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abstract

We present an algorithm for computing the dimensions of higher secant varieties
of minimal orbits. Experiments with this algorithm lead to many conjectures on
secant dimensions, especially of Grassmannians and Segre products. For these
two classes of minimal orbits we give a short proof of the relation, known from
the work of Ehrenborg, Catalisano-Geramita-Gimigliano, and Sturmfels-Sullivant,
between the existence of certain codes and non-defectiveness of certain higher secant
varieties.

1. Introduction

A generic polynomial of degree d in C[x] can be written as a sum of b(d + 1)/2c
powers (ax+ b)d, a, b ∈ C. A generic n×n-matrix of rank k and trace 0 is the sum
of k matrices of rank 1 and trace 0; in fact, this is true for any trace zero matrix of
rank k, though that doesn’t matter here. But what is the generic rank of a tensor
in (C2)⊗10, i.e., if we want to write a generic element of this tensor power as a sum
of decomposable tensors, then how many do we need?

These are instances of a general type of problem, which has been solved only in
very few cases. In this paper we do not solve many instances, either, but we do
present a program for investigating small concrete instances. Also, we will boldly
state some conjectures that our experiments with this program suggest. We hope
that this paper will be an incentive for people working in this field, either to prove
or disprove our conjectures, or to use our program and experiment for themselves.

To be more concrete on the type of problem that our program can handle, let G be
a connected reductive complex algebraic group and let V be a non-trivial irreducible
module for G; for the theory of algebraic groups we refer to [5]. The projective space
PV contains a unique (Zariski-)closed orbit X, consisting of the highest weight lines
and called the minimal orbit; see Section 2 for the short argument. Denote by
C ⊆ V the affine cone over X. For any natural number k, we write kX for the
Zariski closure of the union of all projective (k−1)-spaces spanned by k points on X;
kX is called the kth secant variety of X (by some other authors the (k−1)st secant
variety). Often the term secant variety itself is used for the second secant variety,
while those for k > 2 are referred to as higher secant varieties. More concretely,
the affine cone over kX is the Zariski closure of

kC := {v1 + . . . + vk | vi ∈ C}.
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In the examples above G is equal to SL2 acting on the space V of binary forms of
degree d, or to SLn acting on its Lie algebra, or to SL10

2 acting on the space (C2)⊗10

of 10-tensors, respectively. Accordingly, C is the set of pure d-th powers of linear
forms, or the set of trace zero matrices of rank at most 1, or the set of all pure
10-tensors.

One can ask many questions about the sets kX or kC. For instance: how do
we find polynomial equations defining kC? For the matrix example we know them:
kC = kC is the set of trace zero matrices of rank at most k, and these are char-
acterised (even scheme-theoretically, see [7]) by the vanishing of all (k + 1)-minors.
For the example of binary forms, too, equations defining kC set-theoretically are
known: certain minors of Hankel (or catalecticant) matrices [15, Proposition 9.7]
(indeed, these equations even define kC scheme-theoretically; see, e.g., [19]). But
for the example of 10-tensors we do not know equations. Of course, equations can
in theory be found by a Gröbner basis computation: one computes the closure
of the image of the addition morphism Ck → kC. However, these computations
quickly become totally infeasible, so sophisticated algebraic geometry is already
needed to find equations for small secant varieties. There is recent progress in this
direction: in [24] scheme-theoretic equations for some secant varieties of 3-fold and
4-fold Segre powers are given, and [27] shows how combinatorial methods help in
finding such equations.

Another question: are the sets kC closed? In the matrix case they are, for the
10-tensors we do not know, and for the binary forms they are not. One can show,
in fact, that a polynomial with a zero of multiplicity m, 0 < m < d, cannot be
written as a sum of less than m + 1 pure d-th powers, so that the sets kC with
b(d + 1)/2c ≤ k < d cannot possibly be closed.

But by far the most modest property of kC to want to determine is its dimension
dim kC := dim kC = dim kX + 1, and this is precisely what our algorithm does.
That such an algorithm is useful is clear from the vast literature dealing exactly
with these secant dimensions; see, e.g., [1, 2, 3, 8, 9, 10, 11, 16, 27]. As the addition
map Ck → kC is dominant, dim kC is at most k dim C; we call the minimum of
the latter number and dim V the expected dimension of kC. If kC has the expected
dimension, then kC (and kC and kX) are called non-defective. Otherwise, kC, kC,
and kX are called defective. The difference min{dim V, k dim C}−dim kC is called
the k-defect (note that these defects are the sums of the defects as defined in [29]).
If kC is not defective for any k ≥ 1, then we call C and X themselves non-defective;
otherwise, we call them defective.

As we will see below, calculating dim kC in concrete cases boils down to straight-
forward linear algebra computations—at least if one allows for a small error proba-
bility—and only in rare concrete cases does kC not have the expected dimension.
And yet it is very difficult to prove anything substantial in this direction.

