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Abstract

We describe the null-cone of the representation of G on Mp, where either G =
SL(W )× SL(V ) and M = Hom(V,W ) (linear maps), or G = SL(V) and M is one
of the representations S2(V ∗) (symmetric bilinear forms), Λ2(V ∗) (skew bilinear
forms), or V ∗ ⊗ V ∗ (arbitrary bilinear forms). Here V and W are vector spaces
over an algebraically closed field K of characteristic zero and Mp is the direct sum
of p of copies of M .

More specifically, we explicitly determine the irreducible components of the null-
cone on Mp. Results of Kraft and Wallach predict that their number stabilises at
a certain value of p, and we determine this value. We also answer the question of
when the null-cone in Mp is defined by the polarisations of the invariants on M ;
typically, this is only the case if either dim V or p is small. A fundamental tool in
our proofs is the Hilbert-Mumford criterion for nilpotency.

1. Introduction

For a group G and a finite-dimensional G-module M over an algebraically closed
field K, we denote by K[M ]G the algebra of G-invariant polynomials on M . An
element m ∈ M is called nilpotent if it cannot be distinguished from 0 by K[M ]G,
or, in other words, if all G-invariant polynomials on M without constant term
vanish on m. The nilpotent elements in M form a (Zariski-)closed cone in M ,
called the null-cone in M (G being understood) and denoted N (M) = NG(M); it
is a central object of study in representation theory. In this paper we will describe
the irreducible components of the null-cone in some concrete representations.

We will, in fact, be studying the null-cone in a direct sum Mp of p copies of
M , regarded as a G-module with the diagonal action. We recall some relations
between the invariants and the null-cone of Mq and those of Mp, where p and
q are natural numbers. It is convenient, for this purpose, to identify Mp with
Kp ⊗ M where G acts trivially on the first factor, and also, given a linear map
π : Kp → Kq, to use the same letter π for the G-homomorphism Mp → Mq

determined by π(x⊗m) = π(x)⊗m, x ∈ Kp,m ∈ M .
First, from an invariant f ∈ K[Mq]G we can construct G-invariants on Mp as

follows: for any linear map π : Kp → Kq the function f ◦ π is an invariant on
Mp. The functions obtained in this way as π varies are usually called polarisations
of f if q ≤ p and restitutions of f if q ≥ p. Using this construction, due to Weyl
[15], it is easy to see that any linear map π : Kp → Kq maps N (Mp) into N (Mq):
indeed, an element v of the former null-cone cannot be distinguished from 0 by any
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G-invariants on Mp, let alone by those of the form f ◦ π with f ∈ K[Mq]G; hence
π(v) ∈ N (Mq). Using this observation, we can prove that the number c(Mp) of
irreducible components of the N (Mp) behaves as follows.

Proposition 1.1. If p ≥ q, then c(Mp) ≥ c(Mq). If in addition q ≥ dim M ,
then c(Mp) = c(Mq) and the polarisations to Mp of the invariants on Mq without
constant term define the null-cone set-theoretically.

Proof. Fix any surjective linear map π : Kp → Kq; we claim that it maps N (Mp)
surjectively onto N (Mq). Indeed, if σ : Kq → Kp is a right inverse of π, then any
v ∈ N (Mq) is the image under π of σv ∈ N (Mp). This shows the first statement.
For the second statement it suffices to prove that the map

φ : Hom(Kq,Kp)×N (Mq) → N (Mp), (σ, v) 7→ σv

is surjective for q ≥ dim M , because the right-hand side has precisely c(Mq) irre-
ducible components. To prove surjectivity of φ, let v = (m1, . . . ,mp) ∈ N (Mp).
As q ≥ dim M , we can find a w ∈ Mq whose components span the K-subspace
〈m1, . . . ,mp〉K in M . It follows that there exist linear maps π : Kp → Kq and
σ : Kq → Kp such that πv = w and σw = v. We conclude that w = πv lies
in N (Mq) and v = φ(σ,w). The last statement is proved by a similar argument:
suppose that all polarisations f ◦ π with π ∈ Hom(Kp,Kq) and f ∈ K[Mq]G

without constant term vanish on v ∈ Mp, and let h ∈ K[Mp]G be without con-
stant term. We can choose π and σ with σπv = v as before, and we find that
h(v) = ((h ◦ σ) ◦ π)v = 0, because (h ◦ σ) ◦ π is a polarisation of the G-invariant
h ◦ σ on Mq. �

Remark 1.2. In characteristic zero the last statement of Proposition 1.1 also
follows from from Weyl’s stronger result that the invariant ring on Mp is generated
by the polarisations of invariants on Mq for q ≥ dim V [15]. Weyl’s theorem
no longer holds in positive characteristic, though a weaker statement is still true
[9]. However, an analogue of Weyl’s theorem, for separating invariants, is true in
arbitrary characteristic [4]—and, again, implies the last statement of Proposition
1.1.

