a maximal proper subgroup of G, so that the action of G on
G/ normGH is primitive. On the other hand, the Lie algebra of normGH is h. This
motivates a definition of primitivity in which the pair (g, h) is primitive, even though h
is not a maximal subalgebra of g.
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In this thesis, however, we shall always use the notion of primitivity of Definition
1.1.3. For a concrete transitive subalgebra l of D̂, the inclusion l→ D̂ is a realization of
the pair (l, l∩ D̂0). The following theorem, due to Guillemin and Sternberg [31], shows
that, conversely, any abstract pair has a transitive realization which is unique up to the
natural action of Aut(K[[x]]) on realizations: for X ∈ D̂ and θ ∈ Aut(K[[x]]), the map
θXθ−1 ∈ EndK(K[[x]]) is also an element of D̂. Hence, if φ : g → D̂ is a transitive
realization of (g, k), then the map X 7→ θφ(X)θ−1 is also a transitive realization of (g, k).

Theorem 1.1.5 (Realization Theorem). Let g be a Lie algebra over K and let
k be a subalgebra of finite codimension n. Then there exists a transitive realization
φ : g → D̂(n) of the pair (g, k). Moreover, if ψ is another such realization, then there
exists a unique automorphism θ of K[[x]] such that θ ◦ φ(X) = ψ(X) ◦ θ for all X ∈ g.

By this theorem, a proof of which is reviewed in Section 2.3, two effective pairs
(g1, k1) and (g2, k2) are isomorphic if and only if their transitive realizations are related
by a coordinate change. This allows us to go back and forth between the abstract
point of view and the concrete one, and reason on whichever side is most convenient.
For example, to prove that a transitive subalgebra l of D̂(n) is maximal among the
finite-dimensional transitive Lie algebras in n variables is the same as proving that the
transitive pair (l, l∩D̂) is maximal among the finite-dimensional pairs of codimension n,
where, in the latter case, we call a pair (g1, k1) a subpair of the pair (g2, k2) if there exists
an injective morphism from the former pair to the latter. This approach is followed in
Chapter 3.

1.2. History of the Subject

Sophus Lie. At the end of the 19th century, Sophus Lie devised his theory of sym-
metries of differential equations [42]. For an informal discussion of his work, consider
the following fourth order ordinary differential equation (o.d.e.):

y(4) − 5(y(3))2

3y(2)
− (y(2))5/3 = 0,

where y(i) stands for the i-th derivative of the dependent variable y with respect to
the independent variable x. It is clear from the equation that its set of integral curves
in the (x, y)-plane is invariant under translation in the x-direction. The infinitesimal
generator of this operation, the vector field ∂x, is therefore called a symmetry of the
equation. Similarly, the infinitesimal generator x∂y − y∂x of rotation about the origin
is a symmetry of the equation, as is made plausible by Figure 1 on the following page.
This figure also shows that Lie symmetries describe local phenomena: there is no claim
whatsoever that the set of maximal integral curves is invariant under the group of all
rotations about the origin.

Lie showed that the symmetries of any o.d.e. of order at least 2 form a finite-
dimensional Lie algebra of vector fields in the variables x and y, and obtained a system
of linear partial differential equations, called the determining system [46], whose solution
space is precisely the Lie algebra of symmetries of the o.d.e. In the o.d.e. at hand, the
solution of this system is the Lie algebra

〈∂x, ∂y, x∂y, x∂x − y∂y, y∂x〉.
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Figure 1. Some integral curves of the o.d.e.

This motivated Lie to pursue the classification of all finite-dimensional Lie algebras of
vector fields in two variables. Slightly more accurately, his classification concerned Lie
algebras l of local vector fields near a fixed origin 0, which was assumed to be a ‘point
of regularity’: for p in a neighbourhood of 0, the dimension of l|p should be constant.
First, Lie classified the Lie algebras of vector fields in one variable, and found that
there are three classes of them, namely 〈∂x〉, 〈∂x, x∂x〉 and 〈∂x, x∂x, x2∂x〉. For the
case of two variables, Lie distinguished between transitive Lie algebras, for which the
dimension of l|0 equals 2, or equivalently: the codimension of the isotropy subalgebra
l0 in l is 2; and the intransitive ones, for which this is not the case. He put most effort
into classifying Lie algebras of the former type. Among these, he distinguished further
between the imprimitive Lie algebras, for which the corresponding local Lie group leaves
a foliation invariant, or equivalently: for which l0 is not a maximal subalgebra of l; and
the primitive ones, for which it is. Lie showed that there are only three primitive Lie
algebras in two variables, and proceeded with the classification of the imprimitive ones
by choosing an intermediate subalgebra p between l0 and l. The effective quotients of
(l, p) and (p, l0) are then both among the three transitive Lie algebras in one variable.
This leads to nine cases, which Lie handled one by one. A version of his classification
[41] can be found in Tables 1 and 2 of Appendix A of this thesis.

Lie did not make entirely clear what he was classifying: algebras of smooth, analytic,
real or complex vector fields, but his classification coincides with the classification of
finite-dimensional formal transitive Lie algebras in two variables over an algebraically
closed field of characteristic zero. Theorem 2.3.4 of this thesis explains why the latter
classification is identical to that of finite-dimensional convergent transitive Lie algebras.
Over the real numbers, the classification is slightly different [23]. It is worth noticing
that by the Realization Theorem, the orbit of the Lie algebra l of symmetries of an
o.d.e. under coordinate changes is determined by the abstract pair (l, l0), provided that
l is transitive. This fact is exploited in [17] to determine the symmetry type of an o.d.e.
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After classifying the finite-dimensional transitive Lie algebras in two variables, Lie
proceeded with the case of three variables in much the same way; let us formulate
this approach for formal transitive Lie algebras in three variables. By the Realization
Theorem, these are parameterized by pairs (g, k), where g is a finite-dimensional Lie
algebra and k is a subalgebra of g of codimension 3 that contains no g-ideal. We
distinguish three (possibly non-disjoint) cases: either k is maximal in g, or there exists
a maximal subalgebra k1 of g that contains k as a maximal subalgebra, or there exist
subalgebras k1, k2 of g such that

g ) k2 ) k1 ) k.

First, Lie handled the primitive Lie algebras in three variables. Let us estimate the
amount of work needed to complete the classification from this point. In the second
case, there are two possibilities: codimg k1 = 1 or 2. In either case, the effective quotients
of (g, k1) and (k1, k) are primitive, and there are three possibilities for each. This leads
to 2 ∗ 3 ∗ 3 = 18 cases to be considered one by one, and Sophus Lie did so. In the third
case, there are three possibilities for each of the effective quotients of (g, k2), (k2, k1)
and (k1, k); this leads to 27 cases. Lie claims to have performed this task as well, but
found the result too lengthy for publication. He did, however, notice the remarkable
phenomenon that each class of transitive Lie algebras in one, two or three variables has a
representative in which each coefficient is a polynomial in the xi and some exponentials
exp(λxi). This fact, and its conjectural generalization to higher dimensions, is treated
in Chapter 2.

Morozov and Dynkin. While classification of finite-dimensional transitive Lie
algebras in n variables seems, even for n = 4 or n = 5, a hopeless job, the more
modest task of classifying the primitive ones among them is feasible. Indeed, over
an algebraically closed field of characteristic 0, this classification was completed by
Morozov and Dynkin in the late 1930s and the early 1950s, respectively [18], [19], [45].
In the remainder of this section, we assume that K indeed is algebraically closed, and
of characteristic 0 as always.

By a relatively easy argument, which can also be found in [21], Morozov showed
that if (g, k) is a primitive effective pair and g is not simple, then either g = knm, where
m is an Abelian ideal on which k acts faithfully and irreducibly—so that k is semisimple
plus, possibly, a one-dimensional center—or g = k1⊕ k2, where k1 and k2 are isomorphic
simple Lie algebras, and k is the diagonal subalgebra.

If g is simple, then by a result of Karpelevich a maximal subalgebra k of g either
is reductive or contains a Borel subalgebra of g [38]; in the latter case k is called a
parabolic subalgebra of g. The classification of the reductive maximal subalgebras of
simple Lie algebras was completed by Dynkin. A few lines in this introduction would
not do justice to his results, so I refer to Chapter 3 for a detailed account of them.

This leaves the parabolic subalgebras of simple Lie algebras. As we shall encounter
these in several chapters, let us describe them in detail. The most convenient way to
do so is in terms of the root system, and this description applies to general semisimple
Lie algebras. Fix a Cartan subalgebra h of g and denote by ∆ ⊆ h∗ the root system.
For α ∈ ∆, denote by gα the corresponding root space. Choose a fundamental system
Π ⊆ ∆ and denote by ∆± the corresponding sets of positive and negative roots. Let
Π0 be a subset of Π and let ∆0 be the intersection of the Z-linear span of Π0 and ∆.
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Define
pΠ0 := h⊕

⊕
α∈∆0∪∆+

gα;

clearly pΠ0 contains the Borel subalgebra

b := h⊕
⊕
α∈∆+

gα.

Conversely, any parabolic subalgebra of g is conjugate, by an inner automorphism, to
a unique parabolic subalgebra of the form pΠ0 ([34], page 88). The maximal parabolic
subalgebras of g are obtained by taking Π0 = Π \ {β} for some β ∈ Π; in this case
we shall write pβ for pΠ0 , or pi, where i is the label of the node corresponding to β
in the Dynkin diagram, in the standard labelling of [7]. Note that pβ 6= p{β}; this
disadvantage of our notation is compensated by the frequent appearance of maximal
parabolic subalgebras in Chapter 3.

Guillemin, Sternberg, and Blattner. As mathematics evolves, it gets harder
and harder to give credit to everyone who contributed to the creation of new theory.
This is reflected by the increasing number of mathematicians in the titles of subsections
in the current section. I have chosen, however, to pay most attention to the work of
mathematicians that directly inspired my research for this thesis.

The infinite-dimensional counterpart of the classification of primitive Lie algebras
over an algebraically closed field was initiated by Cartan, and his results were proved in
more sophisticated ways by Weisfeiler in [61] and by Guillemin in [30]. Together with
Sternberg, Guillemin had earlier described a general framework for formal transitive
differential geometry [31]; in particular, the Realization Theorem is proved in that
paper. A few years later, Blattner gave a constructive proof of that theorem in [4].

This thesis does not treat infinite-dimensional transitive Lie algebras, but it does
use Guillemin and Sternberg’s framework for finite-dimensional ones. Indeed, Section
1.1 is based entirely on their ideas.

1.3. Topics of this Thesis

Realizations with Nice Coefficients. Once we are able to compute realizations
of abstract pairs (g, k) in terms of vector fields with formal power series coefficients, we
wonder whether realizations with coefficients in certain subalgebras A ⊆ K[[x]] exist.
We shall encounter the following subalgebras of K[[x]].

(1) K[x], the algebra of polynomials in the xi. A realization with coefficients in
K[x] is called polynomial. Its image can be seen as a subalgebra of the Lie
algebra D(n) = D of polynomial vector fields.

(2) Algebraic functions: suppose that K is algebraically closed and that p is a
simple point on an algebraic variety V over K of dimension n. Then the
completion of the local ring Op, i.e., the stalk at p of the sheaf of regular
functions on V , is isomorphic to K[[x]] ([33], page 34), so we may view the
elements of Op as formal power series satisfying some algebraic relation with
coefficients in K[x].

(3) Convergent power series with respect to an Archimedean valuation on K.
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(4) Somewhat less common: the algebra E(n), defined by

E(n) := {f ∈ K[[x]] | ∀i ∈ {1, . . . , n}∃P ∈ K[t] : P (∂i)f = 0}.
If n is irrelevant or clear from the context, we write E for E(n). In words,
an element of E satisfies a linear ordinary differential equation with constant
coefficients in each of its variables. If K is algebraically closed, E consists
precisely of all polynomials in the xi and the exp(λxi) for λ ∈ K. The algebra
E plays a role in a conjecture of Lie connected with his observation on the
transitive Lie algebras in three variables that he did not publish; see Chapter
2.

A guiding question in this thesis is: given a pair (g, k), what type of coefficients do
we need for a realization? Blattner’s proof of the Realization Theorem gives rise to a
fairly explicit Realization Formula, which is treated in Chapter 2. This formula defines
a convergent realization with respect to any Archimedean valuation on K. Moreover,
under certain conditions it yields polynomial coefficients or coefficients in E.

Inclusions among Primitive Lie Algebras. The work of Dynkin and Morozov
settles the classification problem for finite-dimensional primitive Lie algebras. It is
natural to ask which inclusions exist among them. More precisely, fix a natural number
n, and consider all effective primitive pairs of codimension n; which injective morphisms
exist among these? Let us consider an example.

Example 1.3.1. Let V be a finite-dimensional vector space over K, and let d =
{(X,X) | X ∈ sl(V )} be the diagonal subalgebra of the Lie algebra sl(V )⊕sl(V ). Then
the pair (sl(V )⊕ sl(V ), d) is a subpair of the pair (sl(V ⊗ V ∗), p1). Indeed, V ⊗ V ∗ has
the structure of an sl(V )⊕ sl(V )-module defined by

(X,Y )(v ⊗ f) := Xv ⊗ f + v ⊗ Y f
for all X,Y ∈ sl(V ), v ∈ V , and f ∈ V ∗. This defines the embedding φ : sl(V )⊕sl(V )→
sl(V ⊗ V ∗). On the other hand, we may identify V ⊗ V ∗ with gl(V ). Under this
identification, we find

(X,X)(v0 ⊗ f0)(v) = (Xv0 ⊗ f0 + v0 ⊗Xf0)(v)

= f0(v)Xv0 − f0(Xv)v0

= [X, v0 ⊗ f0]v.

Hence, the action of d on V ⊗V ∗ is simply the adjoint action of sl(V ) on gl(V ). In this
representation, sl(V ) leaves invariant the line spanned by the identity. We conclude
that φ(d) is contained in the stabilizer p1 of a one-dimensional subspace of V ⊗ V ∗. As
d is a maximal proper subalgebra of sl(V ) ⊕ sl(V ), this implies that φ−1(p1) = d, i.e.,
φ is an injective morphism of pairs. Finally, the codimensions of both pairs at hand is
dim(V )2 − 1.
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A motivation for our quest for inclusions among pairs is the following: if (g1, k1)
is a subpair of the pair (g2, k2) of the same codimension n, and if we have a transitive
realization for the latter with nice coefficients (e.g., polynomials), then this realization
restricts to a nice transitive realization of the former pair. In the above example, we thus
find that the pair (sl⊕ sl(V ), d) has a polynomial realization, because (sl(V ⊗ V ∗), p1)
has one; see Example 2.4.1. Chapter 3 of this thesis presents Morozov’s and Dynkin’s
results in more detail, describes some inclusions among primitive pairs, and proves some
non-existence results on such inclusions.

Integration to Algebraic Group Actions. Suppose that K is algebraically
closed. If g is the Lie algebra of an affine algebraic group G over K and h is the
Lie algebra of a closed subgroup H of G, then we can find a realization of (g, h) as
follows: differentiate the action of G on the homogeneous space G/H to an action of g
by derivations on the sheaf of regular functions of G/H. In particular, for an open affine
neighbourhood U of eH in G/H we obtain a natural homomorphism from g into the
Lie algebra of derivations on the affine algebra K[U ], and the pre-image of the isotropy
subalgebra at eH under this morphism is precisely h. This is the close relation between
transitive group actions and transitive differential geometry alluded to in Section 1.1.
The coefficients of this realization clearly depend on the geometry of U . For example,
if U is isomorphic to an affine space, then we thus obtain a polynomial realization for
the pair (g, h). The advantage of this approach over the Realization Formula based
on Blattner’s proof is that we can use the geometry of homogeneous spaces for our
realization problem.

Example 1.3.2. Let G be a reductive algebraic group and let P be a parabolic
subgroup of G. Denote their Lie algebras by g and p, respectively. By the Bruhat
decomposition, the point eP on G/P has an open neighbourhood isomorphic to an affine
space. Hence, by the above construction, the pair (g, p) has a polynomial realization.

On the other hand, p is a parabolic subalgebra of g, and we may choose h,Π and
Π0 such that p = pΠ0 in the notation of page 7. Then the subalgebra q spanned by the
gα with α ∈ ∆\ (∆0∪∆+) acts nilpotently on g, and is a vector space complement to p.
Under these conditions we may use the Realization Formula of Chapter 2 to compute
a polynomial realization of (g, p) explicitly; see Theorem 2.2.3.

In the setting of this example, we are lucky to find that the results obtained by
the group action approach have a constructive counterpart. In general the situation is
much more complex, and it is unclear how to use the Realization Formula to compute
a polynomial realization whose existence is guaranteed by the group action approach.

The construction of realizations through algebraic group actions is a topic of chapter
4. However, the major topic of that chapter is the inverse question: suppose that we
have a homomorphism from a Lie algebra g into the Lie algebra of derivations on an
affine algebraic variety U ; does it correspond to an algebraic group action? The following
example shows that we may have to let the group act on a variety properly containing
U as an open dense subset.
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Example 1.3.3. Consider the embedding φ of sl2 into DerK(K[x]) determined by

φ(E) = −∂x, φ(H) = −2x∂x, and φ(F ) = x2∂x,

where {E,H,F} is the usual Chevalley basis of sl2. The action of sl2 on K[x] via φ is not
locally finite (see page 57 for a definition), as φ(F ) increases the degree of polynomials.
This shows that the above action of sl2 does not come from an action of SL2 on the
affine line; see Section 4.4. However, φ satisfies

exp(tφ(E))(x) = x− t,
exp(tφ(H))(x) = exp(−2t)x, and

exp(tφ(F ))(x) =
x

1− tx
,

where t is a variable and exp(tX)(f) ∈ K[x][[t]] is the formal power series (with coeffi-
cients in K[x])

∞∑
i=0

Xi(f)
ti

i!

for any f ∈ K[x] and X ∈ DerK(K[x]); in particular, all expressions above are rational
functions in x, t, and certain exponentials. This observation allow us to apply the results
of Section 4.5, and to deduce that this action of sl2 can be integrated to an action of
the group SL2 on an algebraic variety containing the affine line as a open dense subset.
Indeed, we use Weil’s theory of pre-transformation spaces to recover, from the vector
fields above, the projective line and the action of SL2 on it by Möbius transformations.

Infinite-dimensional Representation Theory. Primitive pairs (g, p) where g
is simple and p is parabolic are usually maximal among the pairs of their codimension.
This is shown in Chapter 3, and was already proved by Onishchik in the 1960s [48]. In
particular, if φ is the polynomial transitive realization of (g, p) into the Lie algebra D of
polynomial vector fields in n := codimg p variables constructed in Example 1.3.2, then
φ(g) is usually maximal among the finite-dimensional subalgebras of D. This raises
the following more subtle question: what is the structure of D when viewed as a g-
module through φ? The following example shows that this question involves the theory
of Verma modules and the category O (see Chapter 5 for a definition).

Example 1.3.4. Recall the realization φ : sl2 → D(1) of Example 1.3.3, and view
D as an sl2-module through φ. Clearly, φ(sl2) is a submodule of D, and it is not hard
to see that D/φ(sl2) is an irreducible module generated by the element x3∂x + φ(sl2),
which is a zero vector of E and has H-eigenvalue −4.

Chapter 5 presents a detailed description of the structure of D as a g-module in the
special case where p = pβ for a simple root β that has coefficient 1 in the highest root
of g. We show that in this case the g-module D has a finite composition chain, i.e., a
finite chain

D = M1 )M2 ) . . . )Ml = 0
of g-submodules such that the quotient Li := Mi/Mi+1 of M is irreducible for all i =
1, . . . , l− 1. Furthermore, we derive a formula for the multiplicity of a given irreducible
module L among the Li, and formulate a conjecture regarding these multiplicities.





CHAPTER 2

Blattner’s Construction and a Conjecture of Lie

2.1. Introduction

Sophus Lie conjectured that any complex finite-dimensional transitive Lie algebra
of vector fields in the variables x1, . . . , xn has a conjugate whose coefficients lie in the
algebra E generated by the xi and the exponentials exp(λxi) for λ ∈ C. This chapter
treats this conjecture in the setting of formal power series. First, we derive a formula
that realizes an abstractly given transitive Lie algebra in terms of vector fields. We
establish sufficient conditions for this formula to yield only polynomial coefficients; they
slightly generalize a known result. Next, we present a sufficient, but strong, condition
for the output to contain only coefficients in E. Finally, we prove Lie’s conjecture for
n = 1, 2, and 3. In the first two cases, this result is not new, as Lie completely classified
the transitive Lie algebras in those dimensions. For n = 3, the result can be considered
new, as Lie did not publish his complete classification in three dimensions. The principal
merit of our approach, however, is that we need not classify the transitive Lie algebras
in 3 variables. In particular, the sub-case for n = 3 that did not appear in print because
Lie claimed that it was too lengthy, happens to satisfy our strong condition and can
therefore be handled without any further effort.

Nevertheless, our method of proving Lie’s conjecture for small n comprises many
ad hoc arguments that do not seem to generalize to larger n. Although it is dangerous
to base one’s intuition upon this mere fact, I do not believe Lie’s conjecture in full
generality. In order to illustrate why, consider the analogous question with E replaced
by the polynomial ring K[x1, . . . , xn]. For n = 1, it is well known that any finite-
dimensional transitive Lie algebra has a conjugate with only polynomial coefficients,
but in Section 2.7 we show that some of the algebras from Lie’s list for n = 2 do not
have such a conjugate. To this end, we employ the transcendence degree to distinguish
between conjugates of the polynomial ring inside K[[x1, . . . , xn]] and ‘wilder’ algebras
of formal power series. Unfortunately, we do not yet have a similar tool to distinguish
conjugates of E from even wilder algebras.

This chapter is an expanded version of [16]; I thank Marius van der Put for nu-
merous useful comments on an earlier version of that paper, and Heike Gramberg for
her help in proving Theorem 2.3.4.

13
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2.2. Lie’s Conjecture

It turns out, that every transitive group of 3-space with coordinates
x, y, z can be brought to a form in which the coefficients of p, q, and r
(Lie’s notation for ∂x, ∂y, and ∂z—J.D.) are entire functions of x, y, z,
and particular exponential expressions eλ1 , eλ2 , . . ., where λ1, λ2, . . .
denote linear functions of x, y, z. Very probably, a similar statement
holds for the transitive groups of n-space.

Translated from: Sophus Lie, [42], page 177.
In the formal power series setting, Lie’s conjecture can be formulated as follows.

Let K be a field of characteristic zero; this will be the ground field of all Lie algebras
and vector spaces in this chapter, unless explicitly stated otherwise. Let n be a positive
integer, x = (x1, x2, . . . , xn) a list of indeterminates, and D̂(n) the Lie algebra of deriva-
tions of K[[x]]. The automorphism group AutK[[x]] acts on D̂(n) by conjugation, as
we have seen in Chapter 1. If K = C, then the algebra E(n) of page 8 is precisely the
algebra of functions that Lie refers to in his conjecture. Hence, the following is a natu-
ral formulation of Lie’s conjecture in the setting of formal power series with coefficients
from an arbitrary field of characteristic 0.

Conjecture 2.2.1. For any finite-dimensional transitive subalgebra g of D̂(n),
there exists an automorphism ψ of K[[x]] such that ψgψ−1 is a subalgebra of

E(n)∂1 ⊕ . . .⊕ E(n)∂n.

By the Realization Theorem, this conjecture is equivalent to the following one.

Conjecture 2.2.2. Let g be a finite-dimensional Lie algebra, and let k be a sub-
algebra of g of codimension n. Then the pair (g, k) has a transitive realization with
coefficients in E(n).

We shall prove the following theorems in favour of Lie’s conjecture.

Theorem 2.2.3. Let g be a finite-dimensional Lie algebra and let k and m be sub-
algebras of g such that g = k ⊕ m as vector spaces. Assume that m acts nilpotently on
g. Then (g, k) has a transitive realization with polynomial coefficients.

Theorem 2.2.4. Let g be a finite-dimensional Lie algebra and suppose that it has
a sequence

g = gn ⊃ gn−1 ⊃ . . . ⊃ g0 = k

of subalgebras, with dim gi = dim k + i. Then (g, k) has a transitive realization with
coefficients in E(n).

Theorem 2.2.5. Suppose that K is algebraically closed. Let g be a finite-dimen-
sional Lie algebra, and let k be a subalgebra of g of codimension n ∈ {1, 2, 3}. Then
(g, k) has a transitive realization with coefficients in E(n).

The remainder of this chapter is organized as follows. In Section 2.3, we derive an
explicit transitive realization φY, which depends on the choice of an ordered basis Y =
(Y1, . . . Yn) complementary to k. If K is endowed with a valuation, then the coefficients
of φY turn out to be convergent power series; see Proposition 2.3.3. Moreover, two
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transitive Lie algebras with convergent coefficients are conjugate under a convergent
coordinate change if and only if they are conjugate under a formal coordinate change;
see Theorem 2.3.4.

In Section 2.4, we use φY to prove Theorem 2.2.3, and in Section 2.5 we use it
to prove Theorem 2.2.4. Section 2.6 applies the techniques from the previous two
sections to prove Theorem 2.2.5. Finally, Section 2.7 briefly discusses Lie’s conjecture
in more variables. The text is larded with GAP-sessions in which explicit realizations are
computed.

2.3. A Realization Formula

In [4], Blattner proves the Realization Theorem in a very constructive way. In
this section we make his realization even more explicit. To this end, let g be a finite-
dimensional Lie algebra and let k be a subalgebra of g of codimension n. Choose a basis
X1, . . . , Xk, Y1, . . . , Yn of g, such that the Xi span k. By the Poincaré-Birkhoff-Witt
theorem ([35], Chapter V), the monomials

XrYs := Xr1
1 · . . . ·X

rk
k · Y

s1
1 · . . . · Y snn

are a basis of the universal enveloping algebra U(g) of g; these monomials are called
PBW-monomials. For u ∈ U(g) and i ∈ {1, . . . , n}, let χi(u) be the coefficient of the
PBW-monomial Yi in u, when the latter is written as a linear combination of this basis.

Theorem 2.3.1 (Realization Formula). The map φY : g→ D̂(n) defined by

(1) φY(X) :=
n∑
i=1

( ∑
m∈Nn

χi(YmX)
xm

m!

)
∂i, X ∈ g,

where m! :=
∏n
i=1mi! and YmX is the element of U(g) obtained by multiplying Ym

from the right with X, is a transitive realization of the pair (g, k).

Proof. We give an outline of Blattner’s construction, and prove that it leads to
(1). Define the g-module

A := HomU(k)(U(g),K)
as follows: the universal enveloping algebra U(g) is a left U(k)-module by multiplication
from the left, K is viewed as a trivial left U(k)-module, and A is the space of U(k)-module
homomorphisms from the former to the latter module. An element X ∈ g acts on such
a homomorphism φ ∈ A by

(Xφ)(u) := φ(uX) for u ∈ U(g),

and it is straightforward to check that A does indeed become a g-module in this way.
Moreover, Blattner defines a commutative K-bilinear multiplication on A such that g
acts on A by K-linear derivations.

Let α : K[x1, . . . , xn]→ U(g) be the linear monomorphism determined by

α(xm) = Ym.

From the PBW-theorem it follows that U(g) is a free U(k)-module of which the mono-
mials Ym form a basis. Hence, any U(k)-homomorphism from U(g) to K is determined
by its values on the PBW-monomials Ym (in fact, such a homomorphism vanishes on all
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PBW-monomials containing at least one of the Xi), and those values can be prescribed
arbitrarily. It follows that the pullback

α∗ : A→ HomK(K[x],K) = K[x]∗

is a linear isomorphism. Finally, the spaces K[x]∗ and K[[x]] are identified by

β :
∑
m

cmfm 7→
∑
m

cm
m!

xm,

where the fm ∈ K[x]∗ are determined by fm(xr) = δm,r.
We have thus constructed a linear isomorphism β ◦ α∗ : A → K[[x]], and one can

show that it is an isomorphism of algebras. Hence, g acts on K[[x]] by derivations;
let φ : g → D̂(n) denote this representation. To make the action explicit, let X ∈ g,
i ∈ {1, . . . , n}, and compute φ(X)xi as follows. We have β−1xi = fei , where ei is the
i-th standard basis vector of Nn. Next, (α∗)−1fei is the U(k)-homomorphism mapping
Yi to 1 and all other monomials Ym to zero, hence (α∗)−1fei = χi. By definition of
the g-action on A, one has

(Xχi)(Ym) = χi(YmX).

Hence, α∗(Xχi) maps xm to χi(YmX). It follows that

φ(X)xi = β(α∗(Xχi)) =
∑
m

χi(YmX)
xm

m!
.

By continuity of derivations on K[[x]], this suffices to conclude that

φ(X) =
∑
i

(∑
m

χi(YmX)
xm

m!

)
∂i,

as claimed in the theorem.
Finally, note that χi(Y0Yj) = δij and that χi(Y0X) = 0 for all i, j = 1, . . . , n and

X ∈ k. This proves that φ−1(D̂(n)
0 ) = k, so that φ is a transitive realization of (g, k), as

claimed. �

The Realization Formula depends heavily on Y = (Y1, . . . , Yn), but not on the choice
of basis for k. Indeed, one can write elements of U(g) in a unique way as

∑
m umYm

with um ∈ U(k), and each um can be uniquely written as cm · 1 + u′m, where cm ∈ K
and u′m ∈ kU(k). The Realization Formula needs only the cm for particular m; they are
independent of a choice of basis for k. This justifies the notation φY.

Example 2.3.2. Let g be sl2 with Chevalley basis F,H,E and relations [H,F ] =
−2F, [E,F ] = H, and [H,E] = 2E. Let k be the Borel subalgebra spanned by H,F .
Define X1 = F,X2 = H,Y1 = E. Then

χ1(Y m1 Y1) = δ0,m,

and, for m ≥ 1,
Y m1 X2 = EmH = Em−1HE − 2Em.

The former term does not contribute to the coefficient of Y1, so that (also for m = 0)

χ1(Y m1 X2) = −2δ1,m.
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Finally, for m ≥ 2,
Y m1 X1 = EmF = Em−1FE + Em−1H;

hence (also for m = 0, 1):
χ1(Y m1 X1) = −2δ2,m.

After division by 2! in the last case, we find the realization

F 7→ −x2
1∂1,H 7→ −2x1∂1, E 7→ ∂1.

I implemented the Realization Formula in the computer algebra package GAP [20], using
De Graaf’s algorithms for Lie algebras [24],[25]. For comparison, we include a GAP-
session dealing with this example.
gap> g:=SimpleLieAlgebra("A",1,Rationals);;
gap> B:=BasisByGenerators(g,GeneratorsOfAlgebra(g){[2,3,1]});;
gap> Blattner(g,B,1,3);
[ [ [(-1)*x_1^2*D_1], [(-2)*x_1*D_1], [(1)*D_1] ],
<algebra-with-one of dimension infinity over Rationals> ]

First, g is assigned to the variable g. This predefined Lie algebra has (E,F,H) as
default basis; the permuted basis (X1, X2, Y1) = (F,H,E) is assigned to the vari-
able B. Finally, we call the function Blattner, which takes as input g, the basis
Z := (X1, . . . , Xk, Y1, . . . , Yn), the codimension n, and the degree up to which the
formal power series coefficients should be computed (here 3). The output of Blattner
is a pair consisting of the (truncated) image of Z, and the Weyl algebra generated by
the xi and the ∂i. The latter is constructed so that one can actually calculate with the
images of the basis elements (see Chapter 5). For implementation details of Blattner
see Appendix B.