First, however, we list some important things that are known about these higher
secant varieties. The standard reference for secant varieties, containing a wealth
of classification results on varieties with constraints on their secant dimensions, is
[29].

(1) Take G = SLn and let V be the space of homogeneous polynomials in
x1, . . . , xn of degree d. Then C is the set of d-th powers of linear forms.
A simple duality shows that dim kC is the codimension of the space of
homogeneous polynomials in x1, . . . , xn of degree d that vanish together
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with all their first partial derivatives on k fixed, generic points. This relates
higher secant varieties to the problem of multivariate interpolation, which
was solved in the series of papers [16, 1, 2, 3].

(2) For G a simple algebraic group acting on its Lie algebra g, the set C consists
of all “extremal elements”, that is: elements X ∈ g for which ad(X)2g ⊆
CX. The first secant variety is known in this case ([21, 22]), and for classical
G the higher secant varieties were completely determined in [4].

(3) For G = SLn and V the d-fold exterior power of Cn the set C is the affine
cone over the Grassmannian, in its Plücker embedding, of d-dimensional
vector spaces in Cn. The paper [9] lists some defective Grassmannians,
and proves that for d > 2 and kd ≤ n the variety kC is not defective. In
Subsection 4.1 we generalise this latter result, and conjecture that the list
of defective Grassmannians in [9] is complete.

(4) For G = SLn1 × . . . × SLnd
and V = Cn1 ⊗ . . . ⊗ Cnd the cone C consists

of the decomposable powers, and is the cone over the Segre product of the
Cni . For small d and some concrete values of the ni secant dimensions of
C, or bounds on these, are known; see [8] and the references there. The
case where all ni are equal is treated in more detail in Section 4.

From here we proceed as follows: in Section 2 we present our algorithm for com-
puting dim kC, Section 3 deals with some implementation issues, and Section 4
lists our conjectures based on experiments with that implementation. These con-
jectures concern Grassmannians and Segre products, as well as a general finiteness
statement. Our algorithm, called sedimo, can be downloaded from the following
address: http://www.win.tue.nl/~jdraisma/

2. The algorithm

We retain the notation G, V,X, C from the Introduction, i.e., G is a connected
reductive algebraic group, V is a non-trivial irreducible G-module, X is the closed
orbit in PV —whose uniqueness will be dealt with soon—and C is the cone over X
in V .

2.1. Required representation theory. For those whose background is not in
representation theory we briefly sketch how one can put the objects under investi-
gation into a computer algebra system to compute secant dimensions: Let B be a
Borel subgroup of G, i.e., maximal under the closed, connected subgroups of G, and
let T be a maximal torus in B. Then B stabilises a unique 1-dimensional subspace
in V , spanned by a highest weight vector v0, and the character of T on this line
determines V up to isomorphism. This character is the highest weight and can be
given by a tuple of natural numbers relative to a certain basis of the (free abelian)
character group of T . Conversely, algorithms are already available in [12] to con-
struct, given a highest weight as a tuple of natural numbers, the corresponding
module V —strictly speaking not as a G-module, but as a module over the Lie-
algebra g of G. The tangent space to the orbit Gv0 in V is gv0, and transporting
this space around by elements of G constructed with the exponential map g → G
gives tangent spaces that are used in the computation of dim kC—eventually, the
rank of some large matrix is our lower bound on dim kC. All these matters can be
found in [5, 18, 17].
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Unfortunately, the computations are rather slow in characteristic 0, and there-
fore we indicate in Section 3 how to reduce them modulo a prime. Very roughly
speaking, one first does the construction above over Z, i.e., one constructs elements
of G that have integral matrices relative to some appropriate basis of V . Then the
large matrix whose rank needs to be computed is also integral, and hence its rank
modulo p is a lower bound to its rank over Q. The insight that these constructions
can in theory be done over Z (and hence over any field) goes back to Chevalley [26].
The results on quantum groups that the actual implementation in Section 3 uses,
are beyond extensive description in the present paper.

2.2. The highest weight orbit. We reduce the computation of dim kC to straight-
forward linear algebra as follows. First, we recall that the closed G-orbit in PV is
unique and equal to the orbit of highest weight lines: Indeed, suppose that x ∈ PV
has a closed orbit Gx, and let P be the stabiliser of x in G. Then G/P ∼= Gx is
a projective variety, and therefore P contains a Borel subgroup B of G [5, §11.2,
Corollary]. By the representation theory of algebraic groups and their Lie algebras
[5, 17, 18] B stabilises a unique line in the irreducible representation V , namely,
the highest weight line Cv0, which therefore corresponds to x. Hence X = Gx is
the orbit of highest weight lines. Then the cone C over the minimal orbit X equals
C = Gv0∪{0}—recall that V was assumed non-trivial, so that this really is a cone.
In what follows we need the Lie algebras g, p of G and P , and also a maximal torus
T of B.