Proposition 1.1 shows that c(Mp) is an ascending function of p that stabilises at
some finite p ≤ dim M . This phenomenon was first observed by Kraft and Wallach
in the case of reductive group representations [11], to which we turn our attention
now. Suppose that G is a connected, reductive affine algebraic group over K and
M is a rational finite-dimensional G-module. One of the most important results on
the null-cone in this setting is the Hilbert-Mumford criterion [12, 13] for nilpotency:
v ∈ M lies N (M) if and only if there exists a one-parameter subgroup λ : K∗ → G
such that limt→0 λ(t)v = 0; we then say that λ annihilates v. In this setting much
more can be said about the irreducible components of the null-cone in Mp: one
verifies that for every one-parameter subgroup λ, the set

(1) G · {v ∈ Mp | lim
t→0

λ(t)v = 0}

is a closed G-stable irreducible subset of N (Mp), and that a finite number of
them cover N (Mp). Moreover, for p sufficiently large, there are only the ‘obvious’
inclusions among these sets [11] and this observations gives rise to a combinatorial
algorithm for counting the irreducible components of N (Mp), p >> 0 [3]. However,
for smaller values of p, there are usually many more inclusions, and our goal in this
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paper is to determine the exact ‘stabilising’ value of c(Mp) for the pairs (G, M) in
the abstract.

We note that the notion of ‘optimal’ one-parameter subgroups for elements of
the null-cone gives yet a finer description of the geometry of N (M) [7, 13]—but
this notion is not needed here.

Summarising, we will settle the following two fundamental problems for the pairs
(G, M) of the abstract: first, we describe the irreducible components of N (Mp) and
determine at which value of p their number stabilises; and second, we determine
when N (Mp) is defined by the polarisations of the invariants on M . The remainder
of this paper has the following transparent organisation: Sections 2, 3, 4, and 5
deal with tuples of linear maps, symmetric bilinear forms, skew bilinear forms, and
arbitrary bilinear forms, respectively. In the rest of the text we assume that K
has characteristic 0; this allows for the use of some ‘differential’ arguments in the
case of linear maps, while avoiding problems in small characteristics in the case of
bilinear forms. However, most of what is proved here remains valid in arbitrary
characteristic.

2. Nilpotent tuples of linear maps

For an m-dimensional vector space V and an n-dimensional vector space W ,
both over our fixed algebraically closed field K of characteristic 0, the group G =
SL(W ) × SL(V ) acts on the space M = Hom(V,W ) of linear maps by (g, h)A :=
gAh−1. By duality we may assume that 0 < m ≤ n, and we let q := d n

me be the
smallest integer ≥ n/m. Then N (Mp) is as follows.

Theorem 2.1. The null-cone of SL(W ) × SL(V ) in Mp = Hom(V,W )p consists
of all p-tuples (A1, . . . , Ap) of linear maps for which there exist subspaces V ′ of V
and W ′ of W such that n · dim V ′ > m · dim W ′ and AiV

′ ⊆ W ′ for all i.
The p-tuples for which V ′ can be chosen of a fixed dimension k ∈ {1, . . . ,m} form

a closed irreducible subset of N (Mp), denoted C
(p)
k . For p < q the sets C

(p)
k are all

equal to Mp, and for p > q they are precisely the distinct irreducible components
of N (Mp). For p = q there are still inclusions among the C

(q)
k , unless m = 1—in

which case C
(q)
1 = C

(n)
1 = N (Mn) is the irreducible null-cone consisting of singular

n×n-matrices—or n = (q− 1)m+1 with q ≥ 3, in which case the C
(q)
k are already

the distinct components of the null-cone.