In order to analyse the image of φY, we introduce the concatenation of multi-
indices. Let a be a non-negative integer, r, r′, r′′ ∈ Na, and i ∈ N. Then the statement
r = r′++i r′′ means

(1) r′j = 0 for a ≥ j > i, and
(2) r′′j = 0 for 1 ≤ j < i, and
(3) r = r′ + r′′.

We write r = r′++ r′′ if there exists an i such that r = r′++i r′′. Whenever we write
r′++ r′′, we assume implicitly that this is a valid expression. Thus, ++ becomes a binary
operation with a restricted domain in Na × Na. Whenever both formulas are valid, we
have

(r′++ r′′)++ r′′′ = r′++(r′′++ r′′′);

therefore brackets can, and will, be left out. For example, if a = 3, then

(1, 2, 0)++(0, 4, 1)++(0, 0, 1)

is a valid expression equal to (1, 6, 2), but (1, 0, 2)++(0, 1, 0) is an invalid expression.
With respect to an ordered basis Z = (Z1, . . . , Za) of a Lie algebra l, define the

linear map L : U(l)→ l by

L

(∑
m

cmZm

)
:=

a∑
i=1

ceiZi;
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that is, L maps an element of U(l) to its ‘linear part’. In the remainder of this chapter,
we will frequently encounter linear parts of elements of the form Zm′ZjZm′′ , where
m′++ m′′ = m. If m′++j m′′ = m, then Zm′ZjZm′′ is a PBW-monomial, hence
L(Zm′ZjZm′′) = 0 unless m′ = m′′ = 0. On the other hand, if m′++i m′′ = m
implies i > j, then Zj is not ‘in the right place’, and we have

L(Zm′ZjZm′′) =
∑

i,r′,r′′:i>j,r′++ ei++ r′′=m′

L(Zr′ [Zi, Zj ]Zr′′++ m′′).

Similarly, if m′++i m′′ = m implies i < j, then we find

L(Zm′ZjZm′′) =
∑

i,r′,r′′:i<j,r′++ ei++ r′′=m′′

L(Zm′++ r′ [Zj , Zi]Zr′′).

In the remainder of this section, we assume that K is endowed with an Archimedean
valuation |·|, normalized such that |n| = n for n ∈ N. We call an element

∑
m∈Nn cmxm

convergent if there exist real numbers C,D > 0 such that |cm| ≤ DC|m| for all m ∈ Nn
[28], where |m| denotes the total degree of m. Note that in the real or complex setting
this notion of convergence is usually referred to as absolute convergence. Elements
of D̂ with convergent coefficients and Lie algebras of such derivations are also called
convergent, and so is a realization whose image is convergent. The set of convergent
power series is a subalgebra of K[[x]], and its automorphism group consists of the
automorphisms of K[[x]] sending each xi to a convergent power series. Such coordinate
changes are called convergent.

Proposition 2.3.3. The realization φY is convergent.

Proof. Let ‖ · ‖ : g → R≥0 be a norm on g compatible with the valuation, and
choose C > 0 such that

‖ ad(Yi)X‖ ≤ C‖X‖,
for all i = 1, . . . , n and all X ∈ g. Then, if m = m′++ m′′, we have

(2) ‖L(Ym′XYm′′)‖ ≤ C |m||m|!‖X‖

for all X ∈ g. To see this, proceed by induction on |m|. For |m| = 0 the statement is
trivial. Suppose that the statements holds for |m| = d, and let m be of total degree
d+ 1. Then, for X ∈ k, we have

‖L(Ym′XYm′′)‖ = ‖
∑

r′++ ei++ r′′=m′

L(Yr′ [Yi, X]Yr′′++ m′′)‖

≤
∑

r′++ ei++ r′′=m′

‖L(Yr′ [Yi, X]Yr′′++ m′′)‖

≤
∑

r′++ ei++ r′′=m′

Cdd!‖[Yi, X]‖

≤
∑

r′++ ei++ r′′=m′

Cd+1d!‖X‖

≤ (d+ 1)Cd+1d!‖X‖

= Cd+1(d+ 1)!‖X‖.



2.3. A REALIZATION FORMULA 19

In the third step the induction hypothesis is used, and the fifth step uses the fact that
there are at most d + 1 terms. A similar reasoning applies when X is replaced by Yi;
this proves (2). In particular, there exists a constant D > 0 such that

|χi(YmX)| ≤ DC|m||m|!‖X‖
for all X ∈ g,m ∈ Nn, i ∈ {1, . . . , n}. Now use the upper bound

(3) |m|! ≤ n|m|m!

to find ∣∣∣∣χi(YmX)
m!

∣∣∣∣ ≤ D(Cn)|m|‖X‖,

from whence the lemma follows using the Realization Formula.
�

In view of this proposition, the question arises of whether the classification of con-
vergent finite-dimensional transitive Lie algebras of vector fields up to convergent co-
ordinate changes is the same as the classification of formal finite-dimensional transitive
Lie algebras up to formal coordinate changes. The following theorem, whose proof re-
views Blattner’s proof of the uniqueness part of the Realization Theorem, combined
with Proposition 2.3.3, shows that it is.

Theorem 2.3.4. Let ψ be a realization of (g, k) with convergent coefficients. Then
the unique formal coordinate change θ satisfying θ ◦ψ(X) = φY(X) ◦ θ for all X ∈ g is
convergent.

The proof of this theorem uses the following lemma.

Lemma 2.3.5. Let f denote the convergent power series∑
m∈Nn

xm

and define

Y := f
n∑
i=1

∂i.

Then we have for m ∈ N

(Y m(f))(0) =
m∏
k=1

((n+ 1)k − 1) ≤ (n+ 1)mm!

Proof. We write f as
1∏n

j=1(1− xj)
,

and proceed by induction to show that

Y m(f) =
∑

s∈Nn,|s|=m

am,s∏n
j=1(1− xj)m+sj+1

for certain coefficients am,s satisfying∑
s∈Nn,|s|=m

am,s =
m∏
k=1

((n+ 1)k − 1).
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This is clearly the case for m = 0; assume that it holds for m and compute

Y m+1(f) = Y
∑

s∈Nn,|s|=m

am,s∏n
j=1(1− xj)m+sj+1

=
∑

s∈Nn,|s|=m

n∑
i=1

(m+ si + 1)am,s∏n
j=1(1− xj)(m+1)+sj+1+δij

=
∑

s∈Nn,|s|=m+1

am+1,s∏n
j=1(1− xj)(m+1)+sj+1

,

where the am+1,s sum up to

∑
s∈Nn,|s|=m

n∑
i=1

(m+ si + 1)am,s =
∑

s∈Nn,|s|=m

(nm+m+ n)am,s =
m+1∏
k=1

((n+ 1)k − 1),

from whence the lemma follows. �

Proof of theorem 2.3.4. We follow Blattner’s proof of the uniqueness part of
the Realization Theorem. To this end, recall the notation of the proof of Theo-
rem 2.3.1, and view K[[x]] as a U(g)-module through φY; it is isomorphic to A =
HomU(k)(U(g),K). The latter module, together with the U(k)-module homomorphism
γ : φ 7→ φ(1), A → K, has the following universal property: if V is any U(g)-module,
and µ : V → K is a homomorphism of k-modules, then there exists a unique homomor-
phism ν : V → A of g-modules such that γ ◦ ν = µ. Indeed, this homomorphism ν is
defined by

(νv)u := µ(uv)

for u ∈ U(g) and v ∈ V . It is straightforward to check that

(βα∗)νv =
∑

m∈Nn

µ(Ymv)
m!

xm.

where the action of g on V has been extended to an action of U(g) on V .
Now take V = K[[x]] with g-action through ψ. The map γ corresponds, under the

isomorphism β◦α∗, to the map σ : f 7→ f(0), K[[x]]→ K, and σ is a homomorphism of
k-modules from both (K[[x]], φY) and (K[[x]], ψ). Hence, the map θ : K[[x]] → K[[x]]
defined by

θ(h) :=
∑

m∈Nn

(ψ(Ym)h)(0)
m!

xm, h ∈ K[[x]],

where ψ has been extended to a homomorphism U(g)→ EndK(K[[x]]), has the property
that θ ◦ ψ(X) = φY(X) ◦ θ for all X ∈ g. Blattner shows that θ is an automorphism
of K[[x]], or rather: that the corresponding map A→ A is an automorphism of A with
respect to the multiplication on A.

Summarizing, we find that for h ∈ K[[x]] and m ∈ Nn the coefficient of xm in θh
equals

1
m!

(ψ(Y1)m1 · · ·ψ(Yn)mnh)(0).
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Write

ψ(Yl) =
n∑
i=1

∑
m∈N

cl,i,mxm∂i;

as all ψ(Yl) are convergent, we may choose real numbers C,D > 0 such that

|cl,i,m| ≤ DC|m|

for all l, i = 1, . . . , n and m ∈ Nn. Now apply Lemma 2.3.5 to find

|(ψ(Y1)m1 · · ·ψ(Yn)mnxi)(0)| ≤ (CD(n+ 1))|m||m|!

Hence, using (3), we find that the coefficient of xm in θxi has valuation at most

(CD(n+ 1))|m||m|!/m! ≤ (CD(n+ 1)n)|m|,

so that θxi is a convergent power series. �

2.4. Realizations with Polynomial Coefficients

We will use φY to prove Theorem 2.2.3, as well as some variants. To this end,
recall the notion of a polynomial transitive realization of page 8. Many results on such
realizations can be found in the literature; let me mention a few.

(1) In [62], such realizations are constructed of pairs (g, k) where g is a complex
classical simple Lie algebra, and k is a maximal parabolic subalgebra.

(2) In [26], this is done for general complex semisimple Lie algebras g and certain
maximal parabolic k. The polynomials occurring have degree at most 4. In
this article, some homogeneous rational realizations are derived as well.

(3) The article [27] contains the following theorem: if k has a vector space comple-
ment in g that is a subalgebra acting nilpotently on the complex Lie algebra
g, then (g, k) has a polynomial transitive realization.

(4) In [53], transitive realizations are given of pairs (g, k), where g is complex
simple and k is any maximal parabolic subalgebra k. It is proved that for the
classical cases, the total degree of the polynomials occurring can be bounded
by 4, whereas for the exceptional cases, polynomials of higher degree may be
necessary.

All constructions above make use of an adg-nilpotent complementary subalgebra m of k,
which is used as a coordinate chart for the homogeneous space G/H of the corresponding
Lie groups. The Baker-Campbell-Hausdorff formula is used to compute explicitly the
vector fields on G/H induced by g, in the coordinates provided by m. In this section we
slightly generalize Theorem 5 of [27], using the Realization Formula instead of working
in a homogeneous space. However, we first prove Theorem 2.2.3; this is essentially
Gradl’s theorem, but for arbitrary fields of characteristic 0 instead of C or R.

Proof of Theorem 2.2.3. As m acts nilpotently on itself, we can choose a basis
Y1, . . . , Yn of m such that

[m, Yi] ⊆ 〈Yi+1, . . . , Yn〉
for all i = 1, . . . , n. The algebra m also acts nilpotently on g/m; hence, we can choose
a basis X1, . . . , Xk of k such that

[m, Xi] ⊆ 〈Xi+1, . . . , Xk〉+ m
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for all i = 1, . . . , k. For i = 1, . . . , k + n, define

Zi :=

{
Xi if i ≤ k, and
Yi−k if i > k.

By induction on j, we will show that for all j,

L(Yr′ZjYr′′) = 0 for |r′++ r′′| sufficiently large.

Suppose that this is true for all l > j, and consider the expression Yr′ZjYr′′ , where
r = r′++ r′′. Applying the PBW rewriting rules, we find that L(Yr′ZjYr′′) is a linear
combination of terms of the form

L(Yt′ [Yi, Zj ]Yt′′)

with t′++ ei++ t′′ = r, so that t := t′++ t′′ has total degree |t| = |r|−1. As adg Yi has a
lower triangular matrix with respect to the basis Z, the Lie brackets can be expanded to
obtain a linear combination of terms of the form Yt′ZlYt′′ with l > j. By the induction
hypothesis, for |t| large enough, each of these terms has zero linear part. Hence so does
the original expression for sufficiently large |r|.

Taking r′′ = 0, we find that for all X ∈ g:

L(YrX) = 0 for large |r|.
It follows that φY is a polynomial realization. �

Example 2.4.1. This theorem proves the existence of polynomial transitive reali-
zations of pairs (g, pΠ0), where g is semisimple and pΠ0 is the parabolic subalgebra
defined on page 7. Indeed, in the notation of that page, the subspace

⊕
α∈∆\(∆0∪∆+) gα

is a vector space complement of pΠ0 , as well as a subalgebra of g acting nilpotently on
the latter.

Realizations of such pairs can be computed explicitly by my GAP-program. Here is
a printout of a GAP-session in which a realization of the pair (sl3, p1) is computed, where
p1 is the maximal parabolic subalgebra corresponding to the first node of the Dynkin
diagram of A2; see Section 1.2.
gap> g:=SimpleLieAlgebra("A",2,Rationals);;
gap> Y:=Basis(g,GeneratorsOfAlgebra(g){[2,4,5,6,7,8,1,3]});;
gap> Blattner(g,Y,2,3)[1];
[ [(-1)*x_1*D_2], [(-1)*x_1*x_2*D_2+(-1)*x_1^2*D_1], [(-1)*x_2*D_1],
[(-1)*x_1*x_2*D_1+(-1)*x_2^2*D_2], [(-2)*x_1*D_1+(-1)*x_2*D_2],
[(1)*x_1*D_1+(-1)*x_2*D_2], [(1)*D_1], [(1)*D_2] ]

The default basis of a split Lie algebra of type A2 in GAP is ordered as follows: first the
positive root vectors, then the negative root vectors, and finally the Chevalley basis of
the Cartan subalgebra. This explains the reordering in the second line of the session.
The output is a familiar Lie algebra from Lie’s list; see Table 1.

We can slightly generalize Theorem 2.2.3 to the following theorem.

Theorem 2.4.2. Let g be a finite-dimensional Lie algebra, and let k, h, n be subal-
gebras such that g = k⊕ h⊕ n as vector spaces. Assume that both n and k are invariant
under adg h, that h is nilpotent, and that n acts nilpotently on g. Then (g, k) has a
polynomial transitive realization.
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Note that we recover Theorem 2.2.3 in taking h = 0.

Proof. As n acts nilpotently on itself, we may choose a basis Z1, . . . , Zc of n with
the property that

[n, Zi] ⊆ 〈Zi+1, . . . , Zc〉
for all i. Similarly, we may choose a basis Y1, . . . , Yb of h such that

[h, Yi] ⊆ 〈Yi+1, . . . , Yb〉

for all i. Finally, n acts nilpotently on g/(h ⊕ n), so that one can choose a basis
X1, . . . , Xa of k such that

[n, Xi] ⊆ 〈Xi+1, . . . , Xa〉 ⊕ h⊕ n.

Define, for i = 1, . . . , a+ b+ c,

Ui :=


Xi if i ≤ a,
Yi−a if a < i ≤ a+ b, and
Zi−a−b if a+ b < i.

We claim that, for all j = 1, . . . , a+ b+ c,

L(YrZsUj) ∈ k

for |r|+ |s| sufficiently large, and we proceed by obtaining similar results for expressions
that emerge when applying the PBW rewriting rules to YrZsUj .

First consider the expression Yr′XYr′′Zs, where X ∈ k and r′++ r′′ = r. Since k+h
is a subalgebra, this reduces to an expression in which all PBW-monomials end with
Zs. Hence, if s 6= 0, then one has

L(Yr′XYr′′Zs) = 0.

For the case s = 0, induction on |r| shows that

L(Yr′XYr′′) ∈ k.

Indeed, this is obvious for |r| = 0. Assume that it holds for |r| = d, let r be of total
degree d + 1, and split r = r′++ r′′ in any manner. Then L(Yr′XYr′′) equals a linear
combination of terms L(Yt′ [Yi, X]Yt′′) with t′++ ei++ t′′ = r. As [Yi, X] ∈ k, the
induction hypothesis applies to each of these terms.

Next consider the expression Yr′YjYr′′Zs, where r′++ r′′ = r. We claim that, for
|r| + |s| large enough, its linear part is zero. Again, the case s 6= 0 is easy, so assume
that s = 0. But this situation is handled by the proof of Theorem 2.2.3.

Finally, consider the expression YrZs′UjZs′′ , where s′++ s′′ = s. By induction on
j, we shall see that its linear part is in k for |r| + |s| sufficiently large. Suppose that
this is the case for all l > j. Under the PBW rewriting rules, L(YrZs′UjZs′′) is seen
to equal a linear combination of terms L(YrZt′ [Zi, Uj ]Zt′′) with t′++ ei++ t′′ = s, and
possibly a term L(YrUjZs). The latter only occurs if j ≤ a+ b, and the preceding two
paragraphs show that its linear part is indeed in k, if |r|+ |s| is large enough. As for the
former terms, they are linear combinations of terms L(YrZt′UlZt′′) with l > j, because
Zi acts nilpotently. The induction hypothesis applies, and this concludes the proof of
our claim.
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By taking s′′ = 0 in the conclusion of the previous paragraph, we find that the
linear part of YrZsUj is an element of k for |r++ s| sufficiently large. In particular, the
coefficients of the PBW-monomials Yi and Zi in YrZsUj are zero for |r++ s| sufficiently
large. Using the Realization Formula, we find that φY,Z is polynomial. �

Example 2.4.3. Let g be the Lie algebra spanned by E,H,F, I,X, Y, and Z where
E,H,F are the Chevalley basis of an sl2 that commutes with I, and further the only
non-zero relations are given by

[H,X] = X, [H,Y ] = −Y, [F,X] = Y, [E, Y ] = X,

[I,X] = X, [I, Y ] = Y, [I, Z] = 2Z, [X,Y ] = Z.

Then k = 〈E,H,F 〉K , h = 〈I〉K , and n = 〈X,Y, Z〉K satisfy the hypotheses of Theo-
rem 2.4.2. In Example 2.4.3, the polynomial realization φ(I,X,Y,Z) of the pair (g, k) is
computed in GAP; it is determined by

E 7→ −x3∂2 +
1
2
x2

3∂4, H 7→ −x2∂2 + x3∂3,

F 7→ −x2∂3 +
1
2
x2

2∂4, I 7→ −x2∂2 − x3∂3 − x4∂4 + ∂1,

X 7→ −x3∂4 + ∂2, Y 7→ ∂3, and
Z 7→ ∂4.

In a similar fashion, one can prove the following theorem.

Theorem 2.4.4. Let g be a split semisimple Lie algebra. Then (g, 0) has a polyno-
mial transitive realization.

Proof. Consider the ordered basis H1, . . . ,Hl, X1, . . . , Xm, Y1, . . . , Ym, where the
Hi span a Cartan subalgebra, the Xi are positive root vectors, and the Yi are negative
root vectors. One can prove that φ(H,X,Y) is a polynomial realization. �

Remark 2.4.5. In the setting of this proof, one also has

L(HrXs′YjXs′′Yt) = 0,

for large ‖r + s + t‖, where s = s′++ s′′. This remark will be useful in the proof of
Theorem 2.5.3.

2.5. Realizations with Coefficients in E

We want to use the Realization Formula to prove Theorem 2.2.4. For a formal power
series to be an element of E(n), it must satisfy linear ordinary differential equations with
constant coefficients in each of its variables. Therefore, we investigate the behaviour of
a coefficient in φY under differential operators.

Lemma 2.5.1. Let p(t) ∈ K[t] be a univariate polynomial. The formal power series

f :=
∑
m

χi(YmX)
xm

m!
,

occurring in the Realization Formula, satisfies

p(∂l)f =
∑
m

χi(Ym′P (Yl)Ym′′X)
xm

m!
,
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where, for each m ∈ Nn, one partition m = m′++l m′′ is chosen.

Proof. It suffices to prove this in the case where p(t) is a monomial; taking linear
combinations on both sides then yields the result. Hence, compute

(∂l)sf =
∑

m,ml≥s

χi(YmX)ml(ml − 1) · . . . · (ml − s+ 1)
xm−sel

m!

=
∑

m,ml≥s

χi(YmX)
xm−sel

(m− sel)!

=
∑
m

χi(Ym+selX)
xm

m!
,

which was to be proved. �

In the setting of Theorem 2.2.4, we can construct polynomials in the ∂l that anni-
hilate the coefficients occurring in φY(g).

Proof of Theorem 2.2.4. Choose a basis X1, . . . , Xk of k, and choose Yl ∈ gl \
gl−1 for l = 1, . . . , n. We will prove that φY has coefficients in E(n). To this end,
consider the linear maps Al : g→ g for l = 1, . . . , n determined by

AlXj = [Yl, Xj ] for all j,

AlYj = [Yl, Yj ] for all j < l, and
AlYj = 0 for all j ≥ l.

We claim that, for all m ∈ Nn,

L(YmX) = L(AmX),

where Am := Am1
1 · · ·Amnn . Indeed, let m = m′++ el, and calculate

L(YmXj) = L(Ym′YlXj) = L(Ym′XjYl) + L(Ym′ [Yl, Xj ]).

Now Ym′Xj is an element of U(gl), so that the PBW-monomials occurring in it contain
only X1, . . . , Xk, Y1, . . . , Yl. Hence, L(Ym′XjYl) = 0, so that

L(YmXj) = L(Ym′(Al(Xj))).

For the same reason, this holds if one replaces Xj by Yj with j < l. Finally, if j ≥ l,
then YmYj is a PBW-monomial, so that L(YmYj) = 0. By induction, this proves the
claim.

Let pl be the minimal polynomial of Al. Application of Lemma 2.5.1 shows that

pl(∂l)f = 0

for f as in that lemma. Hence, the realization φY has coefficients in E(n), as stated. �

Olivier Mathieu noted the following corollary.

Corollary 2.5.2. Let g be a finite-dimensional soluble Lie algebra, and let k be
any subalgebra; let n be the codimension of k in g. Then (g, k) has a transitive realization
with coefficients in E(n).
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Proof. Set g0 := k. Suppose that we have found a sequence g0 ( . . . ( gl ( g
of subalgebras such that dim gi = k + i. As adg/gl gl is a soluble Lie algebra of linear
transformations on g/gl, Lie’s theorem ([35], Chapter II) applies, and there exists a
Y ∈ g such that gl+1 := gl ⊕KY is a subalgebra. We thus find a sequence

k = g0 ( . . . ( gn = g

of subalgebras, and Theorem 2.2.4 applies. �

Another class of Lie algebras with coefficients in E(n) is presented in the following
theorem.

Theorem 2.5.3. Let k1, k2 be isomorphic split semisimple Lie algebras, and set
g := k1⊕k2. Let k be the diagonal subalgebra of g. Then (g, k) has a transitive realization
with coefficients in E(dim k).

Proof. For i = 1, 2, let Hi := (Hi1, . . . ,Hil) be a basis of a split Cartan subalgebra
of ki, and let Ei := (Ei1, . . . , Eim) and Fi := (Fi1, . . . , Fim) be lists of positive and
negative root vectors, respectively, such that k is spanned by H1j + H2j (j = 1, . . . , l),
and E1j + E2j , F1j + F2j (j = 1, . . . ,m). Now Y = (H1,E1,F1) is a basis of a vector
space complementary to k in g, and we claim that φY has coefficients in E(l+2m). Indeed,
from the proof of Theorem 2.4.4 we know that for X ∈ k1:

L(Hr
1E

s
1F

t
1X) = 0 if |r + s + t| is sufficiently large.

Hence, φY(k1) has polynomial coefficients. Next, compute

L(Hr
1E

s
1F

t
1(H1j +H2j)) =

∑
r′++ ei++ r′′=r

L(Hr′

1 [H1i,H1j +H2j ]Hr′′

1 Es
1F

t
1)

+
∑

s′++ ei++ s′′=s

L(Hr
1E

s′

1 [E1i,H1j +H2j ]Es′′

1 Ft
1)

+
∑

t′++ ei++ t′′=t

L(Hr
1E

s
1F

t′

1 [F1i,H1j +H2j ]Ft′′

1 ).

Since the E1i and F1i are root vectors, the arguments of L in the last two terms are
PBW-monomials. Hence, if |r + s + t| > 1, then the last two sums are zero. The
first sum is zero since the Cartan subalgebra is Abelian. Hence, φY(H1j + H2j) is a
polynomial vector field for all j. Compute

L(Hr
1E

s
1F

t
1(E1j + E2j)) =

∑
r′++ ei++ r′′=r

L(Hr′

1 [H1i, E1j + E2j ]Hr′′

1 Es
1F

t
1)

+
∑

s′++ ei++ s′′=s

L(Hr
1E

s′

1 [E1i, E1j + E2j ]Es′′

1 Ft1)(4)

+
∑

t′++ ei++ t′′=t

L(Hr
1E

s
1F

t′

1 [F1i, E1j + E2j ]Ft
′′

1 ).

For |r + s + t| sufficiently large, the last two sums are zero; the same argument applies
as for the polynomial realization of (k1, 0). A term in the first sum is zero unless r′ = 0.
It follows that the first sum reduces to

(5) −L((Arll A
rl−1
l−1 . . . Ar11 E1j)Es

1F
t
1),



2.5. REALIZATIONS WITH COEFFICIENTS IN E 27

where Ai = − adgH1i. Again, for |s + t| large, this is zero. Hence, the variables
corresponding to the E1i or to the F1i appear polynomially. As for the remaining
variables: let qi be the minimal polynomial of Ai, and define pi(t) := tdqi(t) for some
sufficiently large d. Then we find

L(Hr′

1 pi(H1i)Hr′′

1 Es
1F

t
1(E1j + E2j)) = 0,

for all r = r′++i r′′, s, and t. The factor td in pi is to ensure that the last two sums in
(4) are zero, so that only the one in (5) remains. This, in turn, is killed by qi.

Similarly, using Remark 2.4.5, we find that the F1j + F2j are also realized with
coefficients in E(l+2m). �

To better appreciate Theorem 2.5.3, consider the following example.

Example 2.5.4. Let g be sl2 ⊕ sl2, and let k be the diagonal subalgebra. The
following computations in GAP show a transitive realization of this pair.

gap> k:=SimpleLieAlgebra("A",1,Rationals);;
gap> g:=DirectSumOfAlgebras(k,k);;
gap> X:=GeneratorsOfAlgebra(g);;
gap> B:=BasisByGenerators(g,
Concatenation(X{[1..3]}+X{[4..6]},X{[3,1,2]}));;

gap> Blattner(g,B,3,5)[1];
[ [(2)*x_1*D_2+(-2)*x_1^2*D_2+(4/3)*x_1^3*D_2+(-2/3)*x_1^4*D_2+

(4/15)*x_1^5*D_2+(2)*x_2*x_3*D_2+(-1)*x_3*D_1+(-1)*x_3^2*D_3],
[(2)*x_1*x_2*D_1+(-2)*x_1*x_2^2*D_2+(-2)*x_1*D_3+
(2)*x_1^2*x_2*D_1+(-2)*x_1^2*x_2^2*D_2+(-2)*x_1^2*D_3+
(4/3)*x_1^3*x_2*D_1+(-4/3)*x_1^3*x_2^2*D_2+(-4/3)*x_1^3*D_3+
(2/3)*x_1^4*x_2*D_1+(-2/3)*x_1^4*D_3+(-4/15)*x_1^5*D_3+
(1)*x_2*D_1+(-1)*x_2^2*D_2],
[(-2)*x_2*D_2+(2)*x_3*D_3],
[(-2)*x_2*D_2+(2)*x_3*D_3+(1)*D_1],
[(2)*x_2*x_3*D_2+(-1)*x_3*D_1+(-1)*x_3^2*D_3+(1)*D_2],
[(1)*D_3] ]

Denote by Ei,Hi, Fi, i = 1, 2 the Chevalley bases of the two copies of sl2. The above
formal formal power series suggest the realization φ determined by

E1 + E2 7→ −x3∂1 + (1 + 2x2x3 − exp(−2x1))∂2 − x2
3∂3,

F1 + F2 7→ x2 exp(2x1)∂1 − x2
2 exp(2x1)∂2 + (1− exp(2x1))∂3,

H1 +H2 7→ −2x2∂2 + 2x3∂3,

H1 7→ ∂1 − 2x2∂2 + 2x3∂3,

E1 7→ −x3∂1 + (1 + 2x2x3)∂2 − x2
3∂3, and

F1 7→ ∂3,
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which implies

E2 7→ − exp(−2x1)∂2,

F2 7→ x2 exp(2x1)∂1 − x2
2 exp(2x1)∂2 − exp(2x1)∂3,

H2 7→ −∂1.

The transition from the output of Blattner to this realization—for indeed, it is readily
checked that φ is a transitive realization of the pair (sl2 ⊕ sl2, k)—was mere guessing
the closed forms of the formal power series coefficients. However, the conclusion that
φH1,E1,F1 equals φ could proved rigorously as follows: from the proof of Theorem 2.5.3,
we can extract a finite-dimensional subspace of E(3) in which all coefficients of φH1,E1,F1

must lie. Then we can find the closed form of these formal power series by computing
their terms up to a sufficiently high degree.

In Chapters 3 and 4 we encounter ways to prove that the pair (sl2 ⊕ sl2) even has
a polynomial realization. Indeed, Example 1.3.1 from the introduction of this thesis
shows that this pair is a subpair of (sl4, p1), which has a polynomial realization by
virtue of Example 2.4.1. However, it seems impossible to find a basis Y of a vector
space complementary to k in g such that φY is polynomial.

2.6. Lie’s Conjecture up to Three Variables

We prove Theorem 2.2.5 by means of the techniques from the previous sections.

Proof of Theorem 2.2.5. First, after possibly replacing (g, k) by its effective
quotient, we may assume that the pair is effective. The case codimg k = 1 is a trivial
instance of Theorem 2.2.4.

If codimg k = 2, then either k is maximal in g, or not. In the latter case, Theorem
2.2.4 applies. In the former, it is immediate from Morozov’s and Dynkin’s theorems in
Section 3.2 that there are three possibilities:

(1) g = sl2 n m, where m is an Abelian two-dimensional ideal on which sl2 acts
irreducibly, and k = sl2;

(2) g = gl2 n m, where m is an Abelian two-dimensional ideal on which gl2 acts
irreducibly, and k = gl2; or

(3) g = sl3, and k is a maximal parabolic subalgebra.
In each of these cases, there is a subalgebra m ⊆ g such that g = k⊕m as vector spaces,
and such that m acts nilpotently on g. Hence, Theorem 2.2.3 applies, and (g, k) has a
polynomial transitive realization.

Finally, suppose that codimg k = 3. If k is maximal in g, then one of the following
holds:

(1) g is simple of type A3, B2, C2 and k is parabolic. Then Example 2.4.1 applies,
and (g, k) has a polynomial transitive realization.