2.3. A dense orbit under a unipotent subgroup. Now let u− be the direct
sum of all T -root spaces in g that are not in p. Then u− is the Lie algebra of a
unique connected (unipotent) subgroup U− of G. Let X1, . . . , Xr be a basis of u−
consisting of T -root vectors. Then the following statements are well known:

(1) The map Ψ : Cr → U− sending (t1, . . . , tr) to exp(t1X1) · · · exp(trXr) is an
isomorphism of varieties (combine §14.4, Proposition with §7.3 from [5]).

(2) The U−-orbit U−v0 is the intersection of C with the affine hyperplane where
the v0-coordinate is 1 (relative to a T -weight basis of V containing v0). This
follows easily from the Bruhat decomposition [5, §14.12, Theorem].

(3) Hence the image of U−v0 in PV is dense in X.
Our program works, in fact, with elements in U−v0 rather than all of C.

2.4. Terracini’s lemma. We work here with C̃ := Gv0 = C \ {0}, which is a
smooth variety since it is homogeneous. Consider the addition map π : C̃k →
kC, (v1, . . . , vk) 7→

∑
i vi and denote its differential at the k-tuple v = (v1, . . . , vk) ∈

C̃k by dvπ. By elementary algebraic geometry the map sending v ∈ C̃k to the rank
of dvπ is lower semi-continuous (as C̃k is smooth), and its generic value is dim(kC)
by the dominance of π. On the other hand, the image of dvπ equals

k∑
i=1

TviC̃,

where Tvi
C̃ denotes the tangent space to C at vi, regarded as a linear subspace of

V . We conclude that the dimension of this latter space is always a lower bound
for dim kC, while it is equal to dim kC for generic tuples v. This observation is, in
fact, one of the first results in the theory of join and secant varieties, and due to
Terracini [28].
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2.5. The algorithm. Now our algorithm, which we have implemented in GAP [12],
is as follows:

Input: (g, λ, k), where g is a split rational semisimple Lie algebra with a dis-
tinguished split Cartan subalgebra h and a distinguished Borel subalgebra
b containing h; λ ∈ h∗ is a b-dominant weight; and k is a natural number.

Output: a lower bound for dim kC which with high probability equals dim kC.
(Here C = Gv0 ∪ {0} where G is the simply connected complex algebraic
group associated to g and v0 is a b-highest weight vector in the irreducible
g-(and G-) module of highest weight λ.)

Method:
(1) Construct the irreducible representation ρ : g → gl(V ) of highest

weight λ.
(2) Denote by v0 the highest weight vector of V , and compute representa-

tives (X1, . . . , Xr) of the negative h-root spaces in g that do not vanish
on v0 (these span u−).

(3) For i ∈ {1, . . . , r} compute those divided powers ρ(Xi)d/(d!) that are
non-zero.

(4) Set T := {0}, the zero subspace of V .
(5) Compute Tv0C := Kv0 + u−v0.
(6) Repeat k times the following steps:

(a) Choose rational numbers t1, . . . , tr at random.
(b) Compute u := exp(t1ρ(X1)) · · · exp(trρ(Xr)) using the divided

powers of the ρ(Xi) for faster computation of the exponentials.
(c) Set T := T + uTv0C.

(7) return dim T .

Proof of the algorithm. The isomorphism Ψ of 2.3 identifies U− as an affine space,
and moreover gives U− a Q-structure, corresponding to Qr via Ψ. In the ith step
of the algorithm a random element ui of U−(Q) is computed, as well as the corre-
sponding tangent space Tuiv0C = uiTv0C. The algorithm returns the dimension of
the sum of these Tuiv0C. We claim that this dimension is only smaller than dim kC
if (u1, . . . , uk) lies in some proper Zariski-closed subset of U−(Q)k—hence only with
“small probability”. Indeed, as TsvC = TvC for all s ∈ C∗ and v ∈ U−v0, and as
{sv | s ∈ C∗, v ∈ U−v0} is dense in C, the generic rank of dvπ for v ∈ Ck is equal
to the generic rank of dvπ for v ∈ (U−v0)k. Hence the (u1, . . . , uk) ∈ Uk

− where
d(u1v0,...,ukv0)π does not have rank dim kC form a proper closed subset S of Uk

−.
Finally, U−(Q)k is Zariski-dense in Uk

−, so that it cannot be contained in S. This
proves the correctness of the algorithm. �

It is hard to estimate, in an implementation of this algorithm, the precise prob-
ability with which the selected tuple (u1, . . . , uk) lies outside S, as it depends on
the random generator supplying the rational numbers ti. However, if the algorithm
returns the expected dimension, then we are sure that the output is correct. Oth-
erwise, by repeating the procedure, we can make the probability that the result is
correct arbitrarily close to 1.
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3. Implementation

We have implemented the algorithm in the computer algebra system GAP4 ([12]),
using the built-in functionality for semisimple Lie algebras and their representa-
tions. All steps are rather straightforward to implement. It turns out that when
working over the field Q, the main bottleneck of the algorithm is the computation
of a basis of the space T in Step 6(c). For example the computation of the secant
dimensions of the Grassmannian of 5-dimensional subspaces in an 11-dimensional
vector space took 362 seconds, of which 309 were spent in the basis computation
of Step 6(c).1 This is due to the fact that the coefficients of the vectors grow very
fast (probably because of their random nature). In the example mentioned before,
the vectors in a triangularised basis were dense, and contained rational numbers of
up to 70 digits in both denominator and numerator.