Somewhat prematurely, we will from now on call a pair V ′,W ′ as in the theorem
a witness for the nilpotency of (A1, . . . , Ap). In the proof that follows we use
a theorem from elementary optimisation theory, the max-flow-min-cut theorem,
which states that the maximal size of a flow from a source s to a sink t in a network
equals the minimal capacity of a cut disconnecting s from t; see [2, Chapter 3,
Theorem 1] for details.

Proof of Theorem 2.1, part one. Suppose that A = (A1, . . . , Ap) lies in the null-
cone and let (µ, λ) : K∗ → SL(V ) × SL(W ) be a one-parameter subgroup anni-
hilating A. Let v1, . . . , vm be a basis of V with λ(t)vj = taj vj , where aj ∈ Z,
let w1, . . . , wn be a basis of W with µ(t)wi = tbiwi, where bi ∈ Z, and note that
det λ(t) = det µ(t) = 1 implies

∑
j aj =

∑
i bi = 0.

Now construct a directed graph Γ with arrows of capacity n from a source s to m
vertices 1, . . . ,m, arrows of capacity m from n vertices 1̂, . . . , n̂ to a sink t, and an
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Figure 1. The graph Γ with a cut.

arrow—for convenience, of infinite capacity—from j to î if and only if bi − aj > 0.
See Figure 1 for an example with m = 4 and n = 6. From

lim
t→0

µ(t)Akλ(t)−1vj = lim
t→0

µ(t)Akt−aj vj = 0

it is clear that each Ak maps vj into the space spanned by the wi with j → î in Γ.
We claim that the maximal flow from s to t in Γ is strictly smaller than the obvious
upper bound mn. Indeed, suppose that this upper bound were attained by a flow
in which cj,i is the flow from j to î. Then

∑
i cj,i = n for all j and

∑
j cj,i = m for

all i, so that
0 = m

∑
i

bi − n
∑

j

aj =
∑
j,i

cj,i(bi − aj);

but cj,i = 0 whenever bi − aj ≤ 0, so that the right-hand side is strictly positive,
a contradiction. Now the max-flow-min-cut theorem assures the existence of a
cut of capacity strictly smaller than mn and in particular not containing edges of
infinite capacity. Let T ⊆ {1̂, . . . , n̂} be the set of vertices cut off from t, and let
S ⊆ {1, . . . ,m} be the set of vertices not cut off from s. By definition of a cut, no
vertex j of S is connected to any vertex î outside of T , so that V ′ := 〈vj | j ∈ S〉K
is mapped by every Ak into W ′ := 〈wi | î ∈ T 〉K . Finally, the capacity of the cut
is equal to

m|T |+ n(m− |S|) and by assumption < mn,

so that m dim W ′ < ndim V ′ as required.
Conversely, suppose that V ′,W ′ is a witness for the nilpotency of A, set (k, l) :=

(dim V ′,dim W ′), and choose complements V ′′ and W ′′ of V ′ and W ′, respectively.
Let λ be the one-parameter subgroup of SL(V ) having weights a1 := n(m − k)
on V ′ and a2 := −nk on V ′′; note that ka1 + (n − k)a2 = 0. Similarly, let µ be
the one-parameter subgroup of SL(W ) having weights b1 := m(n − l) on W ′ and
b2 := −ml on W ′′. From the inequalities

b1 − a1 > 0, b1 − b2 > 0, b2 − a1 ≤ 0, and b2 − a2 > 0

we infer that (µ, λ) annihilates any linear map sending V ′ into W ′, so that A ∈
N (Mp). This proves the first statement of the theorem. �

The sets C
(p)
k from Theorem 2.1 are closed and irreducible by a general argument:

they are of the form (1). Hence to prove the theorem we need only determine for
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what values of p there are inclusions among the C
(p)
k . For this we need some

auxiliary notation and results, which are of independent interest and which also
give a formula for the dimensions of the irreducible components of N (Mp). We
write Ma,b for the space of a× b-matrices with entries in K.

Definition 2.2. Let a, b, c, d, and p be non-negative integers and let

Xi ∈ Mc,a and Yi ∈ Mb,d for i = 1, . . . , p.

Define the cut-and-paste map CP = CP(Xi,Yi)i
: Ma,b → Mc,d by

CPA =
p∑

i=1

XiAYi.