(2) g = k n m, where k acts faithfully and irreducibly on the Abelian ideal m.
Again, Theorem 2.2.3 yields a polynomial transitive realization.

(3) g = sl2 ⊕ sl2, and k is the diagonal subalgebra. But this is Example 2.5.4.
Now assume that k is not maximal. First suppose that there is a maximal subalgebra

l of g, in which k is a maximal subalgebra. There are two cases to be distinguished.
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First assume that (codimg l, codiml k) = (1, 2). Choose Y3 ∈ g\l. Let j be the largest
l-ideal in k. The effective quotient (l/j, k/j) has codimension two, and is primitive. From
the above, it is clear that there is a complementary subalgebra m/j that acts nilpotently
on l/j. Let Y1, Y2 ∈ l be such that Y1 + j, Y2 + j span m/j, and set Y := (Y1, Y2, Y3).
Then the image of φY has coefficients in E(3), as can be seen as follows. For any X ∈ g,
L(Y r11 Y r22 Y r33 X) = L(Y r11 Y r22 ad(Y3)r3(X)). Like in the proof of Theorem 2.2.4 this
implies that all coefficients of the realization φY are annihilated by p(∂3), where p is the
minimal polynomial of adg(Y3). Next note that L(Y r11 Y r22 Y3) = 0, and L(Y r11 Y r22 X) ∈ j
for sufficiently large r1 + r2, and all X ∈ k. This follows from the argument in the proof
of Theorem 2.2.3. Thus we find that the variables x1 and x2 appear only polynomially
in the coefficients of the realization.

For the case (codimg l, codiml k) = (2, 1), I have not found an easy argument like
for the previous case. Instead of plunging into the classification of all pairs of this type,
I refer to [42], pages 154–170 for the proof of this part.

Finally, in the remaining case, there are are two intermediate subalgebras:

g ) k1 ) k2 ) k,

so that Theorem 2.2.4 applies. �

The last case in the proof of Theorem 2.2.5 is exactly the one that Sophus Lie
does not handle in [42]. In geometric terms, it corresponds to an action of a local Lie
group G on a three-dimensional manifold M which is very imprimitive in the following
sense: M has an invariant foliation of curves, which in turn can be grouped together
into two-dimensional surfaces that are also permuted by G.

2.7. Lie’s Conjecture beyond Three Variables

We proved Lie’s conjecture for transitive Lie algebras in 1, 2, and 3 variables. The
proof relies on the coincidence that an effective pair (g, k) of low codimension is likely
either to be of the ‘very imprimitive’ sort (so that Theorem 2.2.4 applies), or to have
a nice nilpotently acting subalgebra complementary to k, in which case we can apply
Theorem 2.2.3. This is not true in higher codimensions, so our arguments fail there.

On the other hand, in order to find counter-examples, one needs tools to prove
that some given transitive Lie algebra has no conjugate with coefficients in E. If one
replaces E by the algebra of algebraic functions, i.e., the elements of K[[x]] satisfying
some polynomial equation with coefficients from K[x], then the transcendence degree
is such a tool. Indeed, consider the following transitive Lie algebra in two variables:

gΛ := K∂x ⊕
⊕
λ∈Λ

K exp(λx)∂y,

where Λ is a finite non-empty subset of K; this is type (1, 1) of Table 2 in Appendix A.

Proposition 2.7.1. The Lie algebra gΛ has a conjugate with algebraic coefficients
if and only if the Q-space

W := 〈λ1 − λ2 | λ1, λ2 ∈ Λ〉Q
is at most 1-dimensional. In that case, gΛ even has a conjugate with polynomial coeffi-
cients.
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Proof. If dimQW ≤ 1, then Λ is contained in a set of the form λ2 +Nλ1. Consider
the coordinate change given by

u = exp(λ1x)− 1, v = y exp(−λ2x).

It maps

∂x 7→ λ1(1 + u)∂u − λ2v∂v, and

exp((λ2 + kλ1)x)∂y 7→ (1 + u)k∂v for k ∈ N.
For the converse, suppose that λ1, λ2, λ3 ∈ Λ are such that λ1 − λ3, λ2 − λ3 are

linearly independent over Q. Consider any coordinate change

u = x+ . . . , v = y + . . . ,

where the dots denote higher-order terms, and suppose that it maps gΛ to a transitive
Lie algebra with coefficients that are algebraic over K(u, v). It then follows that fi =
exp(λi − λ3)x is algebraic over K(u, v) for i = 1, 2. But this contradicts the fact that
v, f1, f2 are algebraically independent over K. �

Here we use the transcendence degree to decide whether certain given elements of
K[[x]] together lie in some conjugate of the subalgebra of K[[x]] consisting of algebraic
functions. For disproving Lie’s conjecture, the availability of a similar tool distinguishing
conjugates of E inside K[[x]] from wilder algebras, would be useful. Indeed, such a tool
would also be of interest in its own right.

In view of Theorem 2.2.4, it is natural to search for counter-examples to Lie’s
conjecture on the other end of the spectrum of effective pairs: the primitive ones.
Chapter 3 rules out some of these candidate counter-examples, by showing that they
are subpairs of pairs that are known to have a polynomial realization.



CHAPTER 3

Primitive Lie Algebras

3.1. Introduction

In [62], Michel and Winternitz compute explicit polynomial transitive realizations
of classical-parabolic primitive pairs, i.e., pairs (g, p) where g is a finite-dimensional
classical simple Lie algebra, and p is a maximal parabolic subalgebra. For any such
realization φ : g → D̂(n), where n = codimg p, they wonder whether φ(g) is maximal
among the finite-dimensional subalgebras of D̂(n). Michel and Winternitz work over the
complex numbers, as does Dynkin in his classification of maximal subalgebras of the
finite-dimensional simple Lie algebras. However, this classification does not change in
replacing C by the arbitrary algebraically closed field K of characteristic 0 which is the
ground field of all structures appearing in this chapter.

By the Realization Theorem, maximality of φ(g) is equivalent to maximality of
(g, p) among the finite-dimensional pairs of codimension n. This observation leads to
the following order on pairs: we call a pair (g1, k1) a subpair of a pair (g2, k2) if there
exists an injective morphism φ : (g1, k1) → (g2, k2) in the sense of Section 1.1, and if
moreover codimg1 k1 = codimg2 k2. Such a map φ is called an inclusion or embedding
of (g1, k1) into (g2, k2). Note that in this case g2 = φ(g1) + k2. Conversely, if g1 is a
subalgebra of g2 such that g2 = g1 + k2, then (g1, g1 ∩ k2) is a subpair of (g2, k2). If a
finite-dimensional pair is not a subpair of any other finite-dimensional pair, then it is
called maximal.

In terms of primitive pairs, Michel and Winternitz prove maximality of the classical-
parabolic pairs (sln, pi) for all n ≥ 2 and all i = 1, . . . , n − 1, where, as on page 7, the
maximal parabolic subalgebras are labelled by the numbering of [7]. On the other
hand, they find two families of inclusions among classical-parabolic pairs: (sp2n, p1) ⊂
(sl2n, p1) for all n ≥ 1, and (o2n+1, pn) ⊂ (o2n+2, pn+1) for all n ≥ 2.

Michel and Winternitz conclude their article with the following question: is (o10, p5)
a subpair of (o11, p3)? These pairs have codimension 15, and this is the smallest codi-
mension in which the dimension arguments that the authors use, do not suffice to
establish non-existence of inclusions other than the ones they already found. For in-
deed, there are no other inclusions among classical-parabolic pairs, as we will see in
Section 3.4; in particular, the answer to Michel and Winternitz’s question is no. If we
consider all simple-parabolic pairs, i.e., pairs (g, p) where g is a finite-dimensional simple
Lie algebra and p is a maximal parabolic subalgebra, then we have precisely one more
inclusion, namely (G2, p1(G2)) ⊂ (B3, p1(B3)). This is all proved in Section 3.4. Having
thus found all inclusions among simple-parabolic pairs, we set out to find all inclusions
of other finite-dimensional primitive pairs into simple-parabolic pairs in Section 3.5.

31
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Solving Winternitz and Michel’s problem is one motivation for this chapter; there
are two more. First, I want to discuss Morozov’s and Dynkin’s classifications of finite-
dimensional primitive pairs because of the important role they play in transitive dif-
ferential geometry. Their classifications are the topic of Section 3.2. Second, as pointed
out in Section 1.3, if (g1, k1) is a subpair of a pair (g2, k2), then any transitive realization
of the latter pair restricts to a transitive realization of the former. In particular, if
the latter pair is simple-parabolic so that it has a polynomial transitive realization by
Example 2.4.1, then so has the former. This rules out many candidate counterexamples
to Lie’s conjecture of Chapter 2.

Ernest B. Vinberg informed me that many results of this chapter have been obtained
earlier in the setting of compact Lie groups [50]. In particular, the problem of finding
all inclusions among simple-parabolic pairs was already solved by Onishchik in the
1960s [48]. Also, our inclusion problem is related to that of finding factorizations
of connected affine algebraic groups. Indeed, let G be such a group, let G1, G2 be
closed subgroups, and suppose that G = G1G2. Then L(G) = L(G1) + L(G2), so
that (L(G1), L(G1 ∩ G2)) is a subpair of (L(G), L(G2)). Conversely, still under the
assumption that G be connected, L(G) = L(G1) + L(G2) implies that G1 has a dense
open orbit on G/G2, from whence it follows that G1G2 is an open dense subset of G. In
general, however, it is a proper subset of G; see for example the geometric interpretation
of Proposition 3.5.4. Under the condition that one of G1, G2 be parabolic, factorizations
G = G1G2 of simple algebraic G were classified by Kantor in characteristic 0 [37] and by
Onishchik in arbitrary characteristic [49]. Liebeck, Saxl and Seitz classify factorizations
under milder conditions in [43]. In contrast, the approach to the inclusion problem
followed in this chapter is mostly Lie algebraic and very elementary.

3.2. Morozov’s and Dynkin’s Classifications

Recall the definition of a primitive pair (g, k) from Section 1.1. On one hand, k must
be maximal in g, but on the other hand, it must not contain any g-ideal. This makes it
possible to classify finite-dimensional primitive pairs. We distinguish two cases: either
g is simple, or it is not.

Theorem 3.2.1 (Morozov). Let (g, k) be a finite-dimensional primitive pair, and
assume that g is not simple. Then one of the following holds.

(1) g = knm, where k acts faithfully and irreducibly on the Abelian ideal m.
(2) g ∼= l ⊕ l, where l is simple and the two summands commute; and k is the

diagonal subalgebra {(l, l) | l ∈ l}.
Conversely, in both cases the pair (g, k) is primitive.

For a proof of this theorem see [21]. Dynkin’s classification of primitive pairs (g, k)
with g simple splits into the case where g is classical and the case where it is exceptional.
In the former case, i.e., if g is of type A,B,C or D, then by the standard module of g
we mean the fundamental representation corresponding to the first node in the Dynkin
diagram.
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Theorem 3.2.2 (Dynkin). Let (g, k) be a finite-dimensional primitive pair, and
assume that g is classical simple. Let V be its standard module. There are two possibil-
ities:

k acts reducibly on V : in this case, one of the following holds.
(1) k is a maximal parabolic subalgebra of g. These are of the form

p(V ′) := {g ∈ g | gV ′ ⊆ V ′}

with V ′ a proper subspace of V , totally isotropic in case g is orthogonal
or symplectic. Moreover, if g is of type Dm, then dimU 6= m− 1.

(2) g = o(V ), and k = o(U)⊕o(U⊥) for some non-degenerate U , 0 ( U ( V .
(3) g = sp(V ), and k = sp(U)⊕sp(U⊥) for some non-degenerate U , 0 ( U (

V .
k acts irreducibly on V : then there are two possibilities.

k is not simple: then one of the following holds.
(1) g = sl(V ), where V ∼= V1⊗ V2, and k = sl(V1)⊕ sl(V2). Here V1, V2

have dimensions ≥ 2.
(2) g = sp(V ), where V ∼= V1 ⊗ V2, and k = sp(V1) ⊕ o(V2). Here

dimV1 ≥ 2,dimV2 ≥ 3 but either dimV2 6= 4 or (dimV1,dimV2)
equals (2, 4). Moreover, V1 is equipped with a non-degenerate skew
bilinear form, and V2 with a non-degenerate symmetric bilinear
form, such that the skew form on V is the product of the two.

(3) g = o(V ), where V ∼= V1 ⊗ V2, and k = o(V1) ⊕ o(V2). Here
dimV1,dimV2 ≥ 3 but 6= 4. Moreover, each Vi is equipped with
a non-degenerate symmetric bilinear form, such that the symmetric
form on V is the product of the two.

(4) g = o(V ), where V ∼= V1 ⊗ V2, and k = sp(V1) ⊕ sp(V2). Here
dimV1,dimV2 ≥ 2. Moreover, each Vi is equipped with a non-
degenerate skew bilinear form, such that the symmetric form on V
is the product of the two.

k is simple: then one of the following holds.
(1) g = sl(V ), and k = o(V ) for some non-degenerate symmetric bilin-

ear form on V .
(2) g = sl(V ), and k = sp(V ) for some non-degenerate skew bilinear

form on V .
(3) g = sl(V ), and k leaves invariant no bilinear form on V .
(4) g = o(V ), and k leaves invariant the symmetric bilinear form on V

defining g.
(5) g = sp(V ), and k leaves invariant the skew bilinear form on V

defining g.

Conversely, still assuming that g is classical simple, if (g, k) appears in the above list,
then it is, as a rule, a primitive pair. Only in the last three cases, there are exceptions
to this rule, and they are listed in Table 1 of [18].

Dynkin proves this in [18]. In [19], he also classifies the maximal subalgebras of
the exceptional simple Lie algebras.
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Remark 3.2.3. A note concerning the exception dimV2 = 4 in the second half of
Dynkin’s theorem: from o4

∼= sp2 ⊕ sp2 we find that, for n ≥ 1,

sp2n ⊕ o4 = (sp2n ⊕ sp2)⊕ sp2

⊆ o4n ⊕ sp2

( o8n,

where the first inclusion is strict if and only if n > 1. This explains why (sp2n ⊕ o4) is
not a maximal subalgebra of o8n unless n = 1. Similarly, for n ≥ 3, we have:

on ⊕ o4 = (on ⊕ sp2)⊕ sp2

( sp2n ⊕ sp2

( o4n,

which shows that on ⊕ o4 is not a maximal subalgebra of o4n.

Morozov’s and Dynkin’s results imply that the number of isomorphism classes of
primitive pairs of a fixed codimension is finite. To get a good insight into the inclusion
problem, I wrote a program in the computer algebra program LiE that determines
all classes of a given codimension. Extensive use of this program taught me which
dimension arguments to use in what follows. Moreover, in order to discard candidate
inclusions in ‘low’ codimensions, I sometimes use this program, but, for the sake of
brevity, I do not always include its complete output.

3.3. Maximal Parabolic Subalgebras

The maximal parabolic subalgebras of a simple Lie algebra g are parameterized by
the vertices of the Dynkin diagram of g; see page 7. Their geometric interpretations are
as follows. For m ∈ Nl, we denote by Vm the irreducible g-module with highest weight
m with respect to the basis of fundamental weights. In Vei , the highest weight line Kvei

is stabilized by pi; as the latter Lie algebra is maximal in g, it can be characterized as
the stabilizer of Kvei .

Maximal parabolic subalgebras of classical simple Lie algebras have yet another
interpretation, as indicated in Theorem 3.2.2. By cl(V ), we denote any of the classical
Lie algebras with standard module V . By p(V ′), we denote the maximal parabolic
subalgebra of cl(V ) consisting of maps leaving V ′ invariant. If cl(V ) is orthogonal or
symplectic, then V is understood to be endowed with a non-degenerate symmetric or
skew bilinear form, respectively, and V ′ is totally isotropic with respect to this form.
In addition, if cl(V ) is of type Dm, then dimV ′ 6= m − 1, as any (m − 1)-dimensional
totally isotropic subspace V ′ of V is contained in precisely two m-dimensional isotropic
subspaces, and both are invariant under any element of o(V ) leaving V ′ invariant. Note
that p(V ′) is always conjugate to pdimV ′ by an automorphism of cl(V ) (possibly outer
if cl(V ) is of type Dn).

We often need the codimensions of maximal parabolic subalgebras in simple ones;
the numbers in the following lemma are easily obtained from the explicit description of
the classical Lie algebras in [35], and by calculations with LiE [57] for the exceptional
Lie algebras.
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Lemma 3.3.1. Let n be the semisimple rank of cl(V ), set n1 := dimV ′ > 0, and
write n = n1 + n2. Then the codimension of p(V ′) in cl(V ) equals

n1(n2 + 1) if cl(V ) is of type An,

2n1n2 +
(
n1 + 1

2

)
if cl(V ) is of type Bn or Cn, and

2n1n2 +
(
n1

2

)
if cl(V ) is of type Dn.

Furthermore, the codimensions of maximal parabolic subalgebras of the exceptional sim-
ple Lie algebras are as follows:

5, 5 for type G2,
15, 20, 20, 15 for type F4,

16, 21, 25, 29, 25, 16 for type E6,
33, 42, 47, 53, 50, 42, 27 for type E7, and

78, 92, 98, 106, 104, 97, 83, 57 for type E8.

Consider a classical-parabolic pair (cl(U), p(U ′)). The following lemma describes
the structure of U as a p(U ′)-module; it is easily deduced from the explicit description
of the classical Lie algebras in [35].

Lemma 3.3.2. Let (cl(U), p(U ′)) be a classical-parabolic pair. If it is not of type
(Bn, pn), then 0, U ′, and U are the only p(U ′)-invariant subspaces of U . If it is, then
0, U ′, (U ′)⊥ ⊃ U ′, and U are the only p(U ′)-invariant subspaces of U .

We call two g-modules V and W equivalent if there is an automorphism of g car-
rying one over into the other. Then Vm is equivalent to Vn if and only if there is an
automorphism of the Dynkin diagram of g mapping m to n.

Using the following lemma, we can often deduce that a given cl(U)-module cannot
have irreducible submodules other than U , U∗, and trivial ones.

Lemma 3.3.3. Let cl(U) be classical simple. Then its non-trivial irreducible modules
of smallest dimension are U and U∗, unless cl(U) is o5, in which case it is isomorphic
to sp4. Apart from U and U∗ the smallest non-trivial irreducible modules are

(1) the exterior square Ve2 = Λ2(U), if cl(U) is of type A, Bn with n ≥ 7 or Dn

with n ≥ 8; it has dimension
(

dimU
2

)
,

(2) the spin module Ven , for type Bn with n < 7, of dimension 2n,
(3) the spin modules Ven−1 and Ven for type Dn with n < 8, of dimension 2n−1,
(4) Ve2 , which is Λ2(U) minus a trivial one-dimension submodule, for type Cn

with n ≥ 4; it has dimension
(

dimV
2

)
− 1, and

(5) Ve2 and Ve3 for type C3, both of dimension 14.
For exceptional simple Lie algebras, the smallest faithful modules are the following:

(1) for E6: Ve1 and Ve6 , both of dimension 27,
(2) for E7: Ve7 , of dimension 56,
(3) for E8: Ve8 , of dimension 248,
(4) for F4: Ve4 , of dimension 26, and
(5) for G2: Ve1 , of dimension 7.
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Proof. Weyl’s dimension formula ([35], Chapter VIII) implies dimVm > dimVn

if m 6= n and mi ≥ ni for all i. Hence, any non-trivial module other than U ∼= Ve1 has
dimension at least the minimum of the dimensions of V2e1 and Vei for i 6= 1. Now, the
result follows from the tables in [9]. �

3.4. Inclusions among Simple-Parabolic Pairs

The following propositions describe some inclusions among simple-parabolic pairs.

Proposition 3.4.1. The pair (sp2n, p1(sp2n)) is a subpair of (sl2n, p1(sl2n)), for
any integer n ≥ 2.

This proposition appears as Lemma 6.1 in [62].

Proof. Let V be a 2n-dimensional vector space equipped with a non-degenerate
skew bilinear form, and let v ∈ V be non-zero. The embedding φ : sp(V )→ sl(V ) is the
natural one, and it is clear that the pre-image of the stabilizer in sl(V ) of Kv under φ is
the stabilizer in sp(V ) of Kv. Furthermore, both codimensions equal n− 1 by Lemma
3.3.1. �

Proposition 3.4.2. Let n be an integer ≥ 2. Let V be a (2n + 2)-dimensional
vector space equipped with a symmetric bilinear form, V ′ ⊆ V an (n + 1)-dimensional
totally isotropic subspace, and U a (2n+ 1)-dimensional non-degenerate subspace of V .
Then U ′ := U ∩ V ′ is an n-dimensional totally isotropic subspace of U , and the pair
(o(U), p(U ′)) is a subpair of (o(V ), p(V ′)).

This proposition is Lemma 5.2 of [62].

Proof. First, U ∩V ′ has dimension at least 2n+ 1 +n+ 1− (2n+ 2) = n. As it is
totally isotropic, it has dimension ≤ bdim(U)/2c = n. This proves the first statement.

Define φ : o(U) → o(V ) by φ(A)|U = A and φ(A)|U⊥ = 0. Now if A ∈ p(U ′),
then φ(A) leaves U ′ invariant, and also the two (n + 1)-dimensional totally isotropic
subspaces containing U ′. One of these is V ′, so that φ(A) ∈ p(V ′). Conversely, if φ(A)
leaves V ′ invariant, then it leaves V ′ ∩ U = U ′ invariant. Hence

φ−1(p(V ′)) = p(U ′).

Finally, the codimensions of both pairs equal
(
n+1

2

)
. �

Proposition 3.4.3. The pair (G2, p1(G2)) is a subpair of (o7, p1(o7)).

Proof. The 7-dimensional irreducible G2-module V(1,0) has a non-degenerate sym-
metric G2-invariant bilinear form; this defines the embedding φ : G2 → o(7). The para-
bolic subalgebra p1 of G2 is the stabilizer of the line Kv spanned by the highest weight
vector v ∈ V(1,0). This vector is isotropic, and we find p1(G2) = φ−1(p(Kv)). Finally,
both pairs have codimension 5. �

A major part of this section is devoted to the proof of the following theorem.

Theorem 3.4.4. Propositions 3.4.1, 3.4.2 and 3.4.3 describe all inclusions among
primitive simple-parabolic pairs.
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Roughly, the proof runs as follows. First we restrict our attention to inclusions
φ : (cl(U), p(U ′)) → (cl(V ), p(V ′)) among classical-parabolic pairs. Consider V as a
cl(U)-module through φ. For dimension reasons, it will turn out that V splits into
modules that are either trivial or equivalent to U . Using this, we prove that both
dimV ′ ≥ dimU ′ and codimV V

′ ≥ codimU U
′. By dimension arguments, this permits

us to solve the case where cl(V ) = sl(V ), and to show that if cl(V ) is orthogonal or
symplectic, then so is cl(U). Hence, only the inclusions among orthogonal pairs and
those among symplectic pairs remain to be treated. For these, we show that V ∼= U ⊕T
as a cl(U)-module, where T is trivial, and that V ′ splits accordingly into U ′⊕T ′. Again,
a dimension argument shows the non-existence of inclusions other than the ones that
we have already found. Finally, we deal with the exceptional-parabolic pairs.

Before carrying on with the details, I note that Gerhard Post proves maximality
of certain graded primitive Lie algebras in an entirely different way in [51]. Within
the realm of simple-parabolic pairs, these are the pairs (g, pi) where g is simple and i
corresponds to a simple root whose coefficient in the highest root is 1; representation
theory associated to these pairs is the subject of Chapter 5. More generally, he derives
sufficient conditions for a given finite-dimensional transitive graded Lie algebra to be
contained in a unique maximal finite-dimensional transitive graded Lie algebra.

Inclusions among Classical-Parabolic Pairs. If φ is an embedding of the pair
(cl(U), p(U ′)) into (cl(V ), p(V ′)), then V can be considered as a cl(U)-module through
φ. We want to prove that non-standard cl(U)-modules are too large to fit into V .

Lemma 3.4.5. For any classical-parabolic pair (cl(V ), p(V ′)) we have

dimV ≤ codimcl(V ) p(V ′) + 2.

Proof. Let n be the semisimple rank of cl(V ), n1 := dimV ′. From Lemma 3.3.1,
we find that codimcl(V ) p(V ′) is minimal for n1 = 1. In this case, it equals n, 2n−1, 2n−
1, or 2n− 2 according to whether cl(V ) is of type An, Bn, Cn or Dn. The lemma holds
in each case. �

Lemma 3.4.6. Consider a classical-parabolic pair (cl(U), p(U ′)), and let V be an
irreducible cl(U)-module which is neither trivial nor equivalent to U . Then

dimV > codimcl(U) p(U ′) + 2,

unless (cl(U), p(U ′), V ) is one of the following triples:

(sl2, p1, V(2)), (sl4, p2, V(0,1,0)), (o5, p1, V(0,1)),

(o5, p2, V(0,1)), (o7, p2, V(0,0,1)), (o7, p3, V(0,0,1)), or(6)

(o10, p3, Ve6).

Proof. Let n be the semisimple rank of cl(U), set n1 := dimU ′, and write n =
n1 + n2. Now distinguish between the four possible types of cl(U).

cl(U) of type An: By Lemma 3.3.3, we have

dimV ≥
(
n+ 1

2

)
= n1(n2 + 1) +

(
n1

2

)
+
(
n2 + 1

2

)
,

which is larger than n1(n2 + 1) + 2 = codimcl(U) p(U ′) + 2 unless we are in the
first two exceptions of the lemma.
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cl(U) of type Bn: If n ≥ 7, then by Lemma 3.3.3

dimV ≥
(

2n+ 1
2

)
= 4n1n2 +

(
2n1 + 1

2

)
+
(

2n2 + 1
2

)
,

which is larger than 2n1n2 +
(
n1
2

)
+ 2. The cases where n = 2, . . . , 7 yield four

exceptions, listed in the lemma.
cl(U) of type Cn: Now by Lemma 3.3.3

dimV ≥
(

2n
2

)
− 1 = 4n1n2 +

(
2n1

2

)
+
(

2n2

2

)
− 1,

which is larger than 2n1n2 +
(
n1+1

2

)
+ 2 if n ≥ 3, which we may assume as we

have already dealt with B2.
cl(U) of type Dn: If n ≥ 8, then by Lemma 3.3.3

dimV ≥
(

2n
2

)
= 4n1n2 +

(
2n1

2

)
+
(

2n2

2

)
;

this is larger than 2n1n2 +
(
n1
2

)
+ 2. The cases where n = 4, . . . , 8 yield the

last exception in the lemma.
�

Let us get rid of the exceptions (6).

Lemma 3.4.7. The only proper inclusions of a pair (cl(U), p(U ′)) from the list (6)
into another classical-parabolic pair are:

(o5, p2)→ (o6, p3) and (o7, p3)→ (o8, p4);

both are described by Proposition 3.4.2.

Proof.

(1) The pair (sl2, p1) is the only classical-parabolic pair of codimension 1, by
Lemma 3.3.1.

(2) Apart from the pair (sl4, p2), there is only one other classical-parabolic pair
of codimension 4, namely (sl5, p1). Consider an inclusion φ : sl4 → sl5. The
standard module V of the latter splits into a module U equivalent to the
standard module for sl4, and a trivial one. Hence, p2 ⊆ sl4 does not leave
invariant a one-dimensional subspace of V other than the trivial sl4-module,
i.e., φ(p2) cannot be a subalgebra of p1 ⊆ sl5.

(3) Apart from the pair (o5, p1), there are only two classical-parabolic pairs of
codimension 3: (sl4, p1), and (o5, p2). The latter does not contain (o5, p1), as
the two parabolic subalgebras are not conjugate. Any embedding φ : o5 → sl4
is given by the 4-dimensional irreducible module V(0,1) for o5. Suppose that
p1 ⊆ o5 leaves invariant a line Kv in V(0,1). Then Kv is invariant under the
Borel subalgebra of o5 contained in p1, so that Kv is the highest weight line, of
weight (0, 1). But the stabilizer of this line is p2 ⊆ o5, which is not conjugate
to p1. Hence, (o5, p1) is not a subpair of (sl4, p1).

(4) The pair (o5, p2) is not contained in (o5, p1), but it is contained in the remain-
ing classical-parabolic pair of codimension 3, namely (sl4, p1) ∼= (o6, p3).



3.4. INCLUSIONS AMONG SIMPLE-PARABOLIC PAIRS 39

(5) Apart from (o7, p2), there are four classical-parabolic pairs of codimension 7:
(sl8, p1), (o9, p1), (sp6, p2), and (sp8, p1). The parabolic subalgebra p2 ⊆ o7

does not leave a line invariant in the standard module Ve1 for o7, nor in the
spin module Ve3 for the latter. This shows that (o7, p2) is not a subpair of the
first two pairs, nor of the last pair. Also, o7 does not fit into sp6, which rules
out the third one.

(6) The pair (o7, p3) is only contained in the pair (o8, p4). Note that the latter
pair is isomorphic to (o8, p1) and to (o8, p3).

(7) Apart from (o10, p3), the only classical-parabolic pairs of codimension 15 are

(sl16, p1), (sl8, p3), (o11, p2),

(o11, p5), (o17, p1), (sp10, p2),

(sp10, p5), (sp16, p1), and (o12, p6).

Arguments like the ones in the previous cases show that (o10, p3) is contained
in neither of these.

�

The use of the rather far-fetched Lemmas 3.4.5 and 3.4.6 becomes clear in the
following lemma.

Lemma 3.4.8. Suppose that (cl(U), p(U ′)) is a proper subpair of (cl(V ), cl(V ′)).
Then we can write

V = T ⊕
k⊕
i=1

Ui

as cl(U)-modules, for some k ≥ 1, where each Ui is equivalent to U, and T is a trivial
module.

Proof. If (cl(U), p(U ′)) is one of the exceptions in Lemma 3.4.6, then the state-
ment holds by Lemma 3.4.7. Now assume that it is not one of those exceptions. The
codimensions of both pairs are equal, say c. According to Lemma 3.4.5, dimV ≤ c+ 2.
By Lemma 3.4.6, any non-trivial irreducible cl(U)-module that is not equivalent to the
standard one, has dimension > c + 2, hence does not fit into V . In order that the
homomorphism cl(U)→ cl(V ) be nontrivial, we need k ≥ 1. �

This lemma will yield inequalities among the parameters of two classical-parabolic
pairs, one of which is a subpair of the other; these inequalities will rule out many possible
inclusions. First, however, it is convenient to rule out D4, because—apart from An—it
is the only classical simple Lie algebra having modules that are equivalent to, but not
isomorphic to, its standard module.

Lemma 3.4.9. None of the pairs (o8, pi) for i = 1, . . . , 4 is a proper subpair of an
other classical-parabolic pair.