For this reason we have included in our implementation the possibility to com-
pute modulo a prime p. This however presents a new problem: the coefficients of
the matrices of the divided power in Step (3) may not be integral. We can get
around this by computing an “admissible lattice” in the highest weight module V
(cf. [17]). An algorithm for this purpose is not present in GAP4. We have im-
plemented an algorithm for this based on the theory of crystal bases (cf. [20]).
Roughly this works as follows. First we note that V is also a module for the quan-
tum group Uq(g). Now from the crystal graph of V we get a set of elements Fi

in the negative part of Uq(g), with the property that {Fi · v0} spans an admissible
lattice (for details we refer to [13], [23]). Each Fi can be mapped to an element F ′

i

of the negative part of the universal enveloping algebra U(g). Then {F ′
i · v0} spans

an admissible lattice of V . This approach has the advantage that we do not need
to check linear independence of the basis elements. The necessary algorithms for
quantum groups are implemented in the GAP4 package QuaGroup ([14]). With this
the computation in the example above took 71 seconds, with only 3 seconds spent
in Step 6(c).

When computing modulo a prime the computed dimensions may be smaller than
the ones over Q. However, we have an upper bound for the dimension of kC (namely
k dim C) which “usually” gives the correct dimension. Furthermore, if this bound
is attained by our algorithm, then we are sure to have the correct value. It rarely
happens that this upper bound is not reached. However, if this happens to be the
case, then we perform the computation modulo a bigger prime, and eventually over
Q. If we still do not attain the upper bound in that case, we conclude that we are
in a defective situation with high probability.

Another problem occurs when the dimension of V gets large (e.g., close to 1000).
Then storing the matrices in Step (3) may lead to memory problems. To get around
this we used an ad-hoc implementation of sparse matrices (only storing the nonzero
entries). This greatly reduces the memory requirements, and for dimensions greater
than roughly 500 leads to a speed-up for the matrix multiplications in Step 6 (b)
as well.

Table 1 contains some run-times of the algorithm, when computing the secant
dimensions of the Grassmannian of d-dimensional subspaces of n-space. We see
that the running times increase rather sharply, mainly because the same holds for
the dimensions of the g-modules. Most of the time is spent on the construction of

1The computations in this section were done on a 2GHz processor, with 500M RAM memory
for GAP
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n d total module basis dim V (λ) kmax

11 5 71 60 3 462 14
12 6 222 165 23 924 24
13 6 973 686 160 1716 39
14 7 5456 3249 1380 3432 68

Table 1. Time (in seconds) for the computation of the secant
dimensions of the Grassmannian of d-spaces in n-space. The third
column lists the total time spent; the fourth and fifth, respectively,
the time used for the construction of the module along with the
matrices in Step (3), and for the computation of the basis in Step
6(c). The sixth column displays the dimension of the g-module,
and the last column contains kmax, the maximal k for which dim kC
has been computed.

the module V (λ) and the matrices of Step (3). For small n the time used in Step
6(c) is negligible, but as n increases the percentage of the time spent in that step
also increases.

4. Conjectures

4.1. Grassmannians. For G = SLn and V =
∧d(Cn) the minimal orbit X is the

Grassmannian, in its Plücker embedding, of d-dimensional vector subspaces of Cn,
and the cone C over X is the set of (completely) decomposable wedge-products in
V . For this setting our algorithm more or less reduces to the algorithm presented
in [25], in which article the following conjecture is also tested up to n = 14. For
d = 2 the set kC equals is the set of all skew-symmetric matrices of (usual matrix-)
rank at most 2k (see, e.g., [29] or [4]); we therefore exclude d = 2 in the following
conjecture.

Conjecture 4.1. Suppose that d > 2 and also that 2d ≤ n. Then C is defective in
exactly the following cases:

(1) n = 7 and d = 3, in which case (dim kC)k equals (13, 26, ∗34, 35);
(2) n = 8 and d = 4, in which case (dim kC)k equals (17, 34, ∗50, ∗64, 70); or
(3) n = 9 and d = 3, in which case (dim kC)k equals (19, 38, 57, ∗74, 84),

where ∗ indicates the defective dimensions.