Now the rank of the linear map CP is clearly a lower semi-continuous function
of the p-tuple (Xi, Yi)i, and we let cp(p)(a, b, c, d), the cut-and-paste rank, be the
maximal possible rank of CP, i.e., the rank for a generic p-tuple (Xi, Yi)i.

Remark 2.3. The following properties of the cut-and-paste rank are easy to check:

cp(p)(c, d, a, b) = cp(p)(a, b, c, d) = cp(p)(b, a, d, c).

Indeed, the second equality comes from the fact that, upon composition with trans-
position on both sides, the cut-and-paste map CP(Xi,Yi)i

: Ma,b → Mc,d yields
CP(Y t

i ,Xt
i )i

: Mb,a → Md,c; and the first equality reflects the fact that the transpose
of CP(Xi,Yi)i

can be identified, via the trace form, with CP(Xt
i ,Y t

i )i
: Mc,d → Ma,b.

Moreover, if a ≤ c and b ≤ d then cp(p)(a, b, c, d) = ab for all p ≥ 1. Thus we reduce
the computation of the cut-and-paste-rank to the case where ab ≤ cd, a ≥ c, and
b ≤ d. Then each of the maps A 7→ XiAYi generically has rank bc, so that

cp(p)(a, b, c, d) ≤ min{ab, pbc}

Moreover, for p ≤ a/c it is easy to see that cp(p)(a, b, c, d) is in fact equal to pbc:
by using suitable Xi and Yi, one can ‘cut’ p non-overlapping c × b-blocks from an
a× b-matrix, and ‘paste’ them in a non-overlapping way into a c× d-matrix. The
same argument shows that for p sufficiently large cp(p)(a, b, c, d) equals ab; this is
the case, for example, as soon as one can cut an a×b-matrix into p non-overlapping
rectangular blocks that fit without overlap into a c × d-matrix. One might think
that the inequality for the cut-and-paste-rank given above is always an equality,
but this is not true: for (a, b, c, d) = (5, 4, 3, 7), for instance, we find cut-and-paste-
ranks 12, 19, 20 for p = 1, 2, 3, respectively. In short, we have no closed formula for
cp and it would be interesting—but too much of a digression at this point in the
paper—to find such a formula. In small concrete cases, however, the cut-and-paste
rank can be computed easily; see below for some examples

Proposition 2.4. Let k, l,m, n, p be integers satisfying 0 < k ≤ m, 0 ≤ l < n, and
p ≥ 0. Then

Q := {(A1, . . . , Ap) ∈ Mp
n,m | ∃U ⊆ Km : dim U = k and dim(

p∑
i=1

AiU) ≤ l}.

is an irreducible variety, and a sufficient condition for Q to be strictly smaller than
Mp

n,m is

p >
l

k
+

m− k

n− l
.
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Moreover, dim Q equals{
pmn if pk ≤ l, and
pmn− (pk − l)(n− l) + cp(p)(m− k, k,min{p(m− k), n− l}, pk − l), otherwise.

Proof. The set Q is an irreducible variety because it is of the form (1), that is,
the result a vector space stable under a Borel subgroup of G = SLn × SLm being
‘smeared’ around by G. For pk ≤ l the proposition is evident: any p-tuple maps
any k-space into an l-space. Suppose therefore that pk ≥ l. In the diagram

Mp
n,m × (Mm,k)reg

µ //

π̃

��

Mn,pk

Mp
n,m

µ maps (A1, . . . , Ap, B) to (A1B| . . . |ApB), π̃ is the projection, and (Mn,k)reg is
the set of rank k matrices. Hence Q = π̃(µ−1(Xl)), where Xl is the variety of
matrices in Mp

n,pk having rank at most l. We will first compute the dimension of
Z := µ−1(Xl) and then the dimension of a generic fibre of π := π̃|Z : Z → Q; the
difference between these numbers is the dimension of Q.

First, µ is surjective and all its fibres have the same dimension km + pn(m− k).
Indeed, for (A1, . . . , Ap, B) to lie in the fibre over (C1, . . . , Cp) we may choose
B ∈ (Mm,k)reg arbitrarily, and then each Ai is determined on the k-dimensional
image of B, but can still be freely prescribed on an (n−k)-dimensional complement.
As Xl has dimension nl+pkl−l2 [6], Z has dimension km+pn(m−k)+nl+pkl−l2.
Now GLk acts faithfully on the fibres of π by g((Ai)i, B) := ((Ai)i, Bg−1), so that

dim Q = dim π(Z) ≤ dim Z − k2 = pnm− (pk(n− l)− k(m− k)− l(n− l)).