Proof. The codimension of (o8, pi) equals 6 for i = 1, 3, 4 and 9 for i = 2. The
other classical-parabolic pairs of codimension 6 are (sl5, p2), (sl7, p1), (o7, p3), and
(sp6, p3). For none of these, the first component contains o8, which proves the lemma
for i = 1, 3, and 4.
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The other classical-parabolic pairs of codimension 9 are (sl6, p3), (sl10, p1), (o11, p1),
and (sp10, p1). If (o8, p2) is to be a subpair of one of these, then o8 must have a 10- or
11-dimensional module V on which p2 is the stabilizer of a one-dimensional subspace
V ′. Now V is of the form Vei ⊕ T , where i = 1, 3, or 4, and T is a trivial module of
dimension 2 or 3. Let π be the projection of V onto Vei along T . Then π(V ′) must be
non-zero, lest all of o8 leave V ′ invariant. Hence π(V ′) is one-dimensional, and invariant
under p2. In particular, it is invariant under the Borel subalgebra contained in p2, hence
π(V ′) is the highest weight line, of weight ei. But the stabilizer of this line is pi, which
does not contain p2. �

Lemma 3.4.10. Suppose that (cl(U), p(U ′)) is a subpair of (cl(V ), p(V ′)). If cl(U)
is of type B,C or D, and (cl(U), p(U ′)) is not of type (Bn, pn), then we have

dimV ′ ≥ dimU ′, and(7)

codimV V
′ ≥ codimU U

′.

If (cl(U), p(U ′)) is of type (Bn, pn), then we have

dimV ′ ≥ dimU ′, and

codimV V
′ ≥ codimU U

′ − 1.

If cl(U) is of type A, then at least one of (7) and the following holds:

dimV ′ ≥ codimU U
′, and

codimV V
′ ≥ dimU ′.

Proof. According to Lemma 3.4.8,

V = T ⊕
k⊕
i=1

Ui

as a cl(U)-module; here T is trivial and each Ui is equivalent to U .
First assume that cl(U) is not sl(U); then each Ui is isomorphic to U as Lemma

3.4.9 rules out o8. For all i = 1, . . . , k, let U ′i be the image of U ′ under an isomorphism
U → Ui of cl(U)-modules, and let πi be the projection of V onto Ui along T ⊕

⊕
j 6=i Uj .

Then each πi(V ′) is invariant under p(U ′). One of these must be non-zero, lest V ′ be
invariant under all of cl(U). From Lemma 3.3.2 it follows that πi(V ′) ⊇ U ′i for some i,
which proves the first inequality. Furthermore, each V ′∩Ui is invariant under p(U ′). It
cannot be all of Ui for all i, for then V ′ would again be invariant under cl(U). Hence, for
at least one i, it equals U ′i , or (U ′i)

⊥ ∩Ui if cl(U) is of type Bn and U ′ is n-dimensional
(see Lemma 3.3.2). This proves the second inequality.

If cl(U) is sl(U), then it is possible that some of the Ui are isomorphic to U∗, for
which a similar reasoning as the above leads to the second pair of inequalities. �

Now suppose, for instance, that (sl(U), p(U ′)) is a subpair of (o(V ), p(V ′)), where
dimV ≥ 5 and odd. Let n := dim(U) − 1 be the semisimple rank of sl(U), and set
n1 := dimU ′. Similarly, let m := (dim(V ) − 1)/2 ≥ 2 be the rank of o(V ), and set
m1 := dimV ′. We clearly have m ≥ n, and by the above lemma m1 ≥ n1, possibly
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t1 b1 t2 t0 b1 b2

f1 f2

2

Figure 1. Illustration of Lemma 3.4.11.

after replacing (sl(U), p(U ′)) by the isomorphic pair (sl(U∗), p((U ′)0)), where (U ′)0 is
the annihilator of U ′ in U∗. On the other hand, we have

n1(n+ 1− n1) = 2m1(m−m1) +
(
m1 + 1

2

)
=

3
2
m1(

4
3
m+

1
3
−m1)

by Lemma 3.3.1. These facts lead to a contradiction by the following lemma.

Lemma 3.4.11. For i = 1, 2, let ai, bi ∈ R+, and suppose that a1b1 ≤ a2b2, b1 ≤ b2,
and at least one of these inequalities is strict. Define the quadratic real polynomials
fi(t) := ait(bi − t), i = 1, 2. Let t0 ∈ [0, b2], and suppose that there exist t1, t2 with
0 < t1 ≤ t2 ≤ t0 and f1(t1) = f2(t2). Then f1(b1/2) ≥ f2(t0).

This lemma is best illustrated by Figure 1, rather than proved rigorously: from the
conditions it follows that the positive part of the graph of f2 lies entirely above that of
f1, so that f1(t1) = f2(t2) and t0 ≥ t2 ≥ t1 imply f2(t2) ≥ f2(t0), and, a fortiori, the
maximum of f1, which is attained in b1/2, is at least f2(t0).

Now take a1 = 1, b1 = n + 1, a2 = 3
2 , and b2 = 4

3m + 1
3 . As m ≥ 2, we have

b1 = n+ 1 ≤ m+ 1 ≤ 4
3m+ 1

3 = b2; from a1 < a2 we find that also a1b1 < a2b2. Hence,
taking t0 = m, the conditions of the lemma are satisfied. We conclude that

1
4

(n+ 1)2 ≥ 1
2
m(m+ 1),

so that
n ≥

√
2m(m+ 1)− 1 > m,

a contradiction with m ≥ n. Summarizing, the assumption that (sl(U), p(U ′)) be a
subpair of (o(V ), p(V ′)) leads, by Lemma 3.4.10, to inequalities among the parameters
n, n1,m, and m1 that are contradictory by Lemma 3.4.11.

Consider another exemplary situation where the above lemmas serve us well in
ruling out inclusions: suppose that (o(U), p(U ′)), where dimU is odd and ≥ 5, is a
subpair of (sp(V ), p(V ′)). Set n := (dimU − 1)/2, n1 := dimU ′, m := dimV/2, and
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m1 := dimV ′. Then m > n as sp2n has no subalgebra isomorphic to o(U). Also, by
Lemma 3.4.10, m1 ≥ n1. Finally, by Lemma 3.3.1, we have

3
2
n1(

4
3
n+

1
3
− n1) =

3
2
m1(

4
3
m+

1
3
−m1).

Hence, we may apply Lemma 3.4.11 to a1, a2 := 3
2 , b1 := 4

3n + 1
3 , b2 := 4

3m + 1
3 , and

t0 := m, and find
3
2

(
2
3
n+

1
6

)2 ≥ 1
2
m(m+ 1),

from whence

n ≥
√

3
2

√
m(m+ 1)− 1

4
>
m

2
.

By Lemma 3.4.8, V splits, as a o(U)-module, into copies of U and a trivial module T .
The inequality just derived implies that only one copy of U fits into V , so that V ∼= U⊕T
and dimT < dimU . But then the skew linear form on V restricts to a non-zero form
on U , and this restriction is invariant under o(U). However, the unique non-zero o(U)-
invariant form on U is symmetric, not skew, and we arrive at a contradiction. By
similar arguments, the following proposition can be proved.

Proposition 3.4.12. Suppose that (cl(U), p(U ′)) is a subpair of (cl(V ), p(V ′)).
Then the following holds: if cl(V ) is orthogonal, then so is cl(U). Similarly, if cl(V ) is
symplectic, then so is cl(U).

We have only used half of the strength of Lemma 3.4.10 to this point; the proof of
the next non-existence result exploits its full strength.

Proposition 3.4.13. Suppose that (cl(U), p(U ′)) is a proper subpair of the pair
(sl(V ), p(V ′)). Then cl(U) = sp(U), dimU = dimV , and dimU ′ = dimV ′ = 1.

Proof. Let n be the semisimple rank of cl(U), set n1 := dimU ′, and write n =
n1 + n2. Similarly, define m,m1, and m2 for sl(V ). Consider the four possible types of
cl(U):

cl(U) of type An: we have codimsl(V ) p(V ′) = m1(m+1−m1), which is at least
n1(n+1−n1) according to Lemma 3.4.10, with equality if and only if m1 = n1

and m + 1−m1 = n + 1− n1, or m1 = n + 1− n1 and m + 1−m1 = n1, in
which cases the two pairs are isomorphic.

cl(U) of type Bn: then

m1(m+ 1−m1) ≥ n1(2n+ 1− n1 − 1) = 2n1n2 + n2
1

by Lemma 3.4.10. This is strictly larger than 2n1n2 +
(
n1
2

)
+n1, the codimen-

sion of the smaller pair, unless n1 = 1, in which case equality holds. But in
that case, the first inequality is strict, since equality is only possible if n1 = n.

cl(U) of type Cn: then

m1(m+ 1−m1) ≥ n1(2n− n1) = 2n1n2 + n2
1

≥ 2n1n2 +
(
n1 + 1

2

)
= codimcl(U) p(U ′),
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where we have equality in the first inequality if and only if m1 = n2 and
m+ 1 = 2n, and equality in the second inequality if and only if n1 = 1. These
are the parameters of the inclusion in the lemma.

cl(U) of type Dn: then

m1(m+ 1−m1) ≥ n1(2n− n1) = 2n1n2 + n2
1

by Lemma 3.4.10. This is strictly larger than 2n1n2 +
(
n1
2

)
, the codimension

of the smaller pair.
�

Thus, only the inclusions among orthogonal-parabolic pairs, and those among sym-
plectic-parabolic pairs remain to be treated.

Lemma 3.4.14. Suppose that (cl(U), p(U ′)) is a proper subpair of (cl(V ), p(V ′)), and
that cl(U) and cl(V ) are either both orthogonal, or both symplectic.

Then V = U1⊕T as a cl(U)-module, where U1 is isomorphic to U , T is trivial, and
U⊥1 = T with respect to the bilinear form on V . Let U ′1 be the image of U ′ under an
isomorphism U → U1 of cl(U)-modules. If (cl(U), p(U ′)) is not of type (Bn, pn), then
V ′ splits, as a p(U ′)-module, into U ′1⊕T ′, where T ′ is a subspace of T . If (cl(U), p(U ′))
is of type (Bn, pn), then either V ′ = U ′1 ⊕ T ′ as above, or

V ′ = (U ′1 ⊕Kv)⊕ T ′

for some T ′ ⊆ T and v ∈ V which has non-zero projection on both T and U1. The
p(U ′)-module U ′1 ⊕Kv is then isomorphic to (U ′)⊥.

Proof. A dimension argument using Lemmas 3.4.10 and 3.4.11 shows that dimV <
2 dimU , like in the non-existence proof just preceding Proposition 3.4.12. Hence, by
Lemma 3.4.8, V = U1 ⊕ T for some cl(U)-module U1 isomorphic to U . As dim(U1) >
dim(V )/2, the bilinear form of V restricts to a non-zero form on U1, which must be
equal, up to a constant, to the form on U1 induced by the isomorphism U → U1. Hence,
U1 is a non-degenerate subspace of V , and T = U⊥1 as claimed.

Denote by πT : V → T the projection onto T along U1 and by π1 : V → U1 the
projection onto U1 along T . Now view V as a p(U ′)-module; V ′ is a submodule, and
so is U1. The projection πT induces an embedding of the quotient V ′/V ′ ∩ U1 into
T , hence that quotient is a trivial module. On the other hand, it projects by π1 onto
π1(V ′)/V ′ ∩U1, which is a submodule of U1/V

′ ∩U1. According to Lemma 3.3.2, there
are four possibilities for V ′ ∩ U1:

(1) V ′ ∩U1 = U1; but then V ′ is invariant under cl(U), which contradicts the fact
that p(U ′) is its stabilizer.

(2) V ′∩U1 = 0; then V ′ is trivial, and so is π1(V ′). But U1 does not have non-zero
trivial submodules, so π1(V ′) = 0 and again, V ′ is invariant under cl(U).

(3) V ′ ∩ U1 = U ′1, so π1(V ′)/U ′1 is trivial. But U1/U
′
1 has no non-zero trivial

submodules, unless cl(U) is of type Bn and U ′ is n-dimensional. In that case,
((U ′1)⊥ ∩ U1)/U ′1 is such a submodule. This corresponds to the exceptional
case in the lemma. Otherwise, π1(V ′) = U ′1, which is the ‘general’ case.

(4) V ′ ∩ U1 = (U ′1)⊥ ∩ U1, if cl(U) is of type Bn and U ′ is n-dimensional. But
(U ′1)⊥ ∩ U1 is not totally isotropic while V ′ is, so this is impossible.

�
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We can now finish the classification of inclusions among classical-parabolic pairs.

Proposition 3.4.15. Suppose that (cl(U), p(U ′)) is a proper subpair of the pair
(cl(V ), p(V ′)), and that the classical algebras are either both orthogonal or both sym-
plectic. Then both classical Lie algebras are orthogonal, U is (2n+ 1)-dimensional, U ′

is n-dimensional, V is 2n+ 2-dimensional, and V ′ is (n+ 1)-dimensional.

Proof. By Lemma 3.4.14, V = U1 ⊕ T as a cl(U)-module, where U1 is isomorphic
to U and T = U⊥1 is trivial. Let U ′1 be the image of U ′ under an isomorphism U → U1

of cl(U)-modules. Suppose first that (cl(U), p(U ′)) is not of type (Bn, pn). Then, again
by Lemma 3.4.14, V ′ = U ′1 ⊕ T ′ for some T ′ ⊆ T .

As the bilinear form on T is non-degenerate and T ′ ⊆ V ′ is totally isotropic, we
have 2 dimT ′ ≤ dimT . Let n, n1, n2 and m,m1,m2 be as in the proof of Lemma 3.4.14.
Then

2 dimT ′ = 2(m1 − n1)
and

dimT = 2m+ ε− 2n− δ,
where δ, ε ∈ {0, 1} according to whether cl(U) and cl(V ) are of type B, respectively. It
follows that

m2 ≥ n2 + (δ − ε)/2,
so that m2 ≥ n2.

If both Lie algebras are of the same type, B, C or D, this together with m1 ≥ n1

implies that both pairs are the same. If cl(U) is of type Dn and cl(V ) is of type Bm,
then one has 2m1m2 +

(
m1+1

2

)
> 2n1n2 +

(
n1
2

)
: the codimensions cannot be equal.

Conversely, if cl(U) is of type Bn and cl(V ) is of type Dm, then even m2 ≥ n2 + 1, and

2m1m2 +
(
m1

2

)
≥ 2n1(n2 + 1) +

(
n1

2

)
> 2n1n2 +

(
n1 + 1

2

)
.

So none of these cases yield proper inclusions.
It remains to check the case where cl(U) is of type Bn and U ′ is n-dimensional. In

this case, the codimension of the larger pair equals

2m1m2 +
(
m1

2

)
+ εm1

and that of the smaller pair (
n+ 1

2

)
,

and we have m1 ≥ n. If ε = 1, then equality is possible only if m1 = n and m2 = 0,
i.e., both pairs are the same. If ε = 0, then equality is possible only if m1 = n1 + 1, and
m2 = 0. This is the case mentioned in the lemma. �
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The Exceptional-Parabolic Pairs.

Proposition 3.4.16. Let (g1, p1) and (g2, p2) be primitive simple-parabolic pairs,
not both of them classical-parabolic. Suppose that the former is a proper subpair of the
latter. Then these pairs are those of Proposition 3.4.3.

Proof. For a non-classical simple Lie algebra g, Lemma 3.3.1 lists the codimen-
sions of its maximal parabolic subalgebras. For each of them, calculate all primitive
simple-parabolic pairs with that codimension. They turn out to be classical-parabolic
pairs (cl(V ), p(V ′)). Typically, cl(V ) has higher rank than g, so that the former does
not fit into the latter. Also, dimV is usually smaller than the minimal dimension of a
faithful g-module, so that g does not fit into cl(V ). Let us treat the exceptions to these
two rules.

g of type G2: both pairs (g, pi), for i = 1, 2, have codimension 5, and the only
other primitive simple-parabolic pair of this codimension is (o7, p1). There is
only one way to embed g into o7, namely via the former’s irreducible module
V(1,0). However, the parabolic subalgebra p2 ⊆ g does not stabilize a line in
that module, so (g, p2) is not a subpair of (o7, p1).

g of type E6: the pair (g, p2) has codimension 21, and the only other primitive
simple-parabolic pairs of this codimension are (o13, p6) and (sp12, p6). Neither
of these classical Lie algebras is a subalgebra of g; see [19] or the discussion of
Borel-de Siebenthal subalgebras in Section 3.5. The pair (g, p3) has codimen-
sion 25, and the only other primitive simple-parabolic pair of this codimension
is (o27, p1). However, g does not leave a symmetric form invariant in its 27-
dimensional module, so the former pair is not contained in the latter. The
pair (g, p4) has codimension 29, and the only other primitive simple-parabolic
pair of this codimension is (sl30, p1). The Lie algebra g can only be embedded
into sl30 by its module Ve1 ⊕ 3V0, in which p4 does not leave a line invariant
which is not invariant under all of g.

g of type E7: the pair (g, p1) has codimension 33, and the only other primitive
simple-parabolic pairs of this codimension are (o15, p6) and (sp14, p6). But
neither of these classical Lie algebras fit into g; see [19] or the discussion on
Borel-de Siebenthal subalgebras in Section 3.5. The pair (g, p7) has codimen-
sion 27, and the only other primitive simple-parabolic pair of this codimension
is (o14, p3). However, g does not have a subalgebra isomorphic to o14; see [19]
or the discussion of Borel-de Siebenthal subalgebras in Section 3.5.

�

Proof of Theorem 3.4.4. Combine Lemmas 3.4.7 and 3.4.9, and Propositions
3.4.12, 3.4.13, 3.4.15, and 3.4.16. �

Maximality of Simple-Parabolic Pairs. Having dealt with inclusions among
simple-parabolic pairs, we now prove that such pairs cannot be subpairs of other effective
pairs; this leads to the following theorem.

Theorem 3.4.17. Apart from the pairs (sp2n, p1) for n ≥ 2, (o2n+1, pn) for n ≥ 2,
and (G2, p1), all primitive simple-parabolic pairs are maximal among the effective pairs.

We first prove that a primitive pair cannot be contained in an imprimitive one.
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Lemma 3.4.18. Let (g1, k1) be a subpair of (g2, k2), and suppose that the former pair
is primitive. Then so is the latter.

Proof. Denote the monomorphism by φ : g1 → g2. Suppose that there exists a
subalgebra l2 of g2 with k2 ( l2 ( g2. Then l1 := φ−1(l2) is a subalgebra of g1, and
as φ induces an isomorphism g1/k1 → g2/k2, l1 lies properly in between k1 and g1, a
contradiction. �

The following proposition shows that simple-parabolic pairs are not subpairs of
other primitive pairs.

Proposition 3.4.19. Let (g, p) be a primitive simple-parabolic pair, let (l, k) be any
primitive effective pair, and assume that the former is a subpair of the latter. Then
(l, k) is also simple-parabolic.

One can prove this using tedious dimension arguments such as the ones ruling out
inclusions among classical-parabolic pairs, but we give an alternative argument using
the corresponding algebraic groups.

Proof. First suppose that (l, k) is of the form (knm, k), where k acts faithfully and
irreducibly on the Abelian ideal m. By Proposition 3.5.1 we have a chain

(g, p) ( (l, k) ( (sln+1, p1),

where n := dim m. Hence, by Proposition 3.4.13, n is odd and g ∼= spn+1. But then g
is already a maximal subalgebra of sln+1, a contradiction.

If (l, k) is not of the above form, then l is semisimple by Theorem 3.2.1. Let L be
the unique connected semisimple algebraic group with Lie algebra l and the additional
property that every l-module is an L-module, i.e., the universal connected group with
Lie algebra l ([55], page 45). Similarly, define G for g. Then φ lifts to an embedding
π : G → L of algebraic groups such that deπ = φ ([50], Theorems 1.2.6 and 3.3.4).
Denote by P and H the (Zariski) closed connected subgroups of G and L with Lie
algebras p and k, respectively. Now π(P ) is a closed connected subgroup of L ([5],
Corollary 1.4) with Lie algebra φ(p) ⊆ k, so π(P) ⊆ H. By the universal property of
the quotient G/P ([5], §6), π induces a morphism

π̄ : G/P → L/H,

whose differential at eP equals the induced map

φ̄ : g/p→ l/k.

As p is a parabolic subalgebra of g, P is a parabolic subgroup of G, and G/P is a
complete variety ([5], Corollary 11.2). Hence, its image under π̄ is closed in L/H.
Moreover, as deP (π̄) = φ̄ is a linear isomorphism, π̄(G/P ) has the same dimension as
the irreducible variety L/H. It follows that π̄ is surjective, and that L/H is complete.
But then H is a parabolic subgroup of L, again by [5], Corollary 11.2. Hence, k is a
parabolic subalgebra of l, as claimed. Finally, we deduce from Theorem 3.2.1 that l
must be simple for (l, k) to be a primitive pair. �

Proof of Theorem 3.4.17. Combine Theorem 3.4.4, Lemma 3.4.18, and Pro-
position 3.4.19. �
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3.5. Other Embeddings into Simple-Parabolic Pairs

Now that we know all inclusions among simple-parabolic pairs, we proceed to inves-
tigate which other primitive pairs can be embedded into simple-parabolic pairs. This
section is organized as follows: we run through Morozov’s and Dynkin’s classifications,
and determine for each entry (g, k) whether or not it is a subpair of a simple-parabolic
pair.

g is not Simple. Morozov’s classification starts with the following type of primitive
pairs.

Proposition 3.5.1. The pair (k n m, k), where k acts faithfully and irreducibly on
the Abelian ideal m, is a subpair of

(sl(m⊕Kv), p(Kv)),

where Kv denotes an auxiliary one-dimensional vector space spanned by v.

Proof. Consider the linear map φ : knm→ sl(m⊕Kv) determined by

φ(X)Y = [X,Y ], φ(X)v = 0,

φ(Y1)Y2 = 0, and φ(Y )v = Y

for all X ∈ k and Y, Y1, Y2 ∈ m. Then φ is a monomorphism of Lie algebras, and it is
clear that

φ−1(p(Kv)) = k.

Furthermore, both pairs have codimension dim m. �

The second entry in Morozov’s list comprises the ‘diagonal pairs’. The following
proposition shows that some of these are subpairs of classical-parabolic pairs.

Proposition 3.5.2. Let d = {(X,X) | X ∈ sl(V )} be the diagonal subalgebra of
sl(V )⊕ sl(V ). Then the pair (sl(V )⊕ sl(V ), d) is a subpair of the pair (sl(V ⊗ V ∗), p),
where p is the parabolic subalgebra leaving a suitable one-dimensional subspace of V ⊗V ∗
invariant.

Proof. We obtain an embedding φ of sl(V ) ⊕ sl(V ) into sl(V ⊗ V ∗) by viewing
V ⊗V ∗ as a module for the former algebra. We may identify V ⊗V ∗ with gl(V ). Under
this identification, we have for X ∈ sl(V ), v0, v ∈ V, and f0 ∈ V ∗:

(X,X)(v0 ⊗ f0)(v) = (Xv0 ⊗ f0 + v0 ⊗Xf0)(v)

= f0(v)Xv0 − f0(Xv)v0

= [X, v0 ⊗ f0]v.

Hence, considered as an sl(V )-module through the isomorphism X 7→ (X,X) from
sl(V ) onto d, the space V ⊗ V ∗ is isomorphic to gl(V ) with the adjoint action. Let I
be the element of V ⊗ V ∗ corresponding to the identity of gl(V ); then I spans a trivial
d-submodule. Set

p := {X ∈ sl(V ⊗ V ∗) | XI ∈ KI}.
Then, by maximality of d in sl(V )⊕ sl(V ∗), we have

d = φ−1(p).

Finally, the codimensions of both pairs equal dim(V )2 − 1. �
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By this proposition, the pair (sl(V ) ⊕ sl(V ), d) has a polynomial transitive reali-
zation; compare this to Example 2.5.4. A more geometrical description of the above
situation is the following: SL(V )× SL(V ) acts on P(gl(V )) by

(a, b)M := aMb−1, a, b ∈ SL(V ) and M ∈ gl(V )

in homogeneous coordinates. There is one open dense orbit in the Zariski topology,
namely that of I. The stabilizer D of I is the diagonal subgroup of SL(V )×SL(V ), and
we have thus embedded the homogeneous space SL(V ) × SL(V )/D into the projective
space P(gl(V )).

The following proposition shows that other diagonal pairs cannot be embedded into
classical-parabolic pairs.

Proposition 3.5.3. Suppose that the diagonal pair (k1 ⊕ k2, k) is a subpair of the
classical-parabolic pair (cl(V ), p(V ′)). Then k ∼= sln, cl(V ) ∼= sln2 , and V ′ is one-
dimensional.

Proof. View V as a k1 ⊕ k2-module through the embedding k1 ⊕ k2 → cl(V ). As
such it is a direct sum of modules of the form V1 ⊗ V2, where Vi is an irreducible
ki-module. If for all these submodules either V1 or V2 is trivial, then any k-invariant
subspace is invariant under k1⊕k2. In particular, this is the case for V ′, a contradiction.
Hence, V must contain a k1 ⊕ k2-submodule of the form V1 ⊗ V2, where V1 and V2 are
both non-trivial, hence faithful.

From this point, a complete proof proceeds with a case-by-case analysis according
to the Cartan type of g. Rather than treating all cases in detail, I first describe the
arguments that apply to each of them, and then work out one particular instance.

By Lemma 3.3.3, V1 and V2 have dimensions of at least roughly c
√
k, where k is

the dimension of k, and c = 1 if k is of type A and c > 1 otherwise. On the other hand,
the product of their dimensions is at most dimV , which, in turn, is at most k + 2 by
Lemma 3.4.5. This shows that the lower bound on the dimensions of V1 and V2 and
the upper bound on the dimension of V are both rather tight, if not contradictory. An
analysis of the relevant exceptional cases establishes the result.

For example, suppose that k1 = k2 = on for n ≥ 6. Then V1 and V2 have dimensions
at least n, so that V has dimension at least n2, and codimcl(V ) p(V ′) ≥ n2−2 by Lemma
3.4.5. On the other hand,

codimk1⊕k1 k = dim k =
(
n

2

)
= n2/2− n/2 < n2 − 2.

The other cases can be treated similarly. �

g is Classical Simple. Consider a primitive pair (cl(U), k). First, suppose that
k acts reducibly on U . The case where k is parabolic is treated in Section 3.4. The
following two propositions treat the remaining two cases.

Proposition 3.5.4. Let V be a vector space equipped with a non-degenerate sym-
metric bilinear form (., .), and let U be a non-degenerate subspace of V . Then the pair
(o(V ), o(U)⊕ o(U⊥)) is a subpair of (sl(V ), p(U)).

Proof. The embedding of o(V ) into sl(V ) is the natural one, and o(U) ⊕ o(U⊥)
is precisely the pre-image of p(U) under this embedding. Finally, the codimensions of
both pairs equal dim(U) · dim(U⊥). �
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This inclusion has a geometric interpretation: for V and U as in the proposi-
tion, define d := dimU . Then O(V ) acts naturally on the Grassmannian variety
Gd(V ) of all d-dimensional subspaces of V . Under this action, the orbit of U is the
open dense subset of Gd(V ) consisting of all non-degenerate d-dimensional subspaces
of V , and the stabilizer of U is O(U) × O(U⊥). We thus find an open dense embed-
ding O(V )/(O(U) × O(U⊥)) → Gd(V ), and the right-hand side can be identified with
SL(V )/P(U). A similar proposition holds in the symplectic case, and both the proof
and the interpretation are similar.

Proposition 3.5.5. Let V be a vector space equipped with a non-degenerate skew
bilinear form (., .), and let U be a non-degenerate subspace of V . Then the primitive
pair (sp(V ), sp(U)⊕ sp(U⊥)) is a subpair of (sl(V ), p(U)).

Next, suppose that k acts irreducibly on the standard module for g. We have two
families of inclusions.

Proposition 3.5.6. Let V be a vector space equipped with a non-degenerate sym-
metric bilinear form b = (., .) ∈ S2(V )∗. Then (sl(V ), o(V )) is a subpair of the classical-
parabolic pair (sl(S2(V )∗), p(Kb)).

Proof. We have
o(V ) = {X ∈ sl(V ) | Xb = 0}.

In fact, as o(V ) is maximal in sl(V ), it is equal to the seemingly larger algebra

{X ∈ sl(V ) | Xb ∈ Kb}.
Let φ : sl(V ) → sl(S2(V )∗) be the embedding given by the sl(V )-module structure on
S2(V )∗; then we have

o(V ) = φ−1(p(Kb)).
The codimension of o(V ) in sl(V ) equals (m2 − 1) −m(m − 1)/2 = m(m + 1)/2 − 1,
and that of p in sl(S2(V )∗) equals m(m− 1)/2 +m− 1, which is the same. �

The geometric interpretation is the following: on the projective space P(S2(V )∗)
of all symmetric bilinear forms, the group SL(V ) has an open dense orbit, consisting
of the non-degenerate forms. This yields an open dense embedding SL(V )/O(V ) →
SL(S2(V ∗))/P(Kb). A similar statement, with a similar proof and interpretation,
holds in the symplectic case.

Proposition 3.5.7. Let V be a vector space equipped with a non-degenerate skew
bilinear form b = (., .) ∈ Λ2(V )∗. Then (sl(V ), sp(V )) is a subpair of the classical-
parabolic pair (sl(Λ2(V )∗), p(Kb)).

Proposition 3.5.8. The pair (o7, G2) is a subpair of (sl8, p1).

Proof. Embed o7 into sl8 by means of its irreducible spin module with highest
weight e3. Restricted to G2, this module has a trivial one-dimensional submodule Kv.
By maximality of G2 in o7, the former is the stabilizer of Kv in the latter. A check
that both pairs have codimension 7 concludes the proof. �

For a geometric interpretation of this inclusion see [1]; that paper classifies the pairs
(G,X), where G is a complex linear algebraic group acting morphically on the smooth
complete algebraic variety X with an open orbit Ω such that X \ Ω is a single orbit of
codimension 1. Akhiezer calls such a variety X a two-orbit variety.
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Theorem 3.5.9. Let k be a semisimple Lie algebra, and let U be a faithful irre-
ducible k-module. Let cl(U) be o(U), sp(U), or sl(U), according to whether k leaves
invariant a symmetric, a skew, or no non-degenerate bilinear form on U , and assume
that (cl(U), k) is primitive. Suppose that (cl(U), k) is a subpair of a classical-parabolic
pair (cl(V ), p(V ′)). Then either

(1) k is of type G2, U = Ve1 is 7-dimensional, cl(U) = o(U), V is the 8-dimensional
spin module of cl(U), cl(V ) = sl(V ), and V ′ is a one-dimensional subspace of
V , or

(2) k ∼= sp(U2) ⊕ sp(U4), where dimUi = i, U = U2 ⊗ U4, cl(U) ∼= o(U), V is
one of the 8-dimensional spin modules of o(U), cl(V ) = sl(V ), and V ′ is a
3-dimensional subspace of V .

The proof relies on the following lemma.

Lemma 3.5.10. Let g be a finite-dimensional semisimple Lie algebra, V a finite-
dimensional g-module, and k a subalgebra of g. Suppose that all irreducible g-submodules
of V restrict to irreducible k-modules, and that two such restrictions are isomorphic as
k-modules if and only if they are isomorphic as g-modules. Then any k-submodule of V
is invariant under g.

