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1. Secant varieties and minimal orbits

Given a variety X embedded in a projective space PV , the (k − 1)-st secant
variety of X, denoted kX, is the closure of the union of all (k− 1)-spaces spanned
by k points on X. We usually require that X spans PV , so that kX = PV for k
sufficiently large. We often work with the cone C in V over X rather than with
X, and write kC for the cone over kX. Secant varieties appear in applications
as diverse as phylogenetics [2, 5, 12], complexity theory [10, 11], and polynomial
interpolation [1]. The references in this note are by no means complete, but they
themselves contain many further relevant references.

Example 1.1. Consider “matrix multiplication of two 2 × 2-matrices”, which
can be thought of as a tensor T in V = C4 ⊗ C4 ⊗ C4, and take C equal to
the set of pure tensors in this tensor product. Then the ordinary procedure for
multiplication, which needs 8 multiplications, shows that T lies in 8C. Strassen
realised that by taking clever linear combinations, T can be written as a sum of 7
pure tensors. This shows that T ∈ 7C, and Strassen used this fact in an algorithm
for multiplication of n× n-matrices which needs less than n3 multiplications [11].
Recently Landsberg proved that T 6∈ 6C [10]—which means that T cannot be
approximated with tensors of rank 6, a much stronger and more difficult statement
than that T itself does not have rank 6.

Example 1.2. In phylogenetics, one tries to reconstruct evolution from genetic
data of species alive today. One approach runs as follows: given n strings of nu-
cleotides A,C, G, T of DNA of n species and given a hypothetical evolutionary tree
leading to those n species, one wants to decide whether the tree matches the data.
First, the data leads to an empirical probability distribution on {A,C, G, T}n,
which can be thought of as an element of (C4)⊗n. On the other hand one has
a parameterised variety, the General Markov Model, of probability distributions
that match the tree. To test whether the tree matches the data, one tries to find
the equations defining the model, which can then be tested on the empirical dis-
tribution. Allman and Rhodes reduced the quest for equations defining the model
for general trees to the case of stars, trees of diameter at most 2 [2]. For the star
with 3 leaves, this model is 4C, where C is the set of pure tensors in (C4)⊗4—for
which we unfortunately do not know equations yet. On a side note, Allman and
Rhodes prove only that their procedure would yield set-theoretic equations; we
recently showed that they generate the full ideal.

Theorem 1.3 ([9]). The Allman-Rhodes equations generate the full ideal of the
phylogenetic model.
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Example 1.4. The case where V = Sd(Cn) and C is the set of pure powers ld

with l ∈ Cn is closely related to polynomial interpolation. The dimensions of the
secant varieties kC are known from the ground-breaking work of Alexander and
Hirschowitz [1].

This illustrates the omnipresence of secant varieties in mathematics and ap-
plications. Two important problems concerning them are: first, to find equa-
tions for kC; and second, more modestly, to determine the dimension of kC. We
now concentrate on the second problem. Typically one expects dim kC to be
min{k dim C,dim V }—an obvious upper bound—but one has a hard time proving
that this is the case. This is already difficult in the toric case where V = Cn and
C is given as the closure of the image of a monomial map f : Cm → Cn—all exam-
ples above are of this type. Using tropical geometry we have proved the following
lower bound.

Theorem 1.5 ([8]). Suppose that f = (xα)α∈A, where A is some subset of Nm

of cardinality n. Assume that A lies on an affine hyperplane, so that C := im f
is indeed a cone. For any k-tuple l = (l1, . . . , lk) of affine-linear forms on Rm let
Ci(l) denote the subset of A where li is strictly smaller than all other lj , j 6= i.
Then

dim kC ≥
k∑

i=1

(1 + dim AffR Ci),

where AffR Ci is the affine span of Ci in Rm.

To find good lower bounds with this theorem, one has to maximise the sum on
the right-hand side over all k-tuples l, or, equivalently, over all regular subdivisions
of Rm into k parts. In general this optimisation problem is not easy. Nevertheless,
Baur and I have determined the secant dimensions of many embedded varieties in
this manner.

Theorem 1.6 ([3]; see also [6]). The secant varieties of (P1)i for i = 1, 2, 3, P2,
P1 × P2, in all equivariant embeddings, are as expected, with an explicit list of
exceptions.

In her Master’s thesis [4], Brannetti has reproved the Alexander-Hirschowitz
theorem for Sd(C4), for all d, with the method of [8]. These result lead to the
following intriguing question.

Question 1.7. Is the lower bound of Theorem 1.5, optimised over all k-tuples l,
always the exact dimension of kC? I know of no counter-examples.

Apart from these toric examples, we have also applied this approach to other
minimal orbits X. Our results include a parameterisation of the cone C over X
that when tropicalised hits a full-dimensional subset of the tropicalisation of C.
For the smallest interesting case, where X is the collection of all incident point-
line pairs in P2, we computed all secant dimensions of X in all SL3-equivariant
embeddings into projective spaces [3]. Related approaches to secant varieties,
which also study their degrees and equations, are [7, 13].
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2. Tropical algebraic groups

With Tyrrell McAllister I have initiated the study of tropicalising algebraic
groups. There are many issues here: what coordinates to use? Does one expect a
tropical multiplication on the result? I report some preliminary observations.

Proposition 2.1. The tropicalisation of SLn, with respect to matrix entries, is a
monoid with respect to tropical matrix multiplication.

Also, using Egerváry’s theorem on minimal-weight matchings one can describe
the maximal cones of this tropicalisation. For a not-so-easy example consider the
orthogonal group On = {g | ggT = 1}. The choice for this non-split form is
perhaps justified by the following beautiful observation.

Proposition 2.2. The tropicalisation of On contains the matrices (dij)ij satis-
fying dii = 0, dij = dji, and dij + djk ≥ dik, as well as the closure of this set of
matrices under tropical multiplication.

(Note that these metric matrices form a cone of dimension
(
n
2

)
= dim On.) This

is already rather interesting: combinatorially it is not clear why that closure should
still have dimension

(
n
2

)
(and not larger). This ends my preliminary account of

tropical geometry of algebraic groups.

References
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