We have verified this conjecture with our program for all n up to 15. The defec-
tive Grassmannians in the list above were already found in [9]. For each of them,
the first defect occurs at the smallest k with kd > n. The following proposition
shows that there are no other defective Grassmannians with this property.

Proposition 4.2. In the setting of Conjecture 4.1, write n = qd+r with 0 ≤ r < d.
Then kC is not defective for k = 1, . . . , q, and (q + 1)C is defective if and only if
(n, d, q + 1) ∈ {(7, 3, 3), (8, 4, 3), (9, 3, 4)}.

The statement for k ≤ q is already present in [9].
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Proof. For k ≤ q+1 the group SLn has a dense orbit on the k-fold Cartesian power
Xk. Indeed, choose a basis

e11 . . . . . . . . . e1d

e21 . . . . . . . . . e2d

...
...

eq,1 . . . . . . . . . eq,d

eq+1,1 . . . eq+1,r

of Cn. For every d-subset S of

A := {(i, j) | 1 ≤ i ≤ q + 1, 1 ≤ j ≤ d, and i = q + 1 ⇒ j ≤ r}

we let eS denote the wedge product (say in normal reading order) of the eij with
(i, j) ∈ S; these form a basis of V =

∧d Cn. For i = 1, . . . , q let vi be wedge product
of the i-th row in the array above. For j = r + 1, . . . , d let sj be the sum of the
d-th column in the array above, and set

vk := eq+1,1 · · · eq+1,rsr+1 · · · sd.

One readily verifies that the GLn-orbit of the tuple (Cvi)k
i=1 is dense in Xk for all

k = 1, . . . , q + 1. Therefore, the generic rank of the summation map Ck → kC
equals its rank at the tuple (v1, . . . , vk). In other words, the dimension of kC is
equal to the dimension of the sum

Tv1C + . . . + Tvk
C.

Now for i ≤ q, the tangent space TviC is the span of all eS where S is a d-subset
of A containing at least d − 1 elements from row i. Using this description, the
assumption d > 2 readily implies that the sum

T := Tv1C + . . . + TvqC

is direct. This proves that dim(kC) = k dim(C) for k ≤ q.
Now suppose that k = q + 1. Then the above shows that kC is defective if and

only if Tvk
contains a non-zero element of T . An element of Tvk

is of the form

w :=
r∑

j=1

ek,1 · · · bj · · · ek,rsr+1 · · · sd +
d∑

j=r+1

ek,1 · · · ek,rsr+1 · · · bj · · · sd,

where the bj ∈ Cn replaces ek,j in the first sum and sj in the second sum. Let S
be a d-set in A; we will compute the coefficient of eS in w. First, eS can only occur
in w if S is of one of the following four types:

Type 1: S contains the entire last (k-th) row of A, and furthermore S hits
all d− r last columns of A.

Type 2: S is obtained from a type 1 set by replacing a single position in the
k-th row, say (k, j) with j ≤ r, by position (i, j) with i < k in the same
column.

Type 3: S is obtained from a type 1 set by replacing a single position in the
k-th row, say (k, j), by position (i, j′) with i < k and j′ 6= j, i.e., in a
different column.

Type 4: S is obtained from a type 1 set by replacing a single position in the
last d − r columns, say (i, j) with i < k and j > r, with a position (i′, j′)
with i′ < k and j′ 6= j, i.e., in a different column.
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For computing the coefficient of eS in w in these four cases, we let B : A → C
be the function mapping (i, j) to the (i, j)-th component of bj ; note that B only
records the entries of bj corresponding to basis elements of Cn in column j. Then
the coefficients are as follows:

(1) If S is of type 1, then eS can occur in all terms of w (and, in fact, also in
vk), and its coefficient in w is ±

∑
(i,j)∈S B(i, j) (the sign is irrelevant).

(2) If S is of type 2, then eS can only occur in the term of w with index j, and
its coefficient is ±B(i, j).

(3) If S is of type 3 or 4, then eS can only occur in the term of w with index
j, and there is a unique column of A containing two elements of S, say
(i1, j′), (i2, j′) with i1 < i2 and j′ 6= j. Now there are two cases:
(a) If j′ ≤ r, then i2 is equal to k = q+1, and eS has coefficient ±(bj)(i1,j′)

(which coefficient is not recorded by B!).
(b) If j′ > r, then the coefficient of eS is ±((bj)(i1,j′) − (bj)(i2,j′)): either

one chooses ei1,j′ as the j-th factor and ei2,j′ as the factor at position
j′, or vice versa. Again, these coefficients are not in B.

Now suppose that w ∈ T . Then the only eS that can have non-zero coefficient
in w are those for which S is obtained from one of the first q rows of A by replacing
a single entry by another entry of A. Such d-sets S we will call good, others bad.
For every bad S of types 1–4, the above yields a linear condition on the coefficients
of the bj reflecting that eS has coefficient 0 in w. We will first argue that we may
assume the coefficients (bj)(i,j′) with j′ 6= j, i.e., those not recorded by B, to be
zero.