Proof. As g is semisimple, V has a unique decomposition

V =
k⊕
i=1

Vi

into g-isotypical components. By assumption, this is also a decomposition into k-
isotypical components. Now it can be shown that each k-submodule V ′ of V decomposes
as

V ′ =
k⊕
i=1

(V ′ ∩ Vi),

and that each component V ′ ∩ Vi is in fact a g-module. �

Proof of Theorem 3.5.9. View V as a cl(U)-module through the embedding
cl(U) → cl(V ). Write V =

⊕
i Vi, where the Vi are irreducible cl(U)-modules, and

denote by πi the projection from V onto Vi along
⊕

j 6=i Vj . Now V ′ ⊆ V is invariant
under k, but not under all of cl(U). Hence by Lemma 3.5.10 there exists an i such that
the k-submodule πi(V ′) of Vi is non-zero, and Vi is neither trivial nor isomorphic to U .

Let n be the semisimple rank of cl(U). From this point we proceed according to
the Cartan type of cl(U), leaving out the tedious case-by-case analysis needed in small
dimensions.

First suppose that cl(U) is of type Bn for n ≥ 7. Then dimV ≥ dimVi ≥
(

2n+1
2

)
by Lemma 3.3.3. But then codimo(V ) p(V ′) ≥

(
2n+1

2

)
− 2 by Lemma 3.4.5, although

codimo(U) k is at most dim o(U) − dim sl2 =
(

2n+1
2

)
− 3, a contradiction. The cases

n = 2, . . . , 6 can be treated one by one, and give rise to the first inclusion in the
theorem.

If cl(U) is of type Dn, then a similar argument leads to non-existence of inclusions
other than the second one in the theorem.
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Next suppose that cl(U) is of type Cn. Then Vi is either isomorphic to S2(U), or
isomorphic to Λ2(U) minus a one-dimensional trivial module, or even larger. In the last
case, we find a lower bound on dimV , whence on codimcl(V ) p(V ′) by Lemma 3.4.5, of
degree at least 3 in n, while codimsp(U) k ≤

(
2n+1

2

)
− 3. This is a contradiction unless n

is very small, and a careful analysis shows that there are no inclusions for small n either.
Suppose now that Vi is isomorphic to S2(U). As the binary form on U invariant under
k is unique up to a scalar—and skew by assumption—k does not leave a line invariant in
Vi. It follows that dimV ′ ≥ 2. This gives a lower bound on codimcl(V ) p(V ′) of roughly
2 dimV , which is at least 2

(
2n+1

2

)
. Again, this is larger than the codimsp(U) k. The same

argument applies when Vi is isomorphic to Λ2(U)−K.
Finally suppose that cl(U) is of type An. As k is supposed not to leave invariant

any bilinear form on U , its dimension is at least dim sl3 = 8. Moreover, any non-trivial
irreducible k-module has dimension at least 3, and U and U∗ are non-isomorphic as
k-modules. Hence by Lemma 3.5.10, we may assume that Vi is not isomorphic to U∗

either. It follows that Vi is equivalent to S2(U), or equivalent to Λ2(U), or even larger.
In the first two cases, k does not leave a line invariant in Vi, so dimV ′ ≥ 3. By Lemma
3.3.1, this leads to a lower bound on codimcl(V ) p(V ′) of roughly 3 dimV , which is at
least 3

(
n+1

2

)
, while codimsl(U) k ≤ (n + 1)2 − 1 − 8. This is a contradiction unless n is

very small, and those few cases are easily handled one by one. If Vi is not equivalent
to S2(U) or Λ2(U), then we find a lower bound on dimV , whence on codimcl(V ) p(V ′)
by Lemma 3.4.5, of degree three in n. Again, this contradicts the fact that codimsl(U) k
has an upper bound quadratic in n. �

Remark 3.5.11. For i = 2, 4, let Ui be an i-dimensional vector space equipped
with a non-degenerate skew bilinear form. Then the Lie algebra o(U2 ⊗ U4) has an
outer automorphism mapping the subalgebra sp(U2) ⊕ sp(U4) to o(U3) ⊕ o(U⊥3 ) for
some 3-dimensional non-degenerate subspace U3 of U2 ⊗ U4. Hence, the pair (o(U2 ⊗
U4), sp(U2)⊕ sp(U4)) is isomorphic to the pair (o(U2 ⊗ U4), o(U3)⊕ o(U⊥3 )), which is a
subpair of (sl(U2 ⊗ U4), p(U3)) by Proposition 3.5.4.

The following conjecture would conclude this subsection’s quest.

Conjecture 3.5.12. Let (cl(U), k) be as in Theorem 3.5.9. Then it is not a subpair
of any exceptional simple-parabolic pair.

Let me outline how I would go about proving this with help of a computer: for each
exceptional simple g and for each node i in the Dynkin diagram of g, the codimension
of pi in g is listed in Lemma 3.3.1. Compute, using my program in LiE, all primitive
pairs (cl(U), k) as in Theorem 3.5.9 of this codimension; usually there are only few such
pairs. It may happen that the orbit of k under Aut(cl(U)) is larger than the orbit of
k under Inn(cl(U)), the group of inner automorphisms of cl(U). Fix representatives
k1, . . . , kl for each of the Inn(cl(U))-orbits contained in Aut(cl(U))k. In LiE this is done
by choosing restriction matrices, which describe the linear maps h∗ → h∗j dual to the
inclusions hj → h, where h is a Cartan subalgebra of cl(U) containing the Cartan
subalgebra hj of kj . This step is needed, because cl(U)-modules may split differently
when restricted to different kj .

Now compute all embeddings of cl(U) into g, up to inner automorphisms of the
latter algebra. Each such embedding defines the structure of a cl(U)-module on the
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g-module Vei ; let t be the number of one-dimensional trivial cl(U)-submodules in it.
Similarly, the inclusion kj → cl(U) endows Vei with the structure of a kj-module; let
sj be the number of one-dimensional trivial kj-modules in it. Now clearly sj ≥ t, and
if the embedding cl(U) → g is to define an inclusion of (cl(U), kj) into (g, pi), then sj
must be strictly larger than t. Although this seems to happen only rarely, the following
two examples show that it does.

(1) Let g be of type E7, i = 6, and (cl(U), k) = (o12, sp2 ⊗ sp6), of codimension
42. Here l = 1, there is only one embedding of o12 into g, t = 1, and s1 = 2.

(2) Let g be of type E8, i = 2, and (cl(U), k) = (o15, o3 ⊗ o5), of codimension 92.
Here, too, l = 1, there is only one embedding of o15 into g, t = 1, and s1 = 4.

Thus, the proof of Conjecture 3.5.12 reduces to ruling out candidate inclusions such as
these two.

g is Exceptional Simple. For the case where k is reductive, we have the following
inclusions, both of which correspond to two-orbit varieties [1].

Proposition 3.5.13. The pair (G2, sl3) is a subpair of (sl7, p1).

Proof. Embed G2 into sl7 by its 7-dimensional irreducible module. The restriction
of this representation to sl3 contains a one-dimensional trivial module Kv. Hence by
its maximality in g, the subalgebra sl3 is the stabilizer, in g, of Kv. A check that both
codimensions equal 6 finishes the proof. �

Proposition 3.5.14. The pair (F4, o9) is a subpair of (E6, p1), where p1 is the
maximal parabolic subalgebra of E6 corresponding to the first node.

I outline how to check this proposition with de Graaf’s algorithms in GAP: first
construct the simple Lie algebra of type E6. Table 24 of [19] contains explicit expressions
for the simple root vectors of the non-regular subalgebra F4 of E6 as linear combinations
of the root vectors of E6. With these, construct the required embedding of F4 into E6

in GAP. Next, construct B4 inside F4 by taking three of the latter’s simple root vectors,
plus the highest root vector, as well as their opposites. Now calculate the common
zero space of B4 inside the E6-module Ve1 . This two-dimensional space happens to be
spanned by a one-dimensional trivial F4-module, and an E6-weight vector v which is
not a zero vector of F4. Now, as Ve1 is a minuscule module ([8], Chapitre 8), Kv is the
highest weight line with respect to some choice of simple roots, so that its stabilizer in
E6 is conjugate to p1. We thus find that B4 is the pre-image in F4 of a conjugate of p1

under the embedding F4 → E6 constructed above. As both codimensions equal 16, the
proposition follows.

In Propositions 3.5.13 and 3.5.14, the smaller of the two pairs is of the form (g, k)
where g is simple, and k is semisimple of the same rank as g. In this case k is called a
Borel-de Siebenthal subalgebra of g, and we shall call (g, k) a Borel-de Siebenthal pair.
It is well known how to obtain all Dynkin diagrams of maximal Borel-de Siebenthal
subalgebras of a semisimple Lie algebra g: simply leave out a vertex from the extended
Dynkin diagram of g. For sln this yields only sln itself, for on all subalgebras of the form
on1 ⊕ on2 with n1 +n2 = n, and for sp2n the subalgebras of the form sp2n1

⊕ sp2n2
with

n1 + n2 = n. In the latter two cases, primitive Borel-de Siebenthal pairs are subpairs
of simple-parabolic pairs by Propositions 3.5.4 and 3.5.5. The two inclusions above
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may lead one to conjecture that all primitive Borel-de Siebenthal pairs are subpairs of
simple-parabolic pairs, but this is far from true.

Theorem 3.5.15. The only inclusions of a primitive exceptional Borel-de Siebenthal
pair into a simple-parabolic pair are the ones of Propositions 3.5.13 and 3.5.14.

This theorem can be proved using my LiE program and arguments similar to those
motivating Conjecture 3.5.12.





CHAPTER 4

Integration to Algebraic Group Actions

4.1. Introduction

In Chapter 2 we computed various realizations of finite-dimensional pairs (g, k) with
formal power series coefficients. In some cases, we could actually do with polynomial
coefficients, and the inclusions of Chapter 3 are a source of even more polynomial
realizations. Many of these polynomially realizable pairs are algebraic, i.e., g is the Lie
algebra of an affine algebraic group G, and k is the Lie algebra of a (Zariski) closed
subgroup H of G. The chapter at hand gives an a priori explanation why such pairs
should have nice realizations.

Let G be an affine algebraic group over an algebraically closed field K of character-
istic 0. Denote the unit of G by e, and the stalk at e of the sheaf of regular functions
on open subsets of G by Oe. To keep notation consistent with the other chapters,
we denote general Lie algebras by lowercase German letters. However, to stress the
dependence on the algebraic group G, we write L(G) for the Lie algebra of G, which
coincides with Te(G) = DerK(Oe,K) as a vector space. Let V be an algebraic variety,
and α : G×V → V a morphic action of G on V , i.e., an action that is also a morphism
of algebraic varieties. Then we can ‘differentiate’ α to a representation of L(G) by
derivations on K[U ], for any open affine subset U of V . Assuming that U is clear from
the context, this representation is denoted by X 7→ −X∗α; its construction, and the
presence of the minus sign, is explained on page 58.

As a special case, take V := G/H, where H is a closed subgroup of G. The group G
acts on V by α(g1, g2H) := g1g2H. Let U be an affine open neighbourhood of p := eH
in V . Then (X ∗α f)(p) = 0 for all f ∈ K[U ] if and only if X ∈ L(H). Passing to
the completion of the local ring Op at p, we find a transitive realization of the pair
(L(G), L(H)) into D̂(dimV ), whose coefficients are algebraic functions. For example, if
G is connected and semisimple, and H is parabolic, then eH has an open neighbourhood
in G/H that is isomorphic to an affine space, whence it follows that (L(G), L(H)) has a
polynomial realization. Similar arguments are applied to other algebraic pairs in Section
4.3.

The bulk of this chapter, however, deals with a converse of the above construction:
given a finite-dimensional Lie algebra l and a homomorphism ρ : l → DerK(K[U ]) for
some affine algebraic variety U , can we find an affine algebraic group G, an algebraic
variety V containing U as an open dense subset, an action α : G × V → V , and an
embedding l → L(G) such that ρ is the restriction to l of the homomorphism X 7→
−X∗α?

The two main results of this chapter answer this question affirmatively for many
interesting cases. First, if G is to act on U itself, the action of l on K[U ] must be locally
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finite (see page 57 for the precise definition). Conversely, we have the following theorem
for ρ an inclusion.

Theorem 4.1.1. Let U be an affine algebraic variety, and let l be a locally finite
Lie subalgebra of DerK(K[U ]). Then there exist a linear algebraic group G, a morphic
action G×U → U , and an embedding l→ L(G) such that the representation X 7→ −X∗α
restricts to the identity on l.

Note that we do not require l to be the Lie algebra of an algebraic group. Indeed,
in Example 4.4.3 we shall see that l need not coincide with L(G).

As an example, let U be the affine line, with coordinate function x. Then the
derivation ∂x acts locally nilpotently on K[U ] = K[x], whence locally finitely. The
derivation x∂x acts semisimply on K[U ], whence also locally finitely. On the other
hand, the derivation x2∂x does not act locally finitely. Theorem 4.1.1 can therefore be
applied to 〈∂x, x∂x〉K , but not to 〈∂x, x∂x, x2∂x〉K . However, any differential equation
of the form

x′(t) = λ+ µx(t) + νx(t)2, x(0) = x0

with λ, µ, ν ∈ K has a solution which is a rational expression in x0, t, and exp(αt) for
some α ∈ K. This observation is a key to our results in the case that ρ is not locally
finite.

More formally, we introduce the exponential map. For simplicity, let us assume
that U is irreducible, so that K[U ] is an integral domain with field K(U) of fractions.
Let t be a variable, and denote by K[U ][[t]] the algebra of formal power series in t with
coefficients from K[U ]. For f1, . . . , fk ∈ K[U ][[t]], we denote by K(U)(f1, . . . , fk) the
subfield of the field of fractions of K[U ][[t]] generated by the fi. For ∇ ∈ DerK(K[U ]),
we define the map exp(t∇) from K[U ] to K[U ][[t]] as follows:

(8) exp(t∇)f =
∞∑
n=0

tn

n!
∇n(f), f ∈ K[U ].

Here, we only mention two consequences of our second main result (which is Theorem
4.5.4).

Theorem 4.1.2. Let l be a nilpotent Lie algebra, U an irreducible affine algebraic
variety, ρ : l→ DerK(K[U ]) a Lie algebra homomorphism, and X1, . . . , Xk a basis of l
such that 〈Xi, . . . , Xk〉 is an ideal in l for all i = 1, . . . , k.

Suppose that ρ satisfies

exp(tρ(Xi))K[U ] ⊆ K(U)(t)

for all i. Then there exist a connected linear algebraic group G having l as its Lie
algebra, an algebraic variety V containing U as an open dense subset, and a morphic
action α : G × V → V such that the corresponding representation X 7→ −X∗α, l →
DerK(K[U ]) coincides with ρ.

Theorem 4.1.3. Let l be a semisimple Lie algebra of Lie rank l, U an irreducible
affine algebraic variety, and ρ : l→ DerK(K[U ]) a Lie algebra homomorphism. Choose
a Cartan subalgebra h ⊆ l, and let ∆ be the root system with respect to h. Choose a
fundamental system Π ⊆ ∆, and a corresponding Chevalley basis

{Xγ | γ ∈ ∆} ∪ {Hγ | γ ∈ Π}.
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Suppose that ρ satisfies
exp(tρ(Xγ))K[U ] ⊆ K(U)(t)

for all γ ∈ ∆, and
exp(tρ(Hγ))K[U ] ⊆ K(U)(exp t)

for all γ ∈ Π.
Then there exist an algebraic variety V containing U as an open dense subset, and a

morphic action α : G×V → V of the universal connected semisimple algebraic group G
with Lie algebra l such that the corresponding Lie algebra homomorphism X 7→ −X∗α
coincides with ρ.

Here, the universal connected semisimple algebraic group G with Lie algebra l is the
unique such group with the property that every finite-dimensional representation of l is
the differential of a representation of G.

Technical conditions on the exponentials as appearing in these theorems are shown
to be necessary in Lemma 4.5.2. For example, the vector field x3∂x on the affine line
cannot originate from an action of the additive or the multiplicative group, because
exp(tx3∂x)x = x/

√
1− 2tx2, which is not a rational expression in x, t, and some expo-

nentials exp(δit). In Example 4.5.8, Theorem 4.1.3 is applied to l = 〈∂x, x∂x, x2∂x〉K .
This chapter is organized as follows. Section 4.2 recalls standard facts on affine

groups and their actions on varieties. In Section 4.3 we use these to prove existence
of polynomial and rational realizations of many pairs. In Section 4.4 Theorem 4.1.1
is proved, and Section 4.5 presents the proof of our second main theorem, from which
Theorems 4.1.2 and 4.1.3 readily follow. Finally, Section 4.6 discusses some possible
extensions of our results.

This chapter is an expanded version of [13]; we thank Dmitri Zaitsev for his useful
comment on an earlier version of that paper. We also thank Wilberd van der Kallen for
pointing out Weil’s theory of pre-transformation spaces to us, when that was exactly
what we needed.

4.2. Preliminaries

We introduce some notation, and we collect some facts on affine algebraic groups
that will be used later on. All of them are based on Borel’s book [5].

Locally Finite Transformations. Let A be a finite-dimensional vector space and
let Y ∈ EndK(A). Then we write Ys and Yn for the semisimple part and the nilpotent
part of Y , respectively. Let Γ be the Z-module generated by the eigenvalues of Ys on
A. Decompose A =

⊕
λMλ, where Ysm = λm for all m ∈ Mλ. For any Z-module

homomorphism φ : Γ → K, let Yφ ∈ EndK(A) be defined by Yφm = φ(λ)m for all
m ∈Mλ. The collection of all such Yφ is denoted by S(Y ).

Now let A be any vector space (not necessarily finite-dimensional). A subset E
of EndK(A) is said to be locally finite, if each element of A is contained in a finite-
dimensional subspace of A which is invariant under all elements of E. A representation
ρ : U → EndK(A) of an associative algebra or Lie algebra U over K is called locally finite
if ρ(U) is locally finite. In this case, U is said to act locally finitely. A homomorphism
ρ : G → GL(A) from an algebraic group G is called locally finite if ρ(G) is locally
finite, and in addition ρ is a homomorphism G → GL(M) of algebraic groups for each
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finite-dimensional ρ(G)-invariant subspace M of A. In this case, G is said to act locally
finitely.

If Y ∈ EndK(A) is locally finite, then the finite-dimensional Y -invariant subspaces
of A form an inductive system. If N ⊆M ⊆ A are two such subspaces, then (Y |M )s and
(Y |M )n leave N invariant, and restrict to (Y |N )s and (Y |N )n, respectively. It follows
that there are unique Ys, Yn ∈ EndK(A) such that (Ys)|M = (Y |M )s and (Yn)|M =
(Y |M )n for all finite-dimensional Y -invariant subspaces M of A.

Similarly, each element of S(Y |M ) leaves N invariant, and restricts to an element
of S(Y |N ); this restriction is surjective. Denote by S(Y ) the projective limit of the
S(Y |M ). If A has a countable basis, then S(Y ) projects surjectively onto each S(Y |M ).
Indeed, this follows from the following observation on projective limits: suppose that
I is a directed set and that (Eα)α∈I is an inverse system with surjective projections
fβα : Eβ → Eα for all α, β ∈ I with α ≤ β. Let E be the projective limit of the Eα. In
general, the projections E → Eα may not all be surjective; indeed, E may be empty
even if none of the Eα is ([6], §1, Exercise 32). However, if I contains a countable chain
α1 ≤ α2 ≤ . . . which is cofinal with I, i.e., for all α ∈ I there exists an n ∈ N such
that α ≤ αn, then E can be regarded as the projective limit of the Eαn ([6], §1, no. 12)
and does project surjectively onto each Eα. In our application, if (an)n∈N is a basis of
A, let En be the smallest Y -invariant subspace of A containing a1, . . . , an. The En are
finite-dimensional by assumption, and form a countable chain that is cofinal with the
set of all finite-dimensional Y -invariant subspaces of A. We conclude that S(Y ) does
indeed project surjectively onto each S(Y |M ).

Localization. If B is a commutative algebra, and J is an ideal in B, then we
denote by B{J} the localization B[(1 + J)−1]. If B = K[U ] for some irreducible affine
algebraic variety U , then the elements of B{J} are rational functions on U that are
defined everywhere on the zero set of J .

Comorphisms. If α is a morphism from an algebraic variety V to an algebraic
variety W , and U is an open subset of W , then α induces a comorphism from the
algebra of regular functions on U to the algebra of regular functions on α−1(U). We
denote this comorphism by α0 if U is clear from the context. If W is affine, then U
is implicitly assumed to be all of W . By abuse of notation, we also write α0 for the
induced comorphism of local rings Oα(p) → Op, where p ∈ V , and for the comorphism
K(W ) → K(U) of rings of rational functions if α denotes a dominant rational map.
This notation is taken from [5].

Differentiation of Group Actions. Let G be an affine algebraic group with unit
e, V an algebraic variety, and α : G × V → V a morphic action of G on V . Then we
can ‘differentiate’ α to a representation of L(G) = Te(G) = DerK(Oe,K) as follows.
Let U be an open subset of V . For p ∈ U , define the map αp : G→ V by g 7→ α(g, p).
It maps e to p, so we may view the comorphism α0

p as a homomorphism Op → Oe. A
function f ∈ OV (U) defines an element of Op, to which α0

p may be applied. Now the
function X ∗α f , defined pointwise by

(X ∗α f)(p) := (X ◦ α0
p)f, p ∈ U,

is an element of OV (U). The map X∗α : f 7→ X ∗α f is a K-linear derivation of OV (U),
and the map X 7→ −X∗α is a homomorphism L(G)→ DerK(OV (U)) of Lie algebras.
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In this way, L(G) acts by derivations on the sheaf of regular functions on V . As V
may not have any non-constant regular functions at all, it makes sense to compute these
derivations on OV (U) for an affine open subset U of V , so that OV (U) equals the affine
algebra K[U ]. Let us assume for convenience that G and V are irreducible; then so are
U and G×U . In this case, α0 sends K[U ] to OG×V α−1(U), an element of which defines
an element of OG×U ((G×U)∩α−1(U)) by restriction. This algebra consists of fractions
a/b, where a, b ∈ K[G×U ] and b vanishes nowhere on (G×U)∩α−1(U). In particular,
b(e, .) vanishes nowhere on U and is therefore invertible in K[U ]. After dividing both
a and b by b(e, .), we have that b is an element of 1 + J , where J is the radical ideal in
K[G×U ] defining {e}×U . Thus, we can view α0 as a map K[U ]→ K[G×U ]{J}. The
derivation ∇ := X ⊗ IK[U ] : K[G]⊗K[U ]→ K[U ] is extended to (K[G]⊗K[U ]){J} by

∇
(a
b

)
=
∇(a)b(e, .)− a(e, .)∇(b)

b(e, .)2

for a ∈ K[G× U ] and b ∈ 1 + J . As b(e, .) is a non-zero constant on U , the right-hand
side is an element of K[U ]. We have thus extended X ⊗ IK[U ] to a derivation

(K[G]⊗K[U ]){J} → K[U ],

also denoted by X ⊗ IK[U ], and we may write

(9) X∗α = (X ⊗ IK[U ]) ◦ α0.

The Associative Algebra K[G]∨. The following construction is based on [5], §3
nr. 19. Let G be an affine algebraic group. Denote the multiplication by µ : G×G→ G,
and the affine algebra by K[G]. For vector spaces V and W , we define a K-bilinear
pairing

(X,Y ) 7→ X · Y := (X ⊗ Y ) ◦ µ0,

HomK(K[G], V )×HomK(K[G],W )→ HomK(K[G], V ⊗W ).

The multiplication · turns K[G]∨ := HomK(K[G],K) into an associative algebra, and
the map

X 7→ I ·X, K[G]∨ → EndK(K[G])

is a monomorphism from K[G]∨ onto the K-algebra of elements in EndK(K[G]) com-
muting with all left translations λg for g ∈ G, which are defined by

(λgf)(x) = f(g−1x), f ∈ K[G].

We shall write f ∗X for (I ·X)f , and ∗X for the map f 7→ f ∗X. In particular, X 7→ ∗X
is a linear isomorphism from the tangent space L(G) = Te(G) onto the Lie algebra of
elements of DerK(K[G]) commuting with all λg, the so-called left-invariant vector fields.
These form a Lie algebra with respect to the commutator, and the Lie bracket on L(G)
is in fact defined as the pullback of that commutator under the isomorphism X 7→ ∗X.

We recall the following well-known fact.

Proposition 4.2.1. The universal enveloping algebra U(L(G)) of L(G) is isomor-
phic to the associative algebra with one generated by L(G) in K[G]∨.
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Algebraicity of Lie Algebras. We reformulate some results of Chevalley on al-
gebraicity of subalgebras of L(G), where G is an affine algebraic group ([5], §7). For
M ⊆ L(G), we let A(M) be the intersection of all closed subgroups of G whose Lie
algebras contain M , and for X ∈ L(G) we write A(X) := A({X}). A subalgebra l of
L(G) is called algebraic if L(A(l)) = l; an element X of L(G) is called algebraic if 〈X〉K
is an algebraic subalgebra of L(G).

Recall that ∗(K[G]∨) is locally finite (compare the proof of Proposition 4.4.1). For
X ∈ L(G), both the semisimple part and the nilpotent part of ∗X are in ∗L(G), and we
denote their pre-images in L(G) by Xs and Xn, respectively. As K[G] contains a finite-
dimensional faithful L(G)-module that generates K[G] as an algebra, the Z-module ΓX
of eigenvalues of Xs in K[G] is finitely generated. As ΓX is a torsion-free Abelian group,
it is free, and we may choose a basis λ1, . . . , λd of ΓX . For a variable t, consider the
map exp(tX) : K[G]→ K[[t]] defined by

exp(tX)f =
∞∑
n=0

tn

n!
Xn(f), f ∈ K[G]

where Xn is viewed as an element of K[G]∨. Alternatively, we could write this formal
power series as (exp(t(∗X))f)(e), where the exponential is the one defined in Section
4.1. Clearly, exp(tX) is a homomorphism of K-algebras, whence an element of G(K[[t]])
([5], §1 nr. 5). However, the following lemma shows that the image lies in a much smaller
algebra.

Lemma 4.2.2. If Xn = 0, then the map exp(tX) is a homomorphism

K[G]→ K[exp(±λ1t), . . . , exp(±λdt)],
whence the comorphism of a homomorphism γ : (K∗)d → G of algebraic groups. If
Xn 6= 0, then exp(tX) is a homomorphism

K[G]→ K[t, exp(±λ1t), . . . , exp(±λdt)],
whence the comorphism of a homomorphism γ : K × (K∗)d → G of algebraic groups.
In either case, γ is an algebraic group monomorphism onto A(X).

Proof. By [5], §1 nr. 11 we may assume that G is a closed subgroup of GLn for
some n, and we may view X as an element of gln. After a change of basis, Xs =
diag(ν1, . . . , νn), where ν1, . . . , νn generate ΓX ; it follows that

exp(tXs) = diag(exp(ν1t), . . . , exp(νnt)).

We have
exp(ν1t)m1 · · · exp(νnt)mn = 1

for any m ∈ Zn such that
∑
imiνi = 0; hence by [5], §7 nr. 3 we have

exp tXs ∈ A(Xs)(K[exp(±ν1t), . . . , exp(±νnt)]).
Now, any specialization

K[exp(±ν1t), . . . , exp(±νnt)]→ K

sends exp(tXs) to an element of A(Xs). The algebra on the left-hand side is isomorphic
to the algebra

K[exp(±λ1t), . . . , exp(±λdt)],
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and as the λi are linearly independent over Q, the latter is the affine algebra of (K∗)d.
We have thus constructed the algebraic group homomorphism Gdm → A(Xs). It is
injective, as the νi generate the same Z-module as the λi. As d is also the dimension of
A(Xs), and as A(Xs) is connected, the homomorphism is surjective onto A(Xs).

In [5], §7 nr. 3 it is also proved that the homomorphism Ga → G corresponding to
the comorphism exp(tXn) : K[G]→ K[t] is a monomorphism from Ga onto A(Xn). The
lemma now follows from exp(tX) = exp(tXn) exp(tXs) and A(X) = A(Xn) × A(Xs)
(direct product). �

Recall the notation S(·) of page 57. For X ∈ L(G) the set S(∗X) is a subset of
∗L(G); we denote its pre-image in L(G) by S(X). Now L(A(X)) is spanned by Xn and
S(X). More generally, we have the following theorem of Chevalley ([5], §7 nrs. 3 and
7).

Theorem 4.2.3. Let M be a subset of L(G). Then L(A(M)) is generated by the
Xn and S(X) as X varies over M .

Example 4.4.3 shows a subalgebra l ⊆ L(G) that is not equal to L(A(l)). An
algebraic element X of L(G) is either nilpotent with ΓX = {0} or semisimple with ΓX
of rank 1. Accordingly, A(X) is isomorphic to Ga or Gm, and if we denote the usual
affine coordinate on the additive or multiplicative group by Y , then the differential at
the identity of the homomorphism Ga → G (respectively Gm → G) constructed above
sends the basis vector ∂Y |0 of L(Ga) (respectively Y ∂Y |1 of L(Gm)) to X.

4.3. Polynomial Realizations

The following proposition is immediate from the differentiation of group actions of
page 58.

Proposition 4.3.1. Let G be an affine algebraic group, and let H be a closed
subgroup of G. Suppose that G/H has a smooth G-equivariant completion, in which
eH has an open neighbourhood isomorphic to an affine space. Then (L(G), L(H)) has
a polynomial transitive realization.

Corollary 4.3.2. Let G be a connected reductive algebraic group, and let P a
parabolic subgroup of G. Then (L(G), L(P )) has a polynomial transitive realization.

Proof. By the Bruhat decomposition, G/P has a partition into cells, i.e., locally
closed subsets that are isomorphic to affine spaces. Among them is a unique cell of
dimension dimG/P : the big cell. If necessary, the action of G can move the big cell
such that eP is contained in it. Now apply Proposition 4.3.1 to the complete variety
G/P itself. �

Michel Brion pointed out the following stronger corollary to me.

Corollary 4.3.3. Let G be a connected reductive algebraic group, and let H be a
closed subgroup of G such that some Borel subgroup has a dense orbit on G/H. Then
(L(G), L(H)) has a polynomial transitive realization.
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Such a subgroup H of G is called spherical, and the corresponding homogeneous
space G/H is called a spherical variety. Any such variety has a smooth equivariant
completion in which eH has an open neighbourhood isomorphic to an affine space [10],
[11], whence the corollary.

Corollary 4.3.4. Let k be a simple Lie algebra, and let d be the diagonal subalgebra
of k⊕ k. Then (k⊕ k, d) has a polynomial transitive realization.

Proof. Let K be any of the connected algebraic groups with Lie algebra k, and let
D be the diagonal subgroup of G := K×K. Then D is easily shown to be a symmetric
subgroup, and Corollary 4.3.3 applies. �

After having proved the existence of realizations of diagonal pairs with coefficients
in E (Theorem 2.5.3), and having shown that most such pairs cannot be embedded
into simple-parabolic ones (Proposition 3.5.3), the above corollary finally settles the
realization problem for diagonal pairs—at least in theory. It would be interesting to see
if one can actually compute such polynomial realizations.