This implies the first statement of the proposition.
For the dimension of Q we compute the dimension of a generic fibre π−1π(z)

by computing Tzπ
−1π(z), as follows. First, we show that Z is irreducible and

determine TzZ for generic z ∈ Z. Observe for this that the group GLm acts on the
fibres of µ by g((Ai)i, B) := ((Aig

−1)i, gB). Now the map

φ : GLm ×Mn,pk ×Mp
n,m−k → Mp

n,k ×Mm,k,

(g, (C1| . . . |Cp), (Ei)i) 7→ g((Ci|Ei)i,

(
Ik

0m−k,k

)
)

maps GLm × Xl × Mp
n,m−k surjectively onto Z, so Z is irreducible as claimed.

Furthermore, the map

s : Mp
n,m−k → Mp

n,k ×Mm,k, x 7→ φ(1, x, (0)i)

is a right inverse of µ, so by the chain rule dzµ maps Mp
n,m × Mm,k surjectively

onto Tµ(z)Xl for all z ∈ Mp
n,m × Mm,k. In particular, if z lies in Z and µ(z) has

rank exactly l so that it is a smooth point of Xl, then we have

(2) TzZ = (dzµ)−1Tµ(z)Xl.

Now recall that if µ(z) has rank l, then

(3) Tµ(z)Xl = {N ∈ Mn,pk | N ker µ(z) ⊆ im µ(z)};
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see [6, Example 14.16]. This will enable us to interpret the right-hand side in (2).
On the other hand, because char K = 0, we have

(4) Tzπ
−1π(z) = ker(dzπ : TzZ → Tπ(z)Q)

for generic z ∈ Z. Now let z = ((Ai)i, B) ∈ Z be generic. In particular, we require
(2) and (4), and what further open conditions on z are needed will become clear
along the way. By the action of GLm above we may assume that B is of the form

B =
[

Ik

0m−k,k

]
,

and we split each Ai = (Ai,1|Ai,2), accordingly. By genericity of the Ai the matrix
µ(z) = (A1,1| . . . |Ap,1) has rank l, and by (2), (3), and (4) we find that Tzπ

−1(π(z))
is isomorphic to the space of all m× k-matrices

D =
[
D1

D2

]
such that

(A1,1D1 + A1,2D2| . . . |Ap,1D1 + Ap,2D2) kerµ(z) ⊆ im µ(z).

This is clearly the case for D2 = 0 (this reflects the GLk-action used earlier), hence
to determine what other D have this property we may assume that D1 = 0. The
kernel of µ(z) has dimension pk−l, so we can choose p matrices Y1, . . . , Yp ∈ Mk,pk−l

such that the columns of the matrix Y1

...
Yp


form a basis of the kernel of µ(z). Again by genericity—the Ai,2 are ‘independent’
of the Ai,1—the pre-image of im µ(z) under (A1,2| . . . |Ap,2) has codimension c :=
min{p(m−k), n−l} in Kp(m−k), and we may choose matrices X1, . . . , Xp ∈ Mc,m−k

such that the rows of (X1| . . . |Xp) give linear equations for that inverse image. We
now have

{D2 ∈ Mm−k,k | (A1,2D2| . . . |Ap,2D2) ker(A1,1| . . . |Ap,1) ⊆ im(A1,1| . . . |Ap,1)}

= {D2 ∈ Mm−k,k |
∑

i

XiD2Yi = 0}

= ker(CP(Xi,Yi)i
: Mm−k,k → Mc,pk−l).

Finally, because the Xi and Yi are generic along with the Ai, the dimension of this
space is (m− k)k− cp(p)(m− k, k, c, pk− l). The dimension of the fibre π−1(π(z))
is therefore k2 plus this number, and we find

dim π(Z) =dim Z − dim π−1π(z)

=km + pn(m− k) + nl + pkl − l2

− k2 − ((m− k)k − cp(p)(m− k, k,min{p(m− k), n− l}, pk − l))

=pmn− (pk − l)(n− l) + cp(p)(m− k, k,min{p(m− k), n− l}, pk − l),

as claimed. �
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Remark 2.5. The difference dim π−1(π(z)) − k2, expressed above as the nullity
of a certain cut-and-paste map, is the dimension of the variety of k-dimensional
subspaces U for which

∑
i AiU is at most l-dimensional.