By assumption, d ≥ 3 and n ≥ 2d ≥ 6, so q ≥ 2. The case n = 6 = 2d needs
special attention: note that then Tv1C ⊕ Tv2C = V , so that C is not defective.
So we assume that either d ≥ 4 or n > 2d. Then it is somewhat tedious, but
straightforward, to verify that the linear conditions for S of types 3 and 4 show
that for all j = 1, . . . , d one has:

(1) For all j′ ≤ r with j′ 6= j, and for all i = 1, . . . , q, one has (bj)(i, j′) = 0.
Indeed, for this one need only exhibit a bad S of type 3 or 4 containing
(i, j′) and (k, j′) and no element from column j. If, for instance, n = 8, d =
3, r = 2, k = q + 1 = 3, j = 1, j′ = 2, i = 2, then S indicated by the stars in
the following picture is such a bad d-set, of type 3:

. . ∗

. ∗ .

. ∗

(2) for all j′ > r with j′ 6= j, and for all i1, i2 = 1, . . . , q with i1 6= i2 one has
(bj)(i1,j′) = (bj)(i2,j′). Indeed, for this one needs only exhibit a bad S of
type 3 or 4 containing (i1, j′), (i2, j′) and no element from column j. If, for
instance, n = 8, d = 4, r = 0, k = q + 1 = 3, j = 2, j′ = 3, i1 = 1, i2 = 2,
then

. . ∗ ∗
∗ . ∗ .

(with an empty last row) is an example of such a bad S, of type 4.
This shows that the components of the bj that are not recorded by B together only
contribute a scalar multiple of vk to w. We may therefore just as well assume that
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those components are all 0, i.e., that bj only has non-zero coefficients on positions
in the j-th column of A. Hence now all coefficients of eS in w are zero for S of type
3 or 4.

Thus we end up looking for B : A → C with the following properties:
(1) For every bad S of type 1 the sum

∑
(i,j)∈S B(i, j) is 0. Pictorially: the

sum of B along subsets of the form

. . . . ∗

. . ∗ ∗ .
∗ ∗

is zero.
(2) For every bad S of type 2 the entry of B at position (i, j) (as in the definition

of type 2) is 0. Pictorially: if S contains the positions of the stars in

. . . . ∗

. ∗ ∗ ∗ .
∗ .

then B(2, 2) = 0.
(3) For some good S of type 1 the sum above is non-zero, or for some good S

of type 2 the entry B(i, j) is non-zero—this to assure that w is a non-zero
element of T . This condition will be expressed by calling B non-trivial.

For (n, d, q + 1) ∈ {(8, 4, 3), (9, 3, 4)} (where the (q + 1)-st row of A is empty)
there certainly are such B:

(1)

1 1 0 0
0 0 −1 −1

 and


1 1 1
0 0 0
−1 −1 −1

 .

Note that indeed, the sum along any subset S of the indices which hits all columns
is zero for bad S, while it can be non-zero if S is good. For (n, d, q + 1) = (7, 3, 3)
we can take the B for (n, d, q + 1) = (9, 3, 4) and delete the (empty last row and)
positions (3, 2) and (3, 4). This proves defectiveness of the Grassmannians in the
proposition. (And with a little extra work, one shows that all B with the required
properties lead to scalar multiples of the same vector in Tvk

C∩T , so that the defect
is 1.)

Finally, we have to show that such B only exist for the parameters above. First
we argue that r is at most 1. Indeed, suppose that r ≥ 2. As k − 1 = q ≥ 2, every
choice of a position (i, j) in {1, . . . , k−1}×{1, . . . , r}, together with all entries (k, j′)
with j′ ≤ r and j′ 6= j, can be extended to a bad S—having, in fact, positions in
three different rows. This implies that B(i, j) = 0 for all i ≤ k − 1 and j ≤ r.
Furthermore, all S of type 1 are bad (since r ≥ 2), so that B cannot be non-trivial.

So r ≤ 1. First we handle r = 0. We distinguish 3 cases:
(1) If d ≥ 5, then one readily sees that B must be constant on each column

of A: for instance, for (n, d) = (10, 5) this follows for the third column of
A from the fact that the sum of B is zero along both of the following bad
d-sets:

∗ ∗ ∗ . .
. . . ∗ ∗ and

∗ ∗ . . .
. . ∗ ∗ ∗
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Now if B is constant on each column, then its sums along all S of type 1
are identical, hence if that sum is zero for bad S, then it is also zero for all
good S—but then B cannot be non-trivial. This settles d ≥ 5.

(2) If d = 4 and q ≥ 3, then again B is necessarily constant on every column of
A; for instance, the fact that the sum of B is zero along the following two
bad sets:

∗ ∗ . .
. . ∗ .
. . . ∗ and

∗ ∗ . .
. . ∗ ∗
. . . .

shows that B(2, 4) = B(3, 4). As in the case where d ≥ 5, this implies that
B cannot be non-trivial.