4.4. The Locally Finite Case

In this section we prove Theorem 4.1.1. Let G be an affine algebraic group, U an
affine algebraic variety, and α : G × U → U a morphic action. Then the Lie algebra
homomorphism X 7→ −X∗α of page 58 can be described more directly.

Proposition 4.4.1. For X ∈ K[G]∨, define the K-linear map X∗α : K[U ]→ K[U ]
by

(10) X∗α := (X ⊗ IK[U ]) ◦ α0.

Then X 7→ X∗α is an anti-homomorphism of associative K-algebras. Moreover, the
algebra (K[G]∨)∗α is locally finite.

Proof. The fact that α is an action can be expressed in terms of comorphisms by

(µ0 ⊗ IK[U ]) ◦ α0 = (IK[G] ⊗ α0) ◦ α0.

Let X,Y ∈ K[G]∨, and compute

(X · Y )∗α = (((X ⊗ Y ) ◦ µ0)⊗ IK[U ]) ◦ α0

= (X ⊗ Y ⊗ IK[U ]) ◦ (µ0 ⊗ IK[U ]) ◦ α0,

which, by the above remark, equals

(X ⊗ Y ⊗ IK[U ]) ◦ (IK[G] ⊗ α0) ◦ α0

= (Y ⊗ IK[U ]) ◦ α0 ◦ (X ⊗ IK[U ]) ◦ α0

= (Y ∗α) ◦ (X∗α).

This proves the first statement. Next, if f ∈ K[U ] and α0(f) =
∑k
i=1 ai ⊗ bi with

ai ∈ K[G] and bi ∈ K[U ], then clearly (K[G]∨) ∗α f ⊆ 〈b1, . . . , bk〉K . This proves the
second statement. �
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Note that the local finiteness of (K[G]∨)∗µ on K[G] is a special case of this proposi-
tion. The proof that ∗(K[G]∨) is locally finite, a fact that we used in formulating Cheval-
ley’s results on page 60, is very similar. Also note the subtle difference between the
seemingly identical formulas (9) and (10). In the latter, α0 is a map K[U ]→ K[G×U ],
whereas in the former, it is a map K[U ]→ K[G× U ]{J}.

As a consequence of Proposition 4.4.1, the representation X 7→ −X∗α of L(G) on
K[U ] is locally finite, and so is the representation G→ Aut(K[U ]) defined by g 7→ λg,
where (λgf)(p) := f(g−1p). The latter follows because λg = eg−1∗α, where eg ∈ K[G]∨

denotes evaluation in g. In fact, X 7→ −X∗α is the derivative at e of the map g 7→ λg.
Conversely, we have the following theorem.

Theorem 4.4.2. Let B be a finitely generated K-algebra (not necessarily commuta-
tive), and let l ⊆ DerK(B) be a finite-dimensional Lie subalgebra acting locally finitely
on B. Then there exist an affine algebraic group G, a faithful locally finite representation
ρ : G→ Aut(B), and an embedding φ : l→ L(G) such that (deρ) ◦ φ = id.

Proof. For any finite-dimensional l-invariant subspace M of B, denote by lM
the restriction of l to M , and set l̃M := L(A(lM )); here A is defined with respect
to the algebraic group GL(M), whose Lie algebra is naturally identified with gl(M),
which contains lM . The l̃M form an inverse system, whose projections are surjective by
Theorem 4.2.3 and the projection properties of Xn and S(X) (page 57). Let l̃ be the
projective limit of this system. As B is finitely generated, its dimension is (at most)
countable, and the projections l̃→ l̃M are all surjective; see page 57.

By Theorem 4.2.3, the space l̃ can be viewed as the Lie subalgebra of EndK(B)
generated by the Xn and S(X) as X varies over l. We claim that these are all derivations
of B. To verify this, it suffices to check Leibniz’ rule on eigenvectors of Xs. To this end,
let a, b ∈ B be such that Xsa = λa and Xsb = µb. This is equivalent to

(X − λ)ka = (X − µ)lb = 0

for some k, l ∈ N. From the identity

(X − (λ+ µ))m(ab) =
m∑
i=0

(
m

i

)
(X − λ)i(a)(X − µ)m−i(b)

it follows that the left-hand side is zero for some m ∈ N. Hence,

Xs(ab) = (λ+ µ)ab = Xs(a)b+ aXs(b),

and Xs is a derivation, and so is Xn = X−Xs. Now let φ be a Z-module homomorphism
from the Z-span of the eigenvalues of Xs to K. Then the map Xφ ∈ S(X) satisfies

(Xφa)b+ a(Xφb) = (φ(λ) + φ(µ))ab = φ(λ+ µ)ab = Xφ(ab).

We have thus found that l̃ is generated by, and hence consists of, derivations. Let M
be a finite-dimensional l-submodule of B that generates B as an algebra. We have
seen that the projection l̃ → l̃M is surjective, but as l̃ consists of derivations, which
are determined by their values on M , it is also injective. Hence, l̃M acts on B by
derivations. Let G ⊆ GL(M) be A(lM ). It follows that G acts locally finitely, and by
automorphisms, on B; by construction, the corresponding action of L(G) = l̃M restricts
to the identity on l. �
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Note that the construction of G does not depend on the choice of M . The triple
(G, ρ, φ) constructed in the proof has the property that A(φ(l)) = G, and with this
additional condition it is unique in the following sense: if (G′, ρ′, φ′) is another such
triple, then there exists an isomorphism ψ : G→ G′ such that ρ′◦ψ = ρ and (deψ)◦φ =
φ′. Indeed, for any finite-dimensional G′-invariant subspace M of B that generates B
as an algebra, G′ must be isomorphic to A(lM ), just like G; this defines the required
isomorphism ψ.

Now the first main theorem follows almost directly.

Proof of Theorem 4.1.1. Apply Theorem 4.4.2 to B = K[U ] to find G and its
representation on K[U ]. Let M ⊆ K[U ] be a finite-dimensional G-invariant subspace
that generates K[U ] as an algebra. Then the surjective G-equivariant map from the
symmetric algebra generated by M onto K[U ] allows us to view U as a closed G-
invariant subset of the dual M∨. This gives the morphic action of G on U , and it is
straightforward to verify the required property. �

Let us consider two examples where the embedding l→ L(G) is not an isomorphism.

Example 4.4.3. Let U := SpecK K[x, y] be the affine plane, and let

l := 〈λ1x∂x + λ2y∂y, ∂y, x∂y, . . . , x
r∂y〉K ,

where λ1, λ2 ∈ K are linearly independent over Q, and r ∈ N. The Lie algebra l acts
locally finitely on K[x, y]. Indeed, for f ∈ K[x, y], any element g ∈ U(l)f satisfies

degx(g) ≤ degx(f) + r degy(f), and degy(g) ≤ degy(f).

Hence, Theorem 4.4.2 applies. Following its proof, we choose the l-invariant space
M = 〈y, 1, x, x2, . . . , xr〉K , which generates K[x, y]. Denoting by lM the restriction of
l to M , the proof of Theorem 4.1.1 shows that l̃M := L(A(lM )) acts by derivations on
K[x, y]. With respect to the given basis of M , the derivation λ1x∂x+λ2y∂y has matrix

diag(λ2, 0, λ1, 2λ1, . . . , rλ1),

whereas the elements xi∂y of l act nilpotently on M . Hence, l̃M is generated (and in
fact spanned) by lM and the linear map with matrix

diag(1, 0, . . . , 0).

The image of l̃M in DerK(K[x, y]) is spanned by l and x∂x. The algebraic group G is a
semi-direct product G2

m nG
r+1
a acting by

(t1, t2, a0, . . . , ar)(x, y) := (t1x, t2y +
r∑
i=0

aix
i).

Example 4.4.4. Let U := SpecK(K[x, y]) be the affine plane, and let l be the one-
dimensional Lie algebra spanned by ∂x + y∂y. Clearly, l acts locally finitely on K[x, y];
the group G of Theorem 4.1.1 is Ga ×Gm acting on U by (a, b)(x, y) = (x+ a, by), and
the image of its Lie algebra in DerK(K[U ]) equals 〈∂x, y∂y〉.
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4.5. The General Case

This section is concerned with Theorem 4.5.4. The need for this theorem becomes
clear from the following example.

Example 4.5.1. Let SLn+1 act on the projective n-space in the natural way. Then,
after choosing suitable coordinates xi on an affine part An ⊆ Pn, the corresponding
homomorphism X 7→ −X∗α, sln+1 → DerK(K[An]) has image

〈{∂i, xi∂j , xiE}i,j〉K ,
where E =

∑
i xi∂i. Clearly, this Lie algebra is not locally finite, so that we cannot

apply Theorem 4.1.1.

Let G be a connected affine algebraic group acting on a an irreducible algebraic
variety V by means of a morphic action α : G × V → V , and let U ⊆ V be an open
affine subvariety. Recall the definition of the map X 7→ X∗α, L(G) → DerK(K[U ])
and the definition of the exponential map from Section 4.1 as well as the definition of
ΓX of page 60.

Lemma 4.5.2. Let X ∈ L(G) and let λ1, . . . , λd be a basis for ΓX . Then

exp(t(X∗α))K[U ] ⊆ K[U ][t, s1, . . . , sd]{P}
where si = exp(λit), and P is the ideal generated by t, s1 − 1, . . . , sd − 1. In particular,
if X is algebraic, then

exp(t(X∗α))K[U ] ⊆ K[U ][t]{(t)}
if X is nilpotent, and

exp(t(X∗α))K[U ] ⊆ K[U ][s1]{(s1−1)}

if X is semisimple.

Proof. We claim that

(11) (X∗α)n = (Xn ⊗ IK[U ]) ◦ α0.

where Xn is evaluated in the associative algebra K[G]∨. To prove this, proceed by
induction on n. For n = 1 it is Equation (9); suppose that it holds for n, and compute

(X∗α)n+1 = (X ⊗ IK[U ]) ◦ α0 ◦ (Xn ⊗ IK[U ]) ◦ α0

= (X ⊗ IK[U ]) ◦ (Xn ⊗ IK[G] ⊗ IK[U ]) ◦ (IK[G] ⊗ α0) ◦ α0

= (X ⊗ IK[U ]) ◦ (Xn ⊗ IK[G] ⊗ IK[U ]) ◦ (µ0 ⊗ IK[U ]) ◦ α0

= (((Xn ⊗X) ◦ µ0)⊗ IK[U ]) ◦ α0

= (Xn+1 ⊗ IK[U ]) ◦ α0.

In the first equality, we used the induction hypothesis, and in the third we used the fact
that α is a morphic action. The last equality uses the multiplication in K[G]∨ as defined
in Section 4.2. The other equalities follow from easy tensor product manipulations.

Using (11), we calculate

exp(tX∗α) =
∞∑
n=0

tn

n!
(Xn ⊗ IK[U ]) ◦ α0

= (exp(tX)⊗ IK[U ]) ◦ α0.
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Now α0 is a map K[U ] → (K[G] ⊗ K[U ]){J}, where J is as in Section 4.1, and
exp(tX) maps K[G] into K[t, s±1

1 , . . . , s±1
d ]. Under exp(tX), the ideal J is mapped into

the ideal P . This concludes the proof. �

Remark 4.5.3. The proof of Lemma 4.5.2 shows that exp(tX∗α) can be viewed as
the comorphism of the rational map A(X)× U → U defined by the restriction of α.

Now suppose that we are given a homomorphism L(G) → DerK(K[U ]) for some
affine algebraic variety U . Then the above lemma gives a necessary condition for this
homomorphism to come from a group action on an algebraic variety V containing U
as an open subset. In a sense, this condition is also sufficient, as the following theorem
shows. To appreciate its formulation, recall from page 61 that if X is algebraic, then
ΓX has rank zero or one according to whether X is nilpotent or semisimple.

Theorem 4.5.4. Let G be a connected affine algebraic group and let X1, . . . , Xk be
a basis of L(G) consisting of algebraic elements. Let U be an irreducible affine algebraic
variety, and let ρ : L(G)→ DerK(K[U ]) be a homomorphism of Lie algebras.

Denote by Σ the set of indices i for which Xi is semisimple (in its action on K[G]),
and by N the set of indices i for which Xi is nilpotent. For i ∈ Σ, let λi ∈ K be a
generator of ΓXi .

Assume that the product map

π : A(X1)× . . .×A(Xk)→ G

maps an open neighbourhood of (e, . . . , e) isomorphically onto an open neighbourhood of
e ∈ G, and suppose that

exp(tρ(Xi)) ∈

{
K(U)(t) if i ∈ N, and
K(U)(exp(λit)) if i ∈ Σ.

Then there exist an algebraic variety V containing U as an open dense subset, and a
morphic action α : G× V → V , such that the map X 7→ −X∗α, L(G)→ DerK(K[U ])
coincides with ρ. Indeed, up to equivalence, there exists a unique such pair (V, α) with
the additional property that V \ U contains no G-orbit.

Before proving this theorem, let us recall Weil’s results on pre-transformation spaces
([60], or Zaitsev’s paper [63] for a generalization to non-irreducible varieties); rather
than stating these in full generality, we shall adjust the formulation to our specific needs.
Recall that a rational map β has a natural ‘largest possible’ domain; this domain is
denoted by dom(β).

Lemma 4.5.5. Let G be a connected algebraic group with multiplication µ : G×G→
G, U an algebraic variety, and β : G× U → U a dominant rational map such that

β ◦ (idG×β) = β ◦ (µ× idU )

as dominant rational maps G×G×U → U . Assume, moreover, that {e}×U ⊆ dom(β),
and that β(e, p) = p for all p ∈ U .

Then there exist an algebraic variety V , an open immersion ψ : U → V with dense
image, and a morphic action α : G × V → V such that α ◦ (idG×ψ) and β define the
same rational map. Indeed, up to equivalence, there exists a unique such triple (V, ψ, α)
with the additional property that V \ ψ(U) contains no G-orbit.
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Zaitsev calls the pair (U, β) a pre-transformation G-space, and the triple (V, ψ, α)
a regularization of (U, β); equivalence of these is defined in the obvious manner. If
V \ ψ(U) contains no G-orbit, the regularization is called minimal, as in that case no
proper open subset of V is also a regularization of (U,α).

Proof. We show that β makes U into a ‘pre-transformation G-space’, in which
every point is a ‘point of regularity’ in the sense of [63]. First, ‘generic associativity’
follows from the condition on β. Second, we must show ‘generic existence and uniqueness
of left divisions’, i.e., that the rational map (g, p) 7→ (g, β(g, p)) is in fact a birational
map G× U → G× U . Indeed, using generic associativity and the fact that β(e, p) = p
for all p ∈ U , we find that the rational map (g, p) 7→ (g, β(g−1, p)) is inverse to it.

Finally, let p0 ∈ U . Then the set Ω of g ∈ G for which both (g, p0) ∈ dom(β) and
(g−1, (β(g, p0))) ∈ dom(β) is open, and non-empty as e ∈ Ω. As G is connected, Ω is
dense in G. Let g0 ∈ Ω, and consider the following rational maps U → U : p 7→ β(g0, p)
and p 7→ β(g−1

0 , p). The first is defined at p0 and the second at β(g0, p0). Hence, both
compositions are rational maps U → U . Again, using generic associativity and the fact
that β(e, p) = p for all p ∈ U , we find that the two maps are each other’s inverses.
This shows that p0 is a point of regularity. We may now apply Theorem 4.11 of [63] to
find (α, V ). The proof of this theorem shows that α, which is a priori just a birational
map U → V , is an open immersion on the set of points of regularity, which is all of U .
Finally, the remark just before Theorem 4.9 of [63] shows that α is a morphic group
action of G on V . �

Proof of Theorem 4.5.4. Let εi = 0 or 1 if i ∈ N or i ∈ Σ, respectively. By the
property of π, the homomorphism

exp(t1X1) · . . . · exp(tkXk)

identifies K(G) with the field K(s1, . . . , sk), and Oe with the localization K[s]M :=
K[s1, . . . , sk]M , where si = ti if i ∈ N and si = exp(λiti) if i ∈ Σ, and M is the (maxi-
mal) ideal generated by the elements si−εi. The K-algebra K[[t]] := K[[t1, . . . , tk]] can
now be viewed as Ôe, the completion of K[s]M with respect to the M -adic topology.

The co-multiplication

µ0 : Oe = K[s]M → K[s′, s′′]M ′⊗K[s′′]+K[s′]⊗M ′′ = O(e,e)

extends uniquely to a continuous homomorphism

µ0 : Ôe = K[[t]]→ K[[t′, t′′]] = Ô(e,e),

and we have

(12) exp(µ0(t1)X1) · · · exp(µ0(tk)Xl)

= exp(t′1X1) · · · exp(t′kXk) · exp(t′′1X1) · · · exp(t′′kXk).

Similarly, the evaluation map f 7→ f(e), Oe → K extends to the continuous map
f 7→ f(0), K[[t]]→ K, where K is given the discrete topology. Also, Xi ∈ DerK(Oe,K)
extends uniquely to a continuous K-linear derivation K[[t]]→ K, where K is given the
structure of a K[[t]]-module defined by fc = f(0)c. This extension satisfies

(13) Xi(tj) = δi,j .
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Consider the map

β0 := exp(−tkρ(Xk)) · · · exp(−t1ρ(X1)) : K[U ]→ K[U ][[t1, . . . , tk]],

where we implicitly extend each ρ(Xi) linearly and continuously to formal power series
with coefficients from K[U ]. From the fact that the ρ(Xi) are derivations, one finds
that β0 is a homomorphism. It is clearly injective, hence it extends to an injective
homomorphism K(U)→ K(U)(s1, . . . , sk) by assumption. The latter field is identified
with K(G×U) by the identification of K(G) with K(s1, . . . , sk), and it follows that we
may view β0 as the comorphism of a dominant rational map β : G×U → U . We claim
that the triple (G,U, β) satisfies the conditions of Lemma 4.5.5.

Denote by P the ideal in K[U ][s1, . . . , sk] generated by the si−εi, and let f ∈ K[U ].
As β0(f) is both a power series in the ti and an element of K(U)(s1, . . . , sk), we have

β0(f) ∈ K[U ][s1, . . . , sk]{P}

in the notation of page 58. We may identify the algebra on the right-hand side with
the algebra K[G × U ]{J}, where J is the radical ideal in K[G × U ] defining {e} × U .
Hence, {e} × U ⊆ dom(β0(f)) for all f ∈ K[U ], which proves that {e} × U ⊆ dom(β).
Moreover, β0(f)(e, p) = f(p) for all f ∈ K[U ], from which it follows β(e, p) = p for all
p ∈ U .

Before proving generic associativity, we extend the map −ρ to an anti-homomor-
phism τ from U(L(G)) into EndK(K[U ]), which can be done in a unique way. By Propo-
sition 4.2.1 we may view U(L(G)) as the associative algebra with one generated by L(G)
in K[G]∨. We extend τ linearly and continuously to formal power series with coefficients
from U(L(G)). Also, we extend the map µ0 : K[[t1, . . . tk]] → K[[t′1, . . . , t

′
k, t
′′
1 , . . . , t

′′
k ]]

to a map
U(L(G))[[t1, . . . , tk]]→ U(L(G))[[t′1, . . . , t

′
k, t
′′
1 , . . . , t

′′
k ]]

by
µ0(

∑
m∈Nk

umt
m) =

∑
m∈Nk

umµ
0(tm).

Note that τ ◦ µ0 = µ0 ◦ τ ; indeed, τ acts only on U(L(G)) and µ0 only on the ti.
We want to prove that

β ◦ (idG×β) = β ◦ (µ× idU )

as dominant rational maps G×G× U → U . This is equivalent to

(IK[G] ⊗ β0) ◦ β0 = (µ0 ⊗ IK[U ]) ◦ β0,

for the comorphisms K(U) → K(G × G × U), and it suffices to prove this for the
corresponding homomorphisms

K[U ]→ K[U ][[t′1, . . . , t
′
k, t
′′
1 , . . . , t

′′
k ]],

where we use t′1, . . . , t
′
k for the generators of Ôe on the first copy of G, and t′′1 , . . . , t

′′
k

for those on the second copy. Compute

(IK[G] ⊗ β0) ◦ β0

= exp(−t′′kρ(Xk)) · · · exp(−t′′1ρ(X1)) · exp(−t′kρ(Xk)) · · · exp(−t′1ρ(X1))

= τ(exp(t′1X1) · · · exp(t′kXk) exp(t′′1X1) · · · exp(t′′kXk)),
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to which we apply Equation (12), and find

τ(exp(µ0(t1)X1) · · · exp(µ0(tk)Xk))

= τ(µ0(exp(t1X1) · · · exp(tkXk)))

= µ0(τ(exp(t1X1) · · · exp(tkXk)))

= µ0(exp(−tkρ(Xk)) · · · exp(−t1ρ(X1)))

= (µ0 ⊗ IK[U ]) ◦ β0,

as required.
Now that we have checked the conditions of Lemma 4.5.5, let V and α : G×V → V

be as in the conclusion of that lemma. For f ∈ K[U ] we have

−(Xi ∗α f) = (−Xi ⊗ I)α0(f)

= (−Xi ⊗ I)β0(f)

= (−Xi ⊗ I)(exp(−tkρ(Xk)) · · · exp(−t1ρ(X1))f)

= ρ(Xi)(f).

In the last step we used that Xi(tj) = δi,j . This finishes the proof of the existence of V
and α.

As for the uniqueness, suppose that V and α satisfy the conclusions of the theorem.
Then α defines a rational map G × U → U . From Remark 4.5.3, we find that this
rational map coincides with β defined above. Hence, the uniqueness of (V, α) follows
from the uniqueness of a minimal regularization of (U, β); see Lemma 4.5.5. �

The following lemma shows that the conditions on G in Theorem 4.5.4 are not all
that rare.

Lemma 4.5.6. Let G be a connected affine algebraic group over K. Then G has one-
dimensional closed connected subgroups H1, . . . ,Hk such that the product map H1×. . .×
Hk → G is an open immersion.

This fact is well known; see for example [29] and [5]. As we use the proof later,
e.g. in the proof of Theorem 4.1.3, we give a brief sketch of the proof.

Proof. By a result of Mostow, the unipotent radical Ru(G) of G has a reductive
Levi complement G′, i.e., G = G′ nRu(G) ( [5], §11 nr. 22). Hence, it suffices to prove
the proposition for G reductive and for G unipotent.

IfG is unipotent, then there exists a basisX1, . . . , Xk of L(G) such that 〈Xi, . . . , Xk〉
is an ideal in L(G) for all i, and the Hi = A(Xi) ∼= Ga are subgroups as required.

If G is reductive, choose a maximal torus T ⊆ G, and a Borel subgroup B+ ⊆ G
containing T . Let B− be the opposite Borel subgroup ([5], §14 nr. 1), and set U± :=
Ru(B±). Then it is known that the product map U− × T × U+ → G is an open
immersion; now U− and U+ are dealt with by the unipotent case, and T is isomorphic
to Gdm for some d. �

Remark 4.5.7. It is not true that the product map A(X1) × . . . ×A(Xk) → G is
an open immersion for every basis X1, . . . , Xk of L(G) consisting of algebraic elements.
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Indeed, consider G = G2
m with Abelian Lie algebra K2. The elements X1 = (1, 0), X2 =

(1, 2) are algebraic, and form a basis of L(G). We have

A(X1) = {(a, 1) | a ∈ K∗}, and A(X2) = {(b, b2) | b ∈ K∗}.
The product map A(X1) × A(X2) → G is in fact a group homomorphism with kernel
{((1, 1), (1, 1)), ((−1, 1), (−1, 1))}.

We show how Theorems 4.1.2 and 4.1.3 follow from Theorem 4.5.4.

Proof of Theorem 4.1.2. By Harish-Chandra’s refinement [32] of Ado’s theo-
rem, l has a faithful finite-dimensional representation φ : l → EndK(M) such that
l acts nilpotently on M . Let G be the algebraic group A(φ(l)). By Theorem 4.2.3,
L(G) = l, and G is easily seen to be unipotent. Let Hi be the closed connected sub-
group with L(Hi) = KXi. The proof of Lemma 4.5.6 shows that the product map
H1 × . . . ×Hk → G is an isomorphism of varieties. Hence, the conditions of Theorem
4.5.4 are fulfilled, and its conclusion finishes the proof. �

Proof of Theorem 4.1.3. The proof of Lemma 4.5.6 shows that we can order
the Chevalley basis in such a way that the product map from the product of the cor-
responding one-parameter subgroups into G is an open immersion. In order to apply
Theorem 4.5.4, it suffices to check that ΓHγ = Z for all γ ∈ Π. First, it is contained in
Z, as Hγ has only integer eigenvalues on any finite-dimensional l-module. Conversely,
for n ∈ Z, there exists a cyclic l-module V on which Hγ has n among its eigenvalues.
As G is universal, V is also a G-module, and by Satz II.2.4.1 of [40] V is a submo-
dule of K[G]. This proves that ΓHγ = Z. Application of Theorem 4.5.4 concludes the
proof. �

Example 4.5.8. Consider G = SL2. We identify the Lie algebra L(G) with the
vector space spanned by the matrices

E =
(

0 1
0 0

)
, H =

(
1 0
0 −1

)
, and F =

(
0 0
1 0

)
,

endowed with the usual Lie bracket for matrices. Here E and F are nilpotent, and H
is semisimple with ΓH = Z. The product map A(E) × A(H) × A(F ) → G is an open
immersion by the proof of Lemma 4.5.6.

Consider, for U , the affine line A1 with coordinate x, and the homomorphism ρ :
L(G)→ DerK(K[x]) determined by

ρ(E) = −∂x, ρ(H) = −2x∂x, and ρ(F ) = x2∂x.

This homomorphism satisfies

exp(tρ(E))(x) = x− t,
exp(tρ(H))(x) = exp(−2t)x, and

exp(tρ(F ))(x) =
x

1− tx
so that the conditions of Theorem 4.5.4 are fulfilled. It follows that there exists a
unique algebraic variety V containing U = A

1 on which G acts morphically, such that
the corresponding Lie algebra representation equals ρ. Indeed, this variety V is the
projective line P1, on which G acts by Möbius transformations.



4.6. FURTHER RESEARCH 71

Note that PSL2, on whose coordinate ring H has ΓH = 2Z, also acts on P1; this
is reflected by the fact that exp(tρ(H))K[x] ⊆ K[x](exp(2t)). Note also that the Borel
subalgebra 〈E,H〉 acts locally finitely on K[x], hence the corresponding Borel subgroup
of G acts on the affine line by Theorem 4.1.1.

Similarly, the vector fields realizing sln+1 in Example 4.5.1 can be used to recover
the projective n-space from its affine part, as well as the action of SLn+1 on the former.

4.6. Further Research

Although our two main results deal with different cases, Theorem 4.1.1 is more
satisfactory than Theorem 4.5.4 in that it constructs the algebraic group from the Lie
algebra. This raises the following question: let l be a Lie algebra, U an irreducible affine
algebraic variety, and ρ : l → Der(K[U ]) a Lie algebra homomorphism. Suppose that
for all X ∈ l, there exist λ1, . . . , λd ∈ K such that

exp(tρ(X))K[U ] ⊆ K(U)(t, exp(λ1t), . . . , exp(λdt)).

Do there exist an embedding φ of l into the Lie algebra of an affine algebraic group G,
and a morphic action α of G on an algebraic variety V containing U as an open dense
subset, such that

ρ(X) = −φ(X)∗α
for all X ∈ l?

The case where l is one-dimensional is already interesting: suppose that ∇ ∈
DerK(K[U ]) satisfies

exp(t∇)K[U ] ⊆ K(U)(t, exp(λ1t), . . . , exp(λdt)),

where the λi are independent over Q. Are there mutually commuting derivations
∇0,∇1, . . . ,∇d ∈ DerK(K[U ]) such that ∇ = ∇0 +∇1 + . . .+∇d, and exp(t∇0)K[U ] ⊆
K(U)(t) and exp(t∇i)K[U ] ⊆ K(U)(exp(λit)) for all i? The answer is yes, and the proof
goes along the lines of the proof of Theorem 4.5.4: view t, exp(λ1t1), . . . , exp(λdtd) as
coordinates on G := Ga × (Gm)d. Then exp(−t∇) is the comorphism of a rational
map β : G × U → U , and one can show that the triple (G,U, β) satisfies the condi-
tions of Lemma 4.5.5. Let V and α : G × V → V be as in the conclusion of that
lemma. Then ∇ = −(1, λ1, . . . , λd)∗α, and one can take ∇0 = −(1, 0, . . . , 0)∗α and
∇i = −(0, . . . , 0, λi, 0, . . . , 0)∗α for i = 1, . . . , d.

As an example, consider the derivation

∇ := (λ1x+ x2)∂x + (λ2y + xy)∂y
of K[x, y], where λ1, λ2 are independent over Q. It satisfies

exp(t∇)x =
λ1 exp(λ1t)x

(1− exp(λ1t))x+ λ1
and

exp(t∇)y =
λ1 exp(λ2t)y

(1− exp(λ1t))x+ λ1
.

The right-hand sides are both in K(x, y, s1, s2), where si = exp(λit) for i = 1, 2. If we
view the (algebraically independent) si as coordinates on G2

m, the rational map β is
given by

β((s−1
1 , s−1

2 ), (x, y)) =
(

λ1s1x

(1− s1)x+ λ1
,

λ1s2z

(1− s1)x+ λ1

)
.
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Differentiating the group action, we find that

−(1, 0)∗α = (
1
λ1
x2 + x)∂x +

1
λ1
xy∂y and

−(0, 1)∗α = y∂y,

so that indeed ∇ = −λ1(1, 0) ∗α −λ2(0, 1)∗α.
This one-dimensional case suggests the following line of further research on the case

where l is higher-dimensional: consider the Lie algebra generated by all vector fields ∇i
as ∇ varies over ρ(l), and prove that this Lie algebra comes from an algebraic group.



CHAPTER 5

The Adjoint Representation of a Lie Algebra of
Vector Fields

5.1. D as a g-Module

A polynomial transitive realization φ of a pair (g, k) of codimension n defines a
g-module structure on D(n), the Lie algebra of polynomial vector fields in n variables,
by X · Y := [φ(X), Y ] for X ∈ g and Y ∈ D(n). We will describe the structure of
this module in the special case where g = g−1 ⊕ g0 ⊕ g1 is a graded simple Lie algebra
over an algebraically closed field K of characteristic 0, k = g0 ⊕ g1, and φ is a graded
homomorphism of degree 0. To be precise, denote by Dd all derivations of the form∑
i fi∂i where all fi are homogeneous polynomials of degree d + 1. The Dd define a

grading on D, and we require φ to map gd into Dd for d = −1, 0, 1. Such a realization
φ always exists; indeed, for any basis Y of g−1, the Realization Formula of Chapter 2
yields a graded realization φY. Moreover, from the proof of Theorem 2.3.4 it is clear
that a graded realization is unique up to linear coordinate changes; it is described in a
coordinate-free manner on page 74.

To appreciate the results of this chapter, consider the case where g = sl2 is graded
by g−1 = KE, g0 = KH, and g1 = KF , where E,H,F is the Chevalley basis of sl2.
The embedding φ from g into D(1) is given by

E 7→ ∂x, H 7→ −2x∂x, and F 7→ −x2∂x;

see also Example 2.3.2. Of course, D has φ(g) as a submodule, and it is readily seen that
the quotient D/φ(g) is an irreducible module generated by the highest weight vector
x3∂x + φ(g) of weight −4.

On the other hand, consider the case where g = sl4, with grading defined by the
block decomposition (

g0 g−1

g1 g0

)
,

where each block has size 2 × 2. Hence, g−1 is the subalgebra of g consisting of those
matrices in which all blocks other than the upper right one are zero, etc. Clearly, g−1

has dimension 4; a choice of basis ∂1, ∂2, ∂3, ∂4 of g−1, with dual basis x1, x2, x3, x4,
defines an embedding φ : g → DerK(K[x1, x2, x3, x4]) = D of graded Lie algebras. By
computer calculations using the function Blattner of Appendix B to compute φ, we find
that the dimension of [φ(g1),D4] ⊆ D5 equals 332, instead of dim D5 = 4

(
6+4−1

4−1

)
= 336.

By the PBW-theorem we have U(g) = U(g1)U(g0)U(g−1), so the homogeneous part of

73
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U(g)D4 of degree 5 equals

(U(g1)(
4⊕

d=−1

Dd))5 = [φ(g)1,D4],

and is therefore strictly contained in D5; hence, D4 generates a g-submodule properly
contained in D which projects onto a proper submodule of D/φ(g).

The two examples above are representative for the main results of this chapter,
which are Theorem 5.4.2, presenting a formula for the multiplicities of the irreducible
quotients in a composition chain of D as a g-module; and Conjectures 5.4.4 and 5.4.5,
which describe in detail which irreducible quotients do really occur.

Our method is best illustrated by the example with g = sl2. Consider the Verma
module M = U(sl2)⊗〈E,H〉KKv3 of highest weight 3−1 = 2; see page 76 for a definition
and an explanation why the highest weight vector is labelled with 3 rather than 2. The
element F 3 ⊗ v3 ∈ M generates an irreducible submodule N of M of highest weight
−4, and M/N is the irreducible module of highest weight 2. So, it seems that M is
in some sense dual to D. Indeed, we will show that, in the simple-graded case, D is
always dual to a generalized Verma module M , which implies that D and M have the
same irreducible quotients in their respective composition chains. For M we derive a
Kostant-type formula that can be used to determine those quotients, as well as their
multiplicities. Experiments with this formula in the computer algebra program LiE [57]
yield empirical evidence for a conjecture describing them in detail; we prove part of this
conjecture.

5.2. Preliminaries

Simple Graded Lie Algebras of Depth One. Let g =
⊕

d∈Z gd be a graded Lie
algebra over K with the property g−d = 0 for d sufficiently large. The smallest d ≥ 0
with g−e = 0 for all e > d is called the depth of g; assume that it is 1. Define V := g−1

and set

D :=
∞⊕

d=−1

Dd, where Dd := Sd+1(V ∗)⊗ V.

Here Se(V ∗) denotes the e-th symmetric power of V ∗; the direct sum of these spaces
is the symmetric algebra S(V ∗). Let (v, f) 7→ v(f) denote the natural map from
V × Sd+1(V ∗) to Sd(V ∗), and, similarly, from V × S(V ∗) to S(V ∗). Then D is a
Lie algebra with respect to the Lie bracket determined by

[f1 ⊗ v1, f2 ⊗ v2] := f1v1(f2)⊗ v2 − f2v2(f1)⊗ v1.

For X ∈ gd, define φ(X) : V d+1 → V by

φ(X)(v1, v2, . . . , vd+1) :=
1

(d+ 1)!
ad(v1) ad(v2) · · · ad(vd+1)X,

for v1, . . . , vd+1 ∈ g−1. As g−1 is Abelian, φ(X) defines an element of Sd+1(V ∗) ⊗ V .
Now φ, thus defined on each gd, can be shown to extend linearly to a homomorphism
of Lie algebras. Indeed, with respect to a basis Y = (Y1, . . . , Yn) of g−1, φ is easily seen
to be described by the Realization Formula of Chapter 2.
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In [45], Morozov describes all simple graded Lie algebras of depth 1. First, one
checks that the Killing form pairs g−d and gd non-degenerately, for all d. This implies
that gd = 0 for d > 1, and that g1 is dual to g−1 as a g0-module.

Theorem 5.2.1 (Morozov). Let g = g−1 ⊕ g0 ⊕ g1 be a simple graded Lie algebra
over K. Then one can choose a Cartan subalgebra h of g, a fundamental system Π in
the root system ∆ ⊆ h∗, and a root β ∈ Π such that for i = −1, 0, 1,

(14) gi =
⊕

α =
∑
γ∈Π nγγ ∈ ∆,
nβ = −i

gα.

Here we write gα for the h-weight space in g of weight α; see below for a definition.
Note that in particular h ⊆ g0 and g±β ⊆ g∓1. The minus sign in (14) may appear
somewhat unnatural, but is chosen so that positive root vectors of g act nilpotently on
D in the realization described above. Note also that g0 ⊕ g−1 = pβ in the notation of
page 7.

If g = g−1 ⊕ g0 ⊕ g1 is a graded simple Lie algebra, we shall say that g is of type
(Xn, i) if the Cartan type of g is Xn and β corresponds to the i-th node in the Dynkin
diagram; here we use the standard labelling of [7]. The list of pairs (Xn, i) for which
the i-th simple root has coefficient 1 in the highest root is well known: (An, i) for
i = 1, . . . , n, (Bn, 1), (Cn, n), (Dn, 1), (Dn, n− 1), (Dn, n), (E6, 1), (E6, 6), and (E7, 7);
for instance, the second example of Section 5.1 is of type (A3, 2). The fundamental
weight corresponding to such i is called a cominuscule weight, referring to the fact that
the corresponding weight of the dual Lie algebra is minuscule ([8], Chapitre 8).

Duality for Weight Modules. In the remainder of this chapter g is a simple Lie
algebra over K, h is a Cartan subalgebra of g, ∆ ⊆ h∗ is the root system with respect to
h, Π is a fundamental system in ∆, and ∆± are the corresponding sets of positive and
negative roots, respectively. The Borel subalgebras b± corresponding to Π, and their
nilpotent radicals n±, are given by

n± =
⊕
α∈∆±

gα and b± = h⊕ n±;

we also write b for b+. Let σ : g → g denote the Chevalley involution corresponding
to Π, i.e., the unique automorphism of g extending Xγ 7→ X−γ (γ ∈ ±Π) and Hγ 7→
−Hγ (γ ∈ Π), where the X±γ and Hγ (γ ∈ Π) are Chevalley generators of g.

An h-weight module is an h-module M with the following properties: the space

Mλ := {v ∈M | hv = 〈h, λ〉v for all h ∈ h}
of weight λ is finite-dimensional for all λ ∈ h∗, and M =

⊕
λ∈h∗Mλ. For such M , we

write ch(M) for the function h∗ → N that sends λ to dimMλ. This function is called
the character of M . Let k be a subalgebra of g containing h. Then an h-weight k-module
is a k-module that is also an h-weight module.

Let C denote the category of all h-weight g-modules, with g-module homomorphisms
as morphisms. If M is an object in C, and f is an element of the vector space M∗ =
HomK(M,K) dual to M , then we define the support of f by

supp(f) := {λ ∈ h∗ | f |Mλ
6= 0}.
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Now the space
M∨ := {f ∈M∗ | supp(f) is finite}

is a g-module with action defined by

〈m,X · f〉 = −〈σ(X)m, f〉, m ∈M,f ∈M∨,
and it is easily verified that M∨ is again an object in C. The σ-twist is convenient
when studying the full subcategory O of C consisting of finitely generated modules
on which n+ acts locally finitely (see page 57 for a definition). Standard references
for properties of this category are [15] and [36]; to mention a few: O is closed under
taking submodules, quotients, and finite direct sums, and all objects in O have a finite
composition chain. Moreover, if we denote by Q+ the set of linear combinations of Π
with non-negative integer coefficients, and if M is an object in O, then supp(ch(M)) is
contained in the union of a finite number of sets of the form λ−Q+ with λ ∈ h∗.

Proposition 5.2.2. Let M be an object in C.
(1) The modules (M∨)∨ and M are isomorphic.
(2) The characters of M and M∨ coincide.
(3) The map sending a submodule of M to its annihilator in M∨ is a bijection.
(4) If M has a finite composition chain, then so has M∨.
(5) If M is in O, then so is M∨, and they have the same irreducible factors with

the same multiplicities.

Proof. Verification of statements (1)–(4) is straightforward. To prove (5), let M
be an object of O. By (4), the dual M∨ has a finite composition chain; in particular,
it is finitely generated. By (2), the support of the character of M∨ is contained in
the union of a finite number of sets of the form λ −Q+. This implies that n+, having
h-roots that are non-zero elements of Q+, acts locally nilpotently on M∨. Hence, M∨

is an object in O as claimed. The last statement follows from (2) and the fact that the
map M 7→ ch(M) induces a monomorphism from the Grothendieck group of O ([36],
Section 1.11). �

Verma Modules. The category O contains the Verma modules, which are defined
as follows. Set

ρ :=
1
2

∑
α∈∆+

α,

let λ ∈ h∗, and let Kvλ be the b-module defined by

hvλ = 〈h, λ− ρ〉vλ for h ∈ h, and n+vλ = 0.

Now the induced module
M(λ) := U(g)⊗U(b) Kvλ

is the Verma module of highest weight λ − ρ. We recall a few properties of Verma
modules from the standard references [15] and [36]: first, M(λ) is universal among the
g-modules generated by a highest weight vector of weight λ − ρ, and it has a unique
irreducible quotient, denoted by L(λ). All irreducible modules in O are of the form
L(λ) for some λ. Moreover, dim HomU(g)(M(µ),M(λ)) ≤ 1 for all λ, µ ∈ h∗, and any
non-trivial homomorphism from M(µ) to M(λ) is injective. We may therefore view
M(µ) as a submodule of M(λ) whenever dim HomU(g)(M(µ),M(λ)) = 1.
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The parameterization of Verma modules by their highest weight plus ρ seems some-
what unnatural—indeed, if λ = m ∈ Nn with respect to the basis of fundamental
weights, then L(λ) ∼= Vm−(1,...,1) in the notation of Section 3.3—but it is justified by
the BGG-criterion, which is a necessary and sufficient condition on λ and µ for M(µ)
to be a submodule of M(λ). We shall state the criterion only for the case that we shall
need, namely the case where λ is (strictly) dominant and integral.

To this end, let (·, ·) be the symmetric bilinear form on h∗ induced by the Killing
form of g. For α ∈ ∆, we define α∨ := 2

(α,α)α, and a reflection sα on h∗ by

sαλ = λ− (λ, α∨)α.

Let P++ be the set of all λ ∈ h∗ such that (λ, γ∨) is a positive integer for all γ ∈ Π.
Taking into account that L(λ) has highest weight λ− ρ, we have that P++ is precisely
the set of λ for which L(λ) is finite-dimensional [35]. Next, let W be the Weyl group
of ∆, i.e., the group generated by the sα for α ∈ ∆, considered as a Coxeter group with
generators sγ for γ ∈ Π. Let l : W → N be the length function of W , and denote by
≤ the Bruhat order on W , i.e., the reflexive and transitive closure of the union of the
relations →α (α ∈ ∆) defined by w1 →α w2 ⇔ (sαw1 = w2)∧ (l(w1) < l(w2)); see [14]
and [59] for properties of this order.

Theorem 5.2.3 (BGG-criterion). Let λ ∈ P++, µ ∈ h∗, and w1 ∈ W . Then the
following are equivalent:

(1) L(µ) occurs as a quotient in a composition chain of M(w1(λ)),
(2) M(µ) is a submodule of M(w1(λ)), and
(3) µ = w2(λ) for some w2 ∈W with w1 ≤ w2.

The implication 3 ⇒ 2 is due to Verma ([58]; see also [3] for a proof without case-
by-case analysis). The implication 2 ⇒ 1 is clear, and the implication 1 ⇒ 3 is the
main contribution of Bernstein, Gel’fand, and Gel’fand in [3], which explains the name
of the above theorem.

Verma conjectured that all submodules of a Verma module M(λ) are spanned by
the Verma modules contained in it. Bernstein, Gel’fand and Gel’fand, however, gave
a counterexample to this conjecture in [3]. This example shows that some irreducible
quotients have multiplicities larger than 1 in a composition chain of M(λ). For a long
time, it was unclear what those multiplicities were, but in [39] Kazhdan and Lusztig
defined certain polynomials Pw1,w2 for w1, w2 ∈W , and conjectured that

(M(w1(λ)) : L(w2(λ))) = Pw1,w2(1),

where (M : L) denotes the multiplicity of L among the irreducible quotients in a
composition chain of M . This conjecture was proved independently by Beilinson and
Bernstein in [2] and by Brylinski and Kashiwara in [12].

5.3. Generalized Verma Modules and a Kostant-type Formula

Verma modules are induced from irreducible b-modules. More generally, we can
start with a finite-dimensional irreducible module V for a parabolic subalgebra p of g,
and induce it to a module Mp(V ) of g. In taking p = b, we retrieve the ordinary Verma
modules.
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More specifically, let Π0 be a subset of Π, let ∆0 ⊆ ∆ be the set of all roots that
are linear combinations of Π0, and let ∆±1 := ∆± \∆0. Define

n0± :=
⊕

α∈∆0∩∆±

gα, g0 := n0− ⊕ h⊕ n0+, u± :=
⊕

α∈∆±1

gα, and p := g0 ⊕ u+.

In the notation of page 7 we have p = pΠ0 . The derived subalgebra g′0 = [g0, g0] is
semisimple with Cartan subalgebra h0 := h∩g′0 and root system ∆0|h0 (unless Π0 = ∅).
The space

hc := {h ∈ h | 〈h,Π0〉 = 0}
is a vector space complement of h0 in h, and it equals the center of g0. Finally, denote
by W0 ⊆W the group generated by the sγ with γ ∈ Π0; it is the Weyl group of ∆0.

Now let V be a p-module, and consider the g-module

Mp(V ) := U(g)⊗U(p) V.

This module is generated by a p-submodule isomorphic to V , and by the PBW-theorem
it is a free U(u−)-module. Moreover, these two properties characterize Mp(V ).

In particular, if V is an irreducible finite-dimensional g0-module, then we can turn
V into a p-module by setting u+V = 0. By Schur’s lemma, hc acts on V by a scalar
µ ∈ h∗c . In fact, Mp(V ) splits as a direct sum of finite-dimensional hc-weight spaces, each
of which is a g0-submodule; in particular, (Mp(V ))µ ∼= V . Moreover, if M is any other
g-module whose highest hc-weight is µ, with a weight space Mµ that is isormophic to
V as a g0-module and that generates the g-module M , then M is a quotient of Mp(V ).

The modules Mp(V ) are called generalized Verma modules [44], [54]. We shall need
the following analogue of Kostant’s theorem for finite-dimensional irreducible modules
([35], Section VIII.5).

Proposition 5.3.1. Let V be an irreducible finite-dimensional g0-module, and let
λ− ρ ∈ h∗ be its highest weight. Then we have the identity

(15) [Mp(V )] =
∑

w0∈W0

(−1)l(w0)[M(w0(λ))]

in the Grothendieck group of O.

We need some notation for the proof. Following [3], we denote by E the set of all
functions h∗ → Z whose support is contained in a finite union of sets of the form λ−Q+.
Then E becomes a commutative Z-algebra when endowed with the convolution

u1 ∗ u2(λ) :=
∑
µ∈h∗

u1(µ)u2(λ− µ).

For λ ∈ h∗ the element eλ ∈ E is defined by eλ(µ) := δλ,µ. Note that eλ ∗ eµ = eλ+µ,
and if M is an h-weight module, then

ch(M) =
∑
λ∈h∗

dim(Mλ)eλ.

If this is an element of E , and if N is another h-weight module with ch(N) ∈ E , then
M ⊗N is also an h-weight module, and

ch(M ⊗N) = ch(M) ∗ ch(N).
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Proof of Proposition 5.3.1. From the fact that Mp(V ) ∼= U(u−) ⊗ V as h-
modules, we find

ch(Mp(V )) = ch(U(u−)) ∗ ch(V ).

By Kostant’s formula for the weight multiplicities in the irreducible g0-module V we
have

ch(V ) =
∑

w0∈W0

(−1)l(w0)ew0(λ)−ρ ∗ ch(U(n0−)).

Combining these formulas, we find

ch(Mp(V )) =
∑

w0∈W0

(−1)l(w0)ew0(λ)−ρ ∗ ch(U(n0−)) ∗ ch(U(u−))

=
∑

w0∈W0

(−1)l(w0)ew0(λ)−ρ ∗ ch(U(n−))

=
∑

w0∈W0

(−1)l(w0) ch(M(w0(λ))),

where we used the fact that U(n0−) ⊗ U(u−) ∼= U(n−) as h-modules. Now the lemma
follows from the fact that the map sending [M ] to ch(M) extends to a monomorphism
of the Grothendieck group of O into E , ([36], Section 1.11). �

The following proposition gives an alternative description of generalized Verma
modules induced from finite-dimensional irreducible g0-modules.

Proposition 5.3.2. Let V be a finite-dimensional irreducible g0-module, and let
λ− ρ ∈ h∗ be its highest weight. Then

Mp(V ) ∼= M(λ)/
∑
γ∈Π0

M(sγ(λ)).

Proof. First, Mp(V ) is generated by 1⊗ ṽλ, where ṽλ is the highest weight vector
of the g0-module V . The vector 1⊗ ṽλ is a highest weight vector for g of weight λ− ρ,
so Mp(V ) is a quotient of M(λ) by the universal property of Verma modules, i.e., there
exists a surjective morphism π : M(λ)→Mp(V ) of g-modules.

Let N1 ⊆ M(λ) be the kernel of π, and let 1 ⊗ vλ be the highest weight vector of
M(λ). The g′0-submodule N2 of M(λ) generated by 1⊗ vλ is isomorphic to the Verma
module M(λ|h0) for g′0, and π maps N2 onto 1 ⊗ V . Hence, N1 contains the maximal
g′0-submodule N3 of N2. This module is generated by the elements e(λ,γ∨)

γ 1 ⊗ vλ for
γ ∈ Π0 ([34], Theorem 21.4); these generate g-submodules isomorphic to M(sγ(λ)).
This shows that N1 contains the g-module

N4 :=
∑
γ∈Π0

M(sγ(λ)).

Hence, Mp(V ) is a quotient of M(λ)/N4. Conversely, the g0-submodule N5 of M(λ)/N4

corresponding to hc-weight (λ− ρ)|hc generates M(λ)/N4. Moreover, N5 is isomorphic
to V and the eα with α ∈ ∆1 annihilate it. By the universal property of Mp(V ) we find
that M(λ)/N4 is a quotient of Mp(V ). We have thus found a sequence

Mp(V )→M(λ)/N4 →Mp(V )
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of epimorphisms. Their concatenation is an epimorphism of g-modules, hence an iso-
morphism as Mp(V ) admits only scalar homomorphisms [44]. The proposition now
follows. �

This proposition suggests an alternative proof of Proposition 5.3.1. Indeed, let V
and λ be as in that proposition, and suppose that the following holds.

(∗) The set P0 := {
∑
w∈T

M(w(λ)) | T ⊆W0} is closed under taking intersections.

We show that this implies Proposition 5.3.1. To this end, consider the map sending
M ∈ P0 to {w ∈ W0 | M(w(λ)) ⊆ M}. By the BGG-criterion this is a bijection from
P0 to the set

P ′0 := {T ⊆W0 | ∀t ∈ T,w ∈W0 : t ≤ w ⇒ w ∈ T},
and under condition (∗) it even is an isomorphism (P0,+,∩) → (P ′0,∪,∩) of lattices.
The latter is finite and distributive, hence so is the former. The proof of the following
lemma on such lattices is straightforward.

Lemma 5.3.3. Let (Q,v) be a finite distributive lattice, and define the relation @
on Q by

p @ q :⇔ p v q and p 6= q.

Let F be the free Abelian group generated by Q. Define A := F/N , where N is the
subgroup generated by the minimum ⊥ of Q, and the elements of the form p t q − p −
q + p u q. Denote the image of q ∈ Q in A by [q]. Then the following identity holds for
all p ∈ Q:

[p] =
∑
qvp

([q]− [sup{r | r @ q}]).

Note that, in the sum of the lemma, only those q for which sup{r | r @ q} 6= q yield
a non-zero contribution. Now apply this lemma to P0 to find the identity

[M(w(λ))] =
∑
w1≥w

(
[M(w1(λ))]−

[ ∑
w2>w1

M(w2(λ))

])
in the Grothendieck group of O; here w and all indices are taken in W0. Indeed, the
other terms that would appear in the sum on the right-hand side according to the
lemma, are zero by virtue of the remark above. By Verma’s Möbius inversion on W0

[59] we have

[M(w(λ))]−

[ ∑
w0>w

M(w0(λ))

]
=
∑
w0≥w

(−1)l(w)+l(w0)[M(w0(λ))].

In particular, taking w = e and using Proposition 5.3.2, we retrieve (15).
We conclude that condition (∗) yields a transparent proof of a Kostant-type for-

mula for generalized Verma modules, implying Kostant’s formula for finite-dimensional
irreducible modules. In fact, Verma’s motivation for studying Möbius inversion over
Coxeter groups in [59] was precisely this, but it is not clear from the literature whether
he succeeded.
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Validity of (∗) for any Π0 would follow from its validity for Π0 = Π. Indeed,
suppose that it holds for Π, let Π0 be any subset of Π, and let T1, T2 be subsets of the
corresponding Weyl subgroup W0. By (∗) for Π, the g-module(∑

w∈T1

M(w(λ))

)
∩

(∑
w∈T2

M(w(λ))

)
is spanned by the Verma modules that it contains. By the BGG-criterion, these are
the submodules M(w(λ)) of M(λ) for which w ∈ W has the property that there exist
wi ∈ Ti, (i = 1, 2) such that w1, w2 ≤ w. It remains to show that for such w,w1, w2

there exists a w0 ∈W0 for which w1, w2 ≤ w0 ≤ w, so that M(w(λ)) ⊆M(w0(λ)). The
following lemma will be shown to imply this.

Lemma 5.3.4. Let W be a Coxeter group with finite set of distinguished generators
S. Let r = (r1, . . . , rq) be any sequence of elements of S, and define

U(r) := {ri1 · · · rik | k ∈ N, 1 ≤ i1 < i2 < . . . < ik ≤ q}.
Then U(r) has a unique maximal element with respect to the Bruhat order.

Scott Murray helped me out with the following proof.

Proof. Proceed by induction on q. For q = 0 the lemma holds trivially; now
suppose that it holds for certain q ≥ 0, and let r = (r1, . . . , rq+1) be a sequence of
elements in S. By the induction hypothesis, U((r1, . . . , rq)) has a unique maximal
element w. Let w′ be the longest of the elements w and wrq+1; we claim that w′ is the
maximum of U(r).

Indeed, denoting the length function on W by l, suppose that l(wrq+1) < l(w) so
that w′ = w, and let u ∈ U(r). Then u has a reduced expression (ri1 , . . . , rik) for some k
and 1 ≤ i1 < . . . < ik ≤ q+ 1 ([7], Chapitre IV, §1, no. 4, Lemme 2). If ik 6= q+ 1, then
u ∈ U((r1, . . . , rq)) and u ≤ w by definition of w. If ik = q + 1, then l(urq+1) < l(u);
together with l(wrq+1) < l(w) this implies ([59], Lemma) that u ≤ w is equivalent to
urq+1 ≤ w. The latter inequality holds by definition of w, hence so does the former.

The case where l(wrq+1) < l(w) can be treated similarly, and this concludes the
proof of the lemma. �

In our application, let r = (r1, . . . , rq) be the sequence of fundamental reflections
in W0 obtained by deleting the fundamental reflections in W \ W0 from a reduced
expression for w. Then w1, w2 ∈ U(r) [14], and we may take w0 to be the maximal
element of U(r). This concludes the proof of our claim that validity of (∗) for Π0 = Π
implies validity of (∗) for all Π0 ⊆ Π.

It seems unknown, even to experts, whether (∗) holds for Π0 = Π. In an e-mail
Anthony Joseph let me know that proving (∗) seemed very hard to him, so that it
would not be worth the trouble for merely reproving Kostant’s formula. However, the
fact that (∗) implies that formula is reassuring, and in my opinion a good motivation
for further research into this question.
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5.4. The Composition Factors of D

To prove our main result we characterize D as follows.

Proposition 5.4.1. Let g be as in Theorem 5.2.1, and set p = g−1 ⊕ g0. Then the
g-module D of page 74 is isomorphic to Mp(g−1)∨.

Proof. Let h,Π,∆, and β be as in the conclusion of Theorem 5.2.1, and set

∆±1 :=

∑
γ∈Π

nγγ ∈ ∆ | nβ = ±1

 .

For α ∈ ∆1 let ∂α ∈ g be a root vector of weight α. Together, these form a basis of g−1;
let X = (Xα)α∈∆1 be the corresponding dual basis of g1. Then we have σ(Xα) = cα∂α
for some non-zero cα ∈ K. On the other hand, we may view the Xα as elements of g∗−1,
and hence as generators of S(g∗−1). Now (Xm∂β)m∈N∆1 ,β∈∆1

is a basis of D; let (fm,β)
denote the dual basis of D∨. For α, β, γ ∈ ∆1 and m, r ∈ N∆1 compute

〈Xr∂γ , Xα · fm,β〉 = −〈σ(Xα)Xr∂γ , fm,β〉
= −cα〈[∂α,Xr∂γ ], fm,β〉
= −cα〈rαXr−eα∂γ , fm,β〉
= −(mα + 1)cαδm+eα,rδβ,γ ,

where eα denotes the standard basis vector of N∆1 corresponding to α ∈ ∆1. Hence,
Xα · fm,β = −(mα + 1)cαfm+eα,β . This shows that g1 acts freely on D∨, and that the
latter module is generated by its g0-submodule spanned by (f0,β)β∈∆1 . This module is
dual to the Chevalley twist of the finite-dimensional g0-module g−1, whence isomorphic
to g−1. We have thus proved that D∨ is isomorphic to Mp(g−1); the proposition now
follows from (1) of Proposition 5.2.2. �

We can now prove our main theorem of this chapter.

Theorem 5.4.2. Let g = g−1 ⊕ g0 ⊕ g1 be a finite-dimensional simple graded Lie
algebra, and let φ be the natural embedding of g into D := DerK(S(g∗−1)). Let h,∆,Π,
and β be as in the conclusion of Theorem 5.2.1, let W be the Weyl group generated by
the reflections sγ with γ ∈ Π, and let W0 be the subgroup of W generated by the sγ with
γ ∈ Π \ {β}. Let ρ be the half sum of the positive roots of g, and let λ− ρ be the highest
root of g.

Then D, regarded as a g-module through φ, has a finite composition chain, and each
composition factor is isomorphic to L(w(λ)) for some w ∈ W . The multiplicity of the
latter module among the composition factors is given by

(D : L(w(λ))) =
∑

w0∈W0

(−1)l(w0)Pw0,w(1).

Proof. By Propositions 5.4.1 and 5.2.2, the modules D and D∨ = Mp(g−1) have
the same composition factors. For a fixed irreducible module L in O, the map sending
[M ] to (M : L) extends to a homomorphism from the Grothendieck group of O to Z,
so that

(D : L) =
∑

w0∈W0

(−1)l(w0)(M(w0(λ)) : L)
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by Proposition 5.3.1. By Proposition 5.3.2 and the BGG-criterion all composition fac-
tors of D are of the form L(w(λ)) for some w ∈ W . The result now follows from the
Kazhdan-Lusztig Conjecture, which is a theorem since [2] and [12]. �

Evaluating the multiplicity formula of Theorem 5.4.2 on a computer for a fixed
w ∈W can be rather time consuming. Therefore, it pays off to narrow down the set of
w ∈W for which this has to be done.

Lemma 5.4.3. In the notation of Theorem 5.4.2, write g′0 = [g0, g0], and view Π\{β}
as simple roots of h0 := h∩g′0 in g′0. Then (D : L(w(λ))) > 0 implies that w(λ) restricts
to a dominant weight on the Cartan subalgebra h0 of g′0.

Proof. If the multiplicity of the g-module L(w(λ)) in D is positive, then so is
the multiplicity of the g′0-module of highest weight w(λ)|h0 . But D is a direct sum of
finite-dimensional g′0-modules, hence w(λ)|h0 must be dominant. �

From this lemma it follows that every right W0-coset in W contains at most one
element w with (D : L(w(λ))) > 0. Indeed, by the regularity of the action of W0 on
chambers in h∗0, for any w1 ∈ W , there is a unique w0 ∈ W0 such that w0(w1(λ)) is
dominant. Using this observation for speedup, I wrote a program in LiE that takes
a pair from the list at the end of page 74 as input, and determines the irreducible
composition factors. Experiments with that program suggest the following conjecture.

Conjecture 5.4.4. In the notation of Theorem 5.4.2, all irreducible quotients in
a composition chain of D have multiplicity 1. Define

T := {w ∈W | (D : L(w(λ))) = 1}.

Then the following holds: if (g, β) is of type
(1) (An, i) with n ≥ 1 and i ≤ n

2 , then T consists of the elements

wj = (sisi+1 · · · si+j−1)(si−1si · · · si+j−2) · · · (si−j+1si−j+2 · · · si)

for j = 0, . . . , i.
(2) (Bn, 1) with n ≥ 2, then T = {e, s1}.
(3) (Cn, n) with n ≥ 3, then T consists of e and the elements

wj = (sn)(sn−1sn)(sn−2sn−1sn) · · · (sn−2j · · · sn)

for j = 0, . . . , dn2 e − 1.
(4) (Dn, 1) with n ≥ 4, then

T = {e, s1, s1s2 · · · sn−2snsn−1sn−2 · · · s1}.

(5) (Dn, n) with n ≥ 4, then T consists of e and the elements

wj =(sn)(sn−2sn−1)(sn−3sn−2sn) · · ·
· · · (sn−2j−2sn−2j+3 · · · sn−2sn−1)(sn−2j−1sn−2j+2 · · · sn−2sn)

for j = 0, . . . , bn2 c − 1.
(6) (E6, 1), then

T = {e, s1, s1s3s4s5s2s4s3s1}.
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(7) (E7, 7), then

T = {e, s7, s7s6s5s4s2s3s4s5s6s7,

s7s6s5s4s2s3s1s4s3s5s4s2s6s5s4s3s1s7s6s5s4s2s3s4s5s6s7}.

My program is not yet efficient enough to deal with the case (E7, 7); this is due
to the fact that it is hard to compute Kazhdan-Lusztig polynomials for E7. However,
as Arjeh Cohen pointed out to me, the Weyl group elements w occurring above are
all shortest representatives of their double cosets W0wW0. This suggests the following
conjecture, which predicts the above result for E7.

Conjecture 5.4.5. In the notation of Conjecture 5.4.4, every element w of T is the
unique shortest element of its double coset W0wW0. Moreover, if the Dynkin diagram
of g is simply laced, then the converse is also true.