(3) Finally, if d = 3 and n ≥ 12, then a similar reasoning using bad sets such
as

∗ . .
. ∗ .
. . ∗
. . .

and

∗ . .
. ∗ .
. . .
. . ∗

shows that again B is constant on each column, whence trivial.
Next take r = 1. Now we distinguish two cases:
(1) d ≥ 4. Then using bad d-sets of type 2 such as

. . ∗ ∗
∗ ∗ . .
.

one finds that B(i, 1) = 0 for all i < k. Also, the fact that B sums up to 0
along d-sets of type 1 such as the following:

. . ∗ ∗

. ∗ . .
∗

and
. . ∗ .
. ∗ . ∗
∗

shows that B is constant on each of the d− 1 last columns of A. As before,
this implies that B does not meet the non-triviality condition.

(2) d = 3 and n ≥ 10. Then bad d-sets of type 2 such as

. . ∗

. ∗ .
∗ . .
.

show that B(i, 1) = 0 for all i < k. And finally, pairs of d-sets such as

. . ∗

. . .

. ∗ .
∗

and

. . .

. . ∗

. ∗ .
∗

show that B is constant on each of the d− 1 last columns of A, hence not
non-trivial.

This proves the proposition. �
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We cannot resist pointing out an interesting link between secant dimensions of
Grassmannians and coding theory: a binary code of length n and constant weight
d is a subset of {0, 1}n where every element has exactly d entries equal to 1. The
(Hamming) distance between two elements of {0, 1}n is the number of coordinates
where they differ.

Theorem 4.3. Retain the setting of Conjecture 4.1, and let B be a binary code of
length n and constant weight d with |B| = k. Then the following holds.

(1) If the distance between any two distinct elements of B is at least 6, then
kC is not defective.

(2) If every word in {0, 1}n of weight d has an element of B at distance at most
2, then kC = V .

The first observation slightly generalises [9, Theorem 2.1.ii]; the second obser-
vation is also stated, in a slightly different form, in [11, Proposition 7.5]. More
relations between secant varieties and combinatorics are given in [27].

Proof. Let e1, . . . , en be a basis of Cn. To every word w in {0, 1}n of weight d we
associate an element of V as follows: if i1 < . . . < id are the coordinates i where
bi = 1, then we set

ew := ei1 · · · eid
∈ V.

Now

TewC =
d∑

j=1

ei1 · · · eij−1Cneij+1 · · · eid

is precisely the span of all eu where u is a word of weight d at distance at most 2
from w. Hence the dimension of

∑
b∈B Teb

C (and therefore that of kC) is at least
the cardinality of the set of all weight-d words in {0, 1}n at distance at most 2 from
B. This implies both statements. �

4.2. Segre powers. For G = SLd
n and V = (Cn)⊗d the minimal orbit X is (Pn−1)d

in its Segre embedding, and the affine cone C over X is the set of decomposable
tensors in V . For d = 2 the set kC corresponds to the set of n × n-matrices of
rank ≤ k, so we leave out this well-understood case from our study. Already for
d = 3, or for d large and n = 2 the secant dimensions are not known—though there
are some results, for a good overview of which we refer to [8]. Our conjecture is as
follows.

Conjecture 4.4. Suppose that d 6= 2. The variety C is defective if and only if

(1) n = 2 and d = 4, in which case (dim kC)k equals (5, 10, ∗14, 16); or
(2) n = 3 and d = 3, in which case (dim kC)k equals (7, 14, 21, ∗26, 27),

where ∗ indicates the defective secant dimensions.

We have verified this conjecture with our program for d + n ≤ 8 as well as for
n = 2 and d = 9, 10 and for d = 3 and n ≤ 9. Again, it is not hard but tedious to
prove the following proposition.

Proposition 4.5. In the setting of Conjecture 4.4, kC is not defective for k ≤ n,
and (n + 1)C is defective if and only if (n, d) ∈ {(2, 4), (3, 3)}.
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The proof is completely analogous to that of Proposition 4.2: here (SLn)d has
a dense orbit on Xk, hence the rank of the differential of the summation map
Ck → kC need only be computed in a point of Ck over this orbit. We omit
the details, but do report a funny numeric coincidence: the same array B that
shows that 3C is defective for the Grassmannian of 4-dimensional subspaces of
an 8-dimensional space, also shows that 3C is defective for the 4th Segre power
of PC2. The same (numeric) connection exists between the defect in 4C for the
Grassmannian of 3-dimensional subspaces of a 9-dimensional space and the defect
in 4C for the 3rd Segre power of PC3.

We recall another interesting link to coding theory, which can be proved in the
same manner as Theorem 4.3, but is also well known from [8, 11, 27].

Theorem 4.6. In the setting of Conjecture 4.4 let B be a subset of {1, . . . , n}d of
size k. Then the following holds.

(1) If the Hamming distance between any two elements of B is at least 3, then
kC is not defective.

(2) If every element of {1, . . . , n}d is at distance at most 1 from an element of
B, then kC = V .

4.3. A finiteness question. The experiments with our program suggest the fol-
lowing question: Fix the complex semisimple group G. Is it true that the set of all
irreducible representations of G whose minimal orbit is defective is finite? Though
we dare not formulate this as a conjecture at this stage, the question is a very nat-
ural one. For instance, from the fundamental work of Alexander and Hirschowitz
[1, 2, 3], we know that for each n only finitely many symmetric powers of the natural
representation of SLn have defective minimal orbits.

We give a conjecturally complete list of “defective highest weights” for some small
groups; note that for G = SL2 the minimal orbit in no irreducible representation is
defective.

Conjecture 4.7. The only irreducible representations of G for which the minimal
orbit is defective are those with the following highest weights (in the labelling of [6]):

(1) for G of type A2:
(a) 2ω1 and 2ω2 with secant dimensions (3, ∗5, 6) (X is the quadratic

Veronese embedding of P2),
(b) 4ω1 and 4ω2 with secant dimensions (3, 6, 9, 12, ∗14, 15) (the quartic

Veronese embedding of P2),
(c) ω1 + ω2 with secant dimensions (4, ∗7, 8) (a hyperplane section of the

Segre embedding of P2 × P2), and
(d) 2ω1 + 2ω2 with secant dimensions (4, 8, 12, 16, 20, 24, ∗26, 27) (the im-

age of the previous variety under the quadratic Veronese re-embedding
of P(Vω1+ω2)—which image spans only a subspace of projective dimen-
sion 26 in the space PS2(Vω1+ω2) of dimension 35);

(2) for G of type A3:
(a) ω1+ω2 and ω2+ω3 with secant dimensions (6, 12, ∗17, 20) (the flag va-

riety of flags V1 ⊆ V2 ⊆ C4 with dim Vi = i, in its minimal-dimensional
embedding),

(b) 2ω1 and 2ω3 with secant dimensions (4, ∗7, ∗9, 10) (the quadratic Veronese
embedding of P3),
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(c) ω1 + ω3 with secant dimensions (6, ∗11, ∗14, 15) (a hyperplane section
of the Segre embedding of P3 × P3),

(d) 2ω2 with secant dimensions (5, 10, ∗14, ∗17, ∗19, 20) (the image of the
Grassmannian of 2-spaces in 4-space under the quadratic Veronese re-
embedding of PVω2 ; this image spans a codimension 1 subspace), and

(e) 4ω1 and 4ω3 with secant dimensions (4, 8, 12, 16, 20, 24, 28, 32, ∗34, 35)
(the quartic Veronese embedding of P3);

(3) for G of type B2:
(a) 2ω1 with secant dimensions (4, 8, ∗11, ∗13, 14) (the image of a quadric

in P4 under the quadratic Veronese re-embedding—which image spans
a codimension 1 subspace),

(b) 2ω2 with secant dimensions (4, ∗7, ∗9, 10) (the image of the Grass-
mannian of isotropic 2-dimensional vector spaces under the quadratic
Veronese re-embedding),

(c) ω1 + ω2 with secant dimensions (5, 10, ∗14, 16) (the flag variety of
isotropic flags V1 ⊆ V2 ⊆ C5 with dim Vi = i, in its minimal em-
bedding), and

(d) 4ω2 with secant dimensions (4, 8, . . . , 28, 32, ∗34, 35) (the quartic Veronese
re-embedding of the Grassmannian of isotropic 2-dimensional vector
spaces in C4); and, finally,

(4) for G of type G2:
(a) 2ω1 with secant dimensions (6, 12, ∗17, ∗21, 24) (the quadratic Veronese

re-embedding of a quadric in P6, spanning a codimension 1 subspace),
(b) ω2 with secant dimensions (6, ∗11, 14) (the orbit of long-root vectors in

G2), and
(c) 2ω2 with secant dimensions (6, . . . , 72, ∗76, 77) (the quadratic Veronese

re-embedding of the previous variety—which image spans a proper sub-
space).

The conjecture for A2 and B2 has been verified for weights iω1+jω2 with i+j ≤ 6.
For A3 the conjecture has been checked for highest weights iω1 + jω2 + kω3 with
i + j + k ≤ 4, and for G2 the conjecture has been verified for all highest weights
iω1 + jω2 with i + j ≤ 4. To attack the question posed in this section, one would
need completely new techniques, far beyond our easy algorithm. But we hope that
the challenges boldly posed in this paper as conjectures will be taken up by some
of our readers!
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[16] André Hirschowitz. La methode d’Horace pour l’interpolation à plusieurs variables. Manuscr.
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