Remark 5.5.1 characterizes T of Conjecture 5.4.4 in the case where the diagram of
g is not simply laced.

Example 5.4.6. If g is of type (A3, 2) as in the second example of Section 5.1, then
D/φ(g) has a simple factor of highest weight s2s3s1s2(λ)−ρ. With respect to the basis
of fundamental weights, this weight equals µ := (1,−6, 1). In this example the center hc
of g0 is spanned by H = H1 + 2H2 +H3, where H1,H2,H3 is the Chevalley basis of h.
The element H acts by the scalar −2 ∗ d on Dd, and by the scalar µ(H) = −10 on the
µ-weight space of D. This explains why [g1,D4] 6= D5 as we noted in the introduction:
the 4-dimensional g′0-submodule of D5 with highest weight (1, 1) = µ|h0 is missing in
[g1,D4].

Conjectures 5.4.4 and 5.4.5 have been verified by computer for the cases where the
rank of g is at most 6. Moreover, the cases (An, 1), (Bn, 1) of Conjecture 5.4.4 can be
proved as follows: in either case, one can write down the set S of all elements w ∈W with
the property that w(λ) is dominant on h0; then |S| = |W |/|W0|. For w ∈ S \{e, s1}, the
Kazhdan-Lusztig polynomial Pe,w turns out to have an easy form, and in fact to equal
Psi,w for some i > 1. But then the multiplicity Pe,w(1) of L(w(λ)) in M(λ) is equal to
the multiplicity Psi,w(1) of L(w(λ)) in M(si(λ)). By Propositions 5.4.1 and 5.3.2, this
implies that (D : L(w(λ))) = 0. Finally, it is clear that (D : L(λ)) = (D : L(s1(λ))) = 1.

This settles the conjecture in two special cases. However, a direct correspondence
between irreducible composition factors of D and double W0-cosets of W , as suggested
by Conjecture 5.4.5, would be more satisfactory. In many articles, the latter show up in
connection with certain orbits on flag varieties; the next section reviews some of these
results, and suggests how D might be connected to this vast body of literature.

5.5. Towards a Correspondence

Let g = g−1 ⊕ g0 ⊕ g1 be a graded simple Lie algebra, let h, Π, and β be as in the
conclusion of Theorem 5.2.1, and retain the notation ∆, ∆±, Π0, ∆0, ∆±1, u± = g∓1,
W , W0 of Section 5.3.

Let G be any of the connected algebraic groups with Lie algebra g; it is simple
over its center, so that the results of [52] apply. Define p± = g∓1 ⊕ g0, and let P±
be the closed connected subgroups of G with Lie algebras p±, respectively. Now the
exponential map defines an isomorphism of algebraic varieties from u+ to the closed
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connected subgroup U+ of P+ with Lie algebra u+. The map ι : U+ → G/P− sending
u to uP− is an open immersion, hence its image U+P−/P− is an open neighbourhood
of eP− in G/P−, and isomorphic to an affine space. By the construction of page 58,
the action α of G on G/P− can be differentiated to a homomorphism φ : X 7→ −X∗α
from g into DerK K[U+] = DerK S(g∗−1) = D; this is the required polynomial transitive
realization.

Let G0 be the closed connected subgroup of G with Lie algebra g0. Then G0 acts
on U+ by conjugation and on G/P− by left multiplication, and as G0 ⊆ P−, ι is a
G0-equivariant map between these. In [52] it is shown that

(16) ι(G0u) = ι(U+) ∩ (P−ι(u)) for all u ∈ U+.

Thus, ι induces a bijection between G0-orbits on U+ and P−-orbits on G/P−. By
the Bruhat lemma, the latter orbits are parameterized by the double cosets of W0 in
W . Richardson, Röhrle and Steinberg describe the G0-orbits on U+ more explicitly
as follows. For α ∈ ∆+1, denote by Uα the root subgroup of U+ corresponding to α.
Let β1, . . . , βl be a maximal sequence of mutually orthogonal long roots in ∆+1, choose
elements u′i ∈ Uβi \ {e} for all i, and set

uk := u′1 · · ·u′k
for k = 0, . . . , l. Then the orbits Ck := G0uk are all distinct and partition U+, and the
Zariski-closure Ck of Ck equals ⋃

0≤k′≤k

Ck′ ;

in particular, Cl is an open dense orbit of U+. Similarly, set wk := sβ1 · · · sβk for
k = 0, . . . , l. Then {w1, . . . , wl} is a system of representatives for the double cosets of
W0 in W . Finally, if we represent each wk by an element w̃k of the normalizer of the
Cartan subgroup of G with Lie algebra h, then the set {w̃1P−, . . . , w̃lP−} is a system
of representatives for the P−-orbits on G/P−.

Remark 5.5.1. For g of type (Cn, n) or (Bn, 1), the set T of Conjecture 5.4.4
consists of shortest representatives of the double cosets W0wkW0 with k zero or odd,
i.e., approximately half of all double cosets are represented by T .

We proceed with some results from [56]. For k = 0, . . . , l, let Ik ⊆ K[U+] be the
defining ideal of Ck. These ideals form a chain

K[U+] =: I−1 ⊃ I0 ⊃ I1 ⊃ . . . ⊃ Il = 0.

By (16), ι(Ck) is the intersection of a closed P−-stable subset of G/P− and the open
dense subset ι(U+) of G/P−; from this it follows that Ik is invariant under φ(p−) =
φ(g0 ⊕ g1). Tanisaki shows that, moreover, each Ik is generated by its homogeneous
part (Ik)k+1 of degree k + 1, and that

φ(g−1)(Ik)k+1 = (Ik−1)k

for all k = 0, . . . , l − 1. Note that this implies D(Ik) = Ik−1 for all k = 0, . . . , l − 1.
It seems natural to think that the chain I0, . . . , Il of ideals, having the right cardi-

nality and satisfying the invariance properties mentioned above, should lead to a chain
of g-submodules of D that would prove Conjecture 5.4.5. By way of example, consider
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once again the case where g is of type (A3, 2). Take G = SL4, and P−, N+ and G0 with
the following decompositions into (2× 2)-blocks:

P− =
{(

p11 0
p21 p22

)
| det(p11) det(p22) = 1

}
, N+ =

{(
I x
0 I

)}
, and

G0 =
{(

g1 0
0 g2

)
| det(g1) det(g2) = 1

}
.

Denote by g0 and n+ the typical elements of G0 and n+ above. Then we have

g0n+g
−1
0 =

(
I g1xg

−1
2

0 I

)
,

from which it follows that the G0-orbits on N+ are C0, C1, and C2, where Ci = {n+ ∈
N | rkx = i}. Writing xij for the entries of c, the defining ideals of C0, C1, and C2 are
I0 = (x11, x12, x21, x22), I1 = (x11x22 − x12x21), and I2 = 0, respectively. To calculate
the action of g on K[(xij)ij ], let Xij (i, j = 1, 2) be (2 × 2)-matrices over K with
tr(X11 + X22) = 0, and compute over the algebra A := K[ε]/(ε2) (recall that P−(A)
denotes the group of points of P− with coordinates in A; see [5], §1 nr. 5):(

I − εX11 −εX12

−εX21 I − εX22

)(
I x
0 I

)
P−(A)

=
(
I − εX11 x− ε(X11x+X12)
−εX21 I − ε(X21x+X22)

)
·
(
I − ε(X21x+X22) 0

0 I + ε(X21x+X22)

)
P−(A)

=
(
I − ε(X11 +X21x+X22) x+ ε(xX21x+ xX22 −X11x−X12)

−εX21 I

)
·
(

I 0
−εX21 I

)
P−(A)

=
(
I − ε(X11 +X22 + [X21, x]) x+ ε(xX21x+ xX22 −X11x−X12)

0 I

)
·
(
I + ε(X11 +X22 + [X21, x]) 0

0 I

)
P−(A)

=
(
I x+ ε(xX21x+ xX22 −X11x−X12)
0 I

)
P−(A),

where the penultimate equality is justified by tr(X11 +X22 + [X21, x]) = 0. Hence, the
realization φ is given explicitly by

φ

(
X11 X12

X21 X22

)
=

∑
i,j∈{1,2}

(xX21x+ xX22 −X11x−X12)ij∂ij ,

where ∂ij denotes differentiation with respect to xij . Note that gi is mapped into Di,
as expected. Let Eij denote the matrix with a 1 on position (i, j) and zeroes elsewhere.
Then for example

φ(E32) = x11(x21∂11 + x22∂12) + x21(x21∂21 + x22∂22),
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and
φ(E32)(x11x22 − x12x21) = x21(x11x22 − x12x21),

so that φ(E32)(I1) ⊆ I1, as expected.
We have seen that in this case the subspace

⊕4
d=−1 Dd generates a proper g-

submodule M of D, and this is the only ‘non-obvious’ submodule. Similarly, I1 is
the only ‘non-obvious’ ideal among the Ik. Hence we conclude that the search for a
direct correspondence between G0-orbits on U+ and the irreducible composition factors
of the g-module D suggests the following challenging starting point for further research:
describe M in terms of I1!





APPENDIX A

Transitive Lie Algebras in One and Two Variables

This appendix briefly discusses Lie’s classification of transitive Lie algebras in one
and two variables over an algebraically closed field K of characteristic zero. They
correspond to effective pairs of codimension one or two.

There are three classes of transitive Lie algebras in one variable; using Lie’s notation
x := x1 and p := ∂x they are

〈p〉, 〈p, xp〉, and 〈p, 2xp,−x2p〉.
A proof of this classification can be found in [47]. Also, it is an easy consequence of
the classification of primitive pairs; see [21] for a short proof for the case where g is not
simple.

Effective Pairs of Codimension Two. We write x := x1, y := x2, p := ∂1, and
q := ∂2 in transitive Lie algebras in two variables. The primitive Lie algebras are listed
in table 1. The third column of table 1 contains the the label given to these algebras in
[22] and [41].

Now consider an effective pair (g, k) of codimension two which is not primitive.
Then there exists a subalgebra k1 such that g ⊃ k1 ⊃ k, where the inclusions are proper.
In general, the pairs (g, k1) and (k1, k) will no longer be effective. Denote the largest
g-ideal contained in k1 by i and the largest k1-ideal contained in k by j. The quotients
(g/i, k1/i) and (k1/j, k/j) are both effective pairs of codimension one, and hence there are
nine possibilities for the pair (dim g/i,dim k1/j). This pair is called the type of the triple
(g, k1, k). In our table 2, k1 is suppressed. Sometimes, various intermediate subalgebras
k1 can be chosen, and the resulting triples may be of different types. As a consequence,
an effective pair (g, k) may occur several times in the classification. When this happens,
there will be a reference to an earlier entry of the list, to which it is isomorphic.

Table 2 differs from Lie’s table in that the origin (0, 0) is always a regular point.
Moreover, whenever an sl2 occurs, its Chevalley basis is contained in the basis given in
that table. The third column can be used for translation between this table and Lie’s
table in [41].

Type Realization
(5) 〈p, q, xq, xp− yq, yp〉 A3
(6) 〈p, q, xq, xp− yq, yp, xp+ yq〉 A2
(8) 〈p, q, xq, xp− yq, yp, xp+ yq, x2 + xyq, xyp+ y2q〉 A1

Table 1. The primitive Lie algebras in two variables.
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Type Case Realization Label
(1,1) 〈p, xi exp(αx)q〉, Bβ1,D1,D2

where i = 0, . . . , rα ≥ 0
and α in a non-empty finite set

(1,2) 〈p, yq, xi exp(αx)q〉, Bβ2,C2
where i = 0, . . . , rα ≥ 0
and α in a non-empty finite set

(1,3) 〈p, q, 2yq,−y2q〉 C5
(2,1) 1 〈p, xp+ q〉

For a different k1, this is (1,1).
(2,1) 2 〈p, xp, xiq〉, where i = 0, . . . , r ≥ 0 Bγ1

For r = 0 and a different k1, this is (1,2).
(2,2) 1 〈p, xp− λyq, xiq〉, where i = 0, . . . , r ≥ 0 and λ 6= 0 Bγ2,C8,D3
(2,2) 2 〈p, xp+ ((r + 1)y + xr+1)q, xiq〉, Bγ3

where i = 0, . . . , r ≥ 0
(2,2) 3 〈p, xp, yq, xiq〉, where i = 0, . . . , r ≥ 0 Bγ4,C3
(2,3) 〈p, xp, q, 2yq,−y2q〉 C6
(3,1) 1 〈p, 2xp+ q,−x2p− xq〉 Bδ1
(3,1) 2 〈p, 2xp,−x2p, q〉

For a different k1, this is (1,3).
(3,1) 3 〈p, 2xp− q,−x2p+ xq, q〉 Bδ2
(3,2) 1 〈p, 2xp− 2yq,−x2p+ (1 + 2xy)q〉 C9
(3,2) 2 〈p, 2xp+ ryq,−x2p− rxyq, xiq〉, Bδ3

where i = 0, . . . , r ≥ 1
(3,2) 3 〈p, 2xp+ ryq,−x2p− rxyq, yq, xiq〉, Bδ4

where i = 0, . . . , r ≥ 0
For r = 0 and a different k1 this is (2,3).

(3,3) 〈p, 2xp,−x2p, q, 2yq,−y2q〉 C7

Table 2. The non-primitive transitive Lie algebras in two variables.



APPENDIX B

An Implementation of the Realization Formula

My research for Chapters 2 and 5 benefited greatly from my implementation of
the Realization Formula of Chapter 2 in the computer algebra system GAP (release 4.2)
[20]. Although everyone in this field knows that it is, in principle, possible to compute
explicitly a realization of any abstractly given pair (g, k), many people were surprised
by the simplicity of the Realization Formula. Therefore, I discuss some details of the
implementation, and hope that others will find my program useful. I refer to my web
page www.win.tue.nl/~jdrai for the complete implementation.

B.1. Design of the Algorithm

Recall the setting of the Realization Formula: we are given a finite-dimensional Lie
algebra g, a subalgebra k of codimension n, and elements Y1, . . . , Yn of g that project
onto a basis of g/k; and we are to compute the realization φY. This linear map is
determined by the list (φY(X1), . . . , φY(Xk), φY(Y1), . . . , φY(Yn)), where X1, . . . , Xk

form a basis of k. In general, φY has formal power series coefficients, and we have to
specify the degree d up to which these coefficients must be calculated. We will therefore
derive a function Blattner that takes as input g, (X,Y) =: Z, n, and d, and that
produces the above list of images, truncated at degree d.

GAP is well suited for implementing Blattner, because its standard distribution
already has many functions dealing with Lie algebras [24], [25]. In particular, GAP has
a function called UniversalEnvelopingAlgebra that takes g as input and returns the
universal enveloping algebra U(g). The elements of U(g) are written as linear combi-
nations of the PBW-basis corresponding to a basis Z of g. Unfortunately, in release
4.2, UniversalEnvelopingAlgebra takes for Z some default basis of g, rather than ac-
cepting Z as a parameter. As we saw in Chapter 2, the realization φY depends heavily
on Y, so that we need a slightly adapted version of UniversalEnvelopingAlgebra.
Willem de Graaf kindly provided me with such a function, UEA, with which φY is easily
implemented.

It remains to decide on the form of the output of Blattner. To be able to use
that output for further calculations, it is convenient to construct the Lie algebra D of
polynomial vector fields in GAP first, and to let Blattner return a list of elements of D.
To minimize our programming effort, we view D as a Lie subalgebra of the associative
Weyl algebra W with generators x1, . . . , xn, ∂1, . . . , ∂n and relations

[xi, xj ] = 0, [∂i, xj ] = δij , and [∂i, ∂j ] = 0

for all i, j = 1, . . . , n. The algebra W , in turn, is isomorphic to the quotient U(l)/(I−1),
where l is the (2n + 1)-dimensional Lie algebra with basis x1, . . . , xn, ∂1, . . . , ∂n, I and

91



92 APPENDIX B. AN IMPLEMENTATION OF THE REALIZATION FORMULA

Lie bracket determined by

[xi, xj ] = 0, [∂i, xj ] = δijI, [∂i, ∂j ] = 0,

[xi, I] = 0, and [∂i, I] = 0

for all i, j = 1, . . . , n. The Lie algebra l is easily constructed using the function
LieAlgebraByStructureConstants, and another slight modification of the function
UniversalEnvelopingAlgebra allows us to construct U(l)/(I − 1). This leads to a
function WeylAlgebra to be called with two arguments: the ground field and the num-
ber n of variables.

This finishes the description of the non-standard functions UEA and WeylAlgebra
that appear in the source code for Blattner. That source code, which forms the next
section, is self-evident. I include one example of usage.

Example 2.1.1. The Lie algebra g of Example 2.4.3 can be entered into GAP by its
structure constants.
gap> T:=EmptySCTable(7,0,"antisymmetric");;
gap> SetEntrySCTable(T,2,1,[2,1]);
gap> SetEntrySCTable(T,2,3,[-2,3]);
gap> SetEntrySCTable(T,1,3,[1,2]);
gap> SetEntrySCTable(T,2,5,[1,5]);
gap> SetEntrySCTable(T,2,6,[-1,6]);
gap> SetEntrySCTable(T,3,5,[1,6]);
gap> SetEntrySCTable(T,1,6,[1,5]);
gap> SetEntrySCTable(T,4,5,[1,5]);
gap> SetEntrySCTable(T,4,6,[1,6]);
gap> SetEntrySCTable(T,4,7,[2,7]);
gap> SetEntrySCTable(T,5,6,[1,7]);
gap> g:=LieAlgebraByStructureConstants(Rationals,T);;

Here the basis vectors E,H,F, I,X, Y, Z are numbered 1, . . . , 7, respectively. The reali-
zation φ(I,X,Y,Z) of Theorem 2.4.2 can now be computed as follows.
gap> B:=Basis(g);;
gap> Blattner(g,B,4,4)[1];
[ [(-1)*x_3*D_2+(1/2)*x_3^2*D_4],
[(-1)*x_2*D_2+(1)*x_3*D_3],
[(-1)*x_2*D_3+(1/2)*x_2^2*D_4],
[(-1)*x_2*D_2+(-1)*x_3*D_3+(-2)*x_4*D_4+( 1)*D_1],
[(-1)*x_3*D_4+(1)*D_2],
[(1)*D_3],
[(1)*D_4] ]

B.2. Source Code of Blattner

Constant:=function(n,e)
#This function returns a vector all of whose n entries equal e.
return List([1..n], a->e);

end;
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ExponentsOfGivenDegree:=function(n,d)
#This function returns all multi-indices with n entries and total
#degree d.
return OrderedPartitions(d+n,n)-Constant(n,1);

end;

Power:=function(a,m,one)
#This function computes the product (a_1^m_1)*(a_2^m_2)*...; both
#lists should be equally long. The a_i are assumed to be elements
#of a monoid, the identity of which is the third parameter. The m_i
#must be natural numbers.
local i,r;
r:=one;
for i in [1..Length(m)] do
if m[i]<>0 then r:=r*a[i]^m[i]; fi;

od;
return(r);

end;

CoefficientsOfLinearPart:=function(u,l)
#Here, u is an element of a Universal Enveloping Algebra of a Lie
#algebra of dimension at least l. The function returns, from the
#linear part of u, only the variables with index>l, with their
#coefficients. Hence, for l=6 and
#u=[(-1)*x.1*x.7+(1)*x.3*x.7*x.8+(1)*x.6*x.8
# +(5)*x.6+(-1)*x.7+(2)*x.8]
#the list [[7,-1],[8,2]] is returned.
local ret, e, i;
ret:=[];
e:=ExtRepOfObj(u)[2];
for i in [1..Length(e)/2] do
if (Length(e[2*i-1])=2) and (e[2*i-1][2]=1) and

(e[2*i-1][1]>l)
then AddSet(ret,[e[2*i-1][1],e[2*i]]);

fi;
od;
return(ret);

end;

Blattner:=function(g,Z,n,d)
#The parameters are:
#g: a Lie algebra
#Z: a linear basis of g.
#n: The elements Z[1], Z[2],...,Z[Length(Z)-n] are supposed
# to span a subalgebra k.
#d: a natural number
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#This function computes a realization of the pair (g,k). More
#precisely, it returns a pair (L,W), where W is the Weyl algebra
#in n variables, and L, whose entries are elements of W, is the
#image of Z under the realization, with coefficients truncated
#after degree d.

local k,K,U,W,one,X,Y,x,D,L,e,exps,
Ymons,xmons,facs,i,j,coeffs,t;
k:=Dimension(g)-n;
#This is the dimension of k.

K:=LeftActingDomain(g);
#The field.

U:=UEA(g,Z);
#The universal enveloping algebra of g with
#PBW-basis corresponding to Z.

one:=Identity(U);
X:=GeneratorsOfAlgebraWithOne(U);
Y:=X{[k+1..k+n]};
#These form a basis of g complementary to k if
#we identify both Lie algebras with subspaces
#of U.

W:=WeylAlgebra(K,n);
x:=GeneratorsOfAlgebraWithOne(W){[1..n]};
D:=GeneratorsOfAlgebraWithOne(W){[n+1..2*n]};
#These will be used to return the result.

L:=Constant(k+n,Zero(W));
#The realization will be stored in L.

for e in [0..d] do
exps:=ExponentsOfGivenDegree(n,e);
Ymons:=List(exps,m->Power(Y,m,one));
#These are the monomials Y^m in U

xmons:=List(exps,m->Power(x,m,Identity(W)));
#These are the monomials x^m

facs:=List(exps,m->Product(List(m,Factorial)));
#This is a list of factorials m!

for i in [1..Length(exps)] do
for j in [1..k+n] do
coeffs:=
CoefficientsOfLinearPart(Ymons[i]*X[j],k);

#This computes the relevant linear part
#of Y^m X[j]



B.2. SOURCE CODE OF BLATTNER 95

for t in coeffs do
L[j]:=L[j]+
(t[2]/facs[i])*xmons[i]*D[t[1]-k];

od;
od;

od;
od;
return [L,W];

end;
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[22] Artemio González-López, Niky Kamran, and Peter J. Olver. Lie algebras of first order differential

operators in two complex variables. Am. J. Math., 114(6):1163–1185, 1992.

97



98 BIBLIOGRAPHY
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Samenvatting

Intüıtief schrijft een vectorveld X in elk punt p op een oppervlak M een richting X|p
voor. Het vanuit een gegeven beginpunt op M volgen van het vectorveld heet integratie
van dat vectorveld. Met behulp van integratie kan de commutator van twee vectorvelden
worden geconstrueerd, zoals de omslag van dit proefschrift illustreert. Uitgerust met
deze commutator is de lineaire ruimte van alle vectorvelden op M een Lie-algebra, of
eigenlijk mogen we wel zeggen: dè Lie-algebra, want dit is de algebra waarvan Sophus
Lie de eindig-dimensionale deelalgebra’s bestudeerde.

Als f een in zekere zin mooie functie op M is, dan kan men in elk punt p op M
de afgeleide X|p(f) van f in de richting X|p bepalen; laat X(f) de functie op M zijn
die p afbeeldt op X|p(f). Idealiter is X(f) wederom een mooie functie op M , en is de
afbeelding f 7→ X(f) een derivatie op mooie functies op M , dat wil zeggen een lineaire
afbeelding die bovendien aan Leibniz’ identiteit X(f · g) = X(f) · g + f ·X(g) voldoet.
Onder de juiste voorwaarden wordt X vastgelegd door deze afbeelding, en hebben we
vectorvelden op M vertaald in derivaties op de commutatieve algebra van mooie functies
op M .

Dit stelt ons in staat het intüıtieve beeld van vectorvelden te verlaten en onze
aandacht te richten op commutatieve algebra’s zoals K[[x1, . . . , xn]] (formele macht-
reeksen in x1, . . . , xn met coefficiënten uit het lichaam K), K[x1, . . . , xn] (polynomen
in die variabelen) of K[U ]: de algebra van reguliere functies op een affiene algebräısche
variëteit U over K; hier speelt U dus de rol van M uit de eerste twee paragrafen. Hierbij
nemen we altijd aan dat de karakteristiek van K nul is. Als A zo’n algebra is, dan
schrijven we DerK(A) voor de ruimte van K-lineaire derivaties op A. De op de omslag
gëıllustreerde ‘meetkundige’ commutator correspondeert met de ‘gewone’ commutator
[X,Y ] := X ◦ Y − Y ◦ X, en inderdaad is DerK(A), uitgerust met deze commutator,
een Lie-algebra.

In navolging van Lie en in analogie met het groepentheoretische begrip, noemen we
een deelalgebra l van de Lie-algebra D̂(n) := DerK(K[[x1, . . . , xn]]) transitief, wanneer
l voor elke i = 1, . . . , n een element bevat van de vorm

∂i + een vectorveld dat in 0 verdwijnt.

De verzameling van transitieve deelalgebra’s van D̂(n) valt uiteen in klassen, bestaande
uit algebra’s die door formele coördinatentransformaties in elkaar worden overgevoerd.
Volgens de realisatiestelling van Guillemin en Sternberg corresponderen deze klassen
precies met de isomorfieklassen van paren (g, k), waarbij g een Lie-algebra over K is, en
k een deelalgebra van g die codimensie n in g heeft en geen niet-triviale g-idealen bevat.
Blattners constructieve bewijs van deze stelling ligt ten grondslag aan de expliciete
Realisatieformule die in Hoofdstuk 2 wordt afgeleid.
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Het bestaan van realisaties met formele coefficiënten, door de Realisatieformule
concreet gemaakt, roept de vraag op of we met bescheidener coefficiënten toe kunnen;
deze vraag vormt een rode draad door dit proefschrift. Een eerste vermoeden ten aanzien
van die coefficiënten werd al geopperd door Sophus Lie. Voor n = 1, 2 beschrijft Lie
alle klassen van eindig-dimensionale transitieve deelalgebra’s van D̂(n). Hij claimt de
classificatie voor n = 3 ook te hebben voltooid, maar publiceerde slechts een deel, omdat
de volledige lijst hem te lang was. Hij merkt echter op dat voor n = 3, net als voor n =
1, 2, elke eindig-dimensionale transitieve Lie-algebra door een coördinatentransformatie
op zodanige vorm te brengen is, dat de coefficiënten der ∂i bepaalde eenvoudige functies
zijn; hij spreekt bovendien het vermoeden uit dat dit voor grotere n ook zo is. In
Hoofdstuk 2 worden enkele stellingen bewezen ten gunste van dit vermoeden. In het
bijzonder bewijzen we Lies vermoeden voor zeer imprimitieve paren, dat wil zeggen
eindig-dimensionale paren (g, k) waarvoor er een keten

g = gn ⊃ gn−1 ⊃ . . . ⊃ g0 = k

bestaat, waarin gi een (dim k + i)-dimensionale deelalgebra van g is. Verrassend genoeg
zijn dit voor n = 3 precies de paren zijn waarvan Lie zijn classificatie niet gepubliceerd
heeft.

Aan het andere eind van het scala aan eindig-dimensionale transitieve Lie-algebra’s
bevinden zich de primitieve Lie-algebra’s, die corresponderen met paren (g, k) waarvoor
k een maximale deelalgebra van g is. Over een algebräısch gesloten lichaam zijn deze
geclassificeerd door Morozov en Dynkin. Voorbeelden zijn de simpel-parabolische paren,
waarvoor g simpel is en k een maximale parabolische deelalgebra; deze paren hebben
een realisatie met polynomiale coefficiënten. Sommige andere primitieve paren laten
zich op een natuurlijke manier inbedden in simpel-parabolische paren, en erven daarvan
een realisatie met polynomiale coefficiënten. Deze kunnen dus worden afgeschreven als
kandidaat-tegenvoorbeelden voor Lies vermoeden. Dit motiveert de zoektocht in Hoofd-
stuk 3 naar inbeddingen van primitieve in simpel-parabolische paren. Eerst bewijzen we
dat een simpel-parabolisch paar zelf bijna nooit een echt deelpaar is van een ander paar
en vervolgens tonen we aan dat de meeste primitieve paren zich niet laten inbedden in
simpel-parabolische paren. Niettemin zijn er uitzonderingen op deze uitspraken, en die
worden alle beschreven.

Uit de classificaties van Morozov en Dynkin volgt dat alle primitieve paren (g, k)
algebräısch zijn in de zin dat g de Lie-algebra is van een affiene algebräısche groep G,
en k de Lie-algebra van een Zariski-gesloten ondergroep H. In dit geval induceert de
actie van G op de homogene ruimte G/H (die de rol van M uit de eerste twee para-
grafen van deze samenvatting speelt) een actie van g door middel van vectorvelden op
de schoof van reguliere functies op G/H; in het bijzonder vinden we een homomorfisme
g → DerK(K[U ]) voor elke affiene open deelverzameling U van G/H. De theorie van
zulke homogene ruimten kan nu worden aangewend om voor nog meer algebräısche paren
het bestaan van een realisatie met polynomiale coefficiënten aan te tonen. Deze aanpak
wordt behandeld in Hoofdstuk 4. Het grootste deel van dat hoofdstuk wordt echter
besteed aan de omgekeerde vraag: stel we hebben een homomorfisme g→ DerK(K[U ])
van Lie-algebra’s; laat dit homomorfisme zich integreren tot een actie van een alge-
bräısche groep? Het eerste hoofdresultaat van dat hoofdstuk is van toepassing als de
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actie van g op K[U ] lokaal eindig is; het tweede is algemeen van toepassing, maar min-
der krachtig omdat vooraf wordt aangenomen dat g de Lie-algebra is van een affiene
algebräısche groep.

Zoals in Hoofdstuk 3 wordt aangetoond, is bijna elk primitief simpel-parabolisch
paar (g, p) maximaal, waaruit volgt dat zijn beeld onder een polynomiale transitieve
realisatie φ een maximale eindig-dimensionale deelalgebra is van de Lie-algebra D :=
DerK(K[x1, . . . , xn]), waar n = codimg p. Dit leidt tot de subtielere vraag: is D/φ(g)
zelfs een irreducibel g-moduul? Deze vraag wordt in hoofdstuk 5 bestudeerd voor het
geval dat p een Abels nilpotent radicaal heeft. We bewijzen dat D een eindige com-
positieketen heeft als g-moduul, leiden een formule af voor de multipliciteiten van irre-
ducibele factoren in zo’n compositieketen, en formuleren een op computerexperimenten
met deze formule gebaseerd vermoeden dat deze multipliciteiten beschrijft.

Bij lezing van dit proefschrift zal men vaststellen dat elk hoofdstuk meer vragen
oproept dan het beantwoordt. Zo blijft Lies vermoeden open in Hoofdstuk 2, komen
inbeddingen tussen twee primitieve paren die beide niet simpel-parabolisch zijn niet aan
de orde in Hoofdstuk 3, eindigt Hoofdstuk 4 met de vraag of de conditie—in het tweede
hoofdresultaat van dat hoofdstuk—dat g de Lie-algebra is van een algebräısche groep,
niet afgezwakt of weggelaten kan worden, en blijft de relatie tussen bepaalde dubbele
nevenklassen in een Weyl-groep en de irreducibele quotiënten in de compositieketen van
D als g-moduul onopgehelderd in Hoofdstuk 5. Elk van deze vragen vormt een mooi
uitgangspunt voor verder onderzoek.
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