Example 2.6. Proposition 2.4 is particularly useful to prove the existence of tuples
of matrices not mapping any subspace of dimension k into a subspace of dimension
l. Consider the following two questions.

(1) Do all triples (A1, A2, A3) of 8 × 5-matrices map some 4-dimensional sub-
space into some 7-dimensional subspace? Set (m,n, k, l, p) = (5, 8, 4, 7, 3)
and compute

l

k
+

m− k

n− l
=

7
4

+
1
1

< 3 = p,

hence by the proposition the answer is no: there exist triples (A1, A2, A3)
such that for all U of dimension 4 we have

∑
AiU = K8. This may not

come as a surprise; however, it is not entirely obvious how to construct such
a ‘generic’ triple. For instance, we cannot choose them such that each Ai

is monomial in the sense that it maps every standard basis vector of K5 to
some multiple of a standard basis vector of K8: if this is the case, then the
inequality 8 · 2 > 5 · 3 implies that there is a basis vector ei of K8 which is
‘hit only once’ by some Ap applied to some ek. But then U =

⊕
l 6=k Kel is

mapped into
⊕

j 6=i Kej .
(2) Do all triples of 5 × 5-matrices map some 2-dimensional space into some

3-dimensional space? Set (m,n, k, l, p) = (5, 5, 2, 3, 3) in the proposition.
Now we find

l

k
+

m− k

n− l
=

3
2

+
3
2

= 3 = p,

so we need a more detailed analysis. The cut-and-paste rank in the propo-
sition is

cp(3)(3, 2, 2, 3),

which is 3 · 2 = 6 as one can cut a 3 × 2-matrix into p = 3 rectangular
pieces that can be put together without overlap to make up a 2× 3-matrix.
It follows that the dimension in the proposition is in fact pmn, i.e., that
indeed, every triple of 5 × 5-matrices maps some 2-dimensional space into
some 3-dimensional space. To prove this is a nice exercise for students in
linear algebra. (It is also true in positive characteristic.)

Proof of Theorem 2.1, part two. It is clear that if p < q := d n
me, then for any

subspace V ′ of V we have dim(
∑p

i=1 AiV
′) ≤ p dim V ′ < n

m dim V ′, so that all C
(p)
k

are equal to Mp = Hom(V,W )p. In other words: there are no invariants on Mp for
p < q.

Next suppose that p ≥ q + 1; then we have to show that there are no inclusions
among the C

(p)
k . For every k ∈ {1, . . . ,m} let lk := dk n

me − 1 denote the maximal
l ∈ {0, . . . , n − 1} with l

k < n
m . One readily verifies that 1 ≤ lk+1 − lk ≤ q for

all k ∈ {1, . . . ,m − 1} (the first inequality follows from our standing assumption
n ≥ m). Fix k ∈ {1, . . . ,m} and set l := lk, so that every p-tuple in C

(p)
k maps

some k-space into an l-space. We will construct a p-tuple (A1, . . . , Ap) lying in C
(p)
k
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and not in any C
(p)
k′ with k′ 6= k, as follows: Every Ai will have the block form

Ai =
[
A′i

A′′i

]
,

where A′i is an l × k-matrix and A′′i is an (n − l) × (m − k)-matrix. The A′i will
have the property that

dim(
∑

i

A′iU
′) ≥ n

m
dim U ′ for all proper subspaces U ′ ( Kk,

and dim(
∑

i AiK
k) = l. The A′′i will have the property that

(l+dim(
∑

i

A′′i U ′′)) ≥ n

m
(k+dim U ′′) for all non-zero subspaces 0 6= U ′′ ⊆ Km−k;

note that, by the choice of l, this latter inequality is then still valid when l on the
left and k on the right are replaced by 0.

Suppose that such A′i and A′′i exist and let the Ai be the block matrices above.
Let U be a subspace of Km unequal to Kk. Let U ′ be the intersection of U
with Kk and let U ′′ be the projection of U on Km−k along Kk. Then dim U =
dim U ′ + dim U ′′ and one readily sees that

(5) dim(
∑

i

AiU) ≥ dim(
∑

i

A′iU
′) + dim(

∑
i

A′′i U ′′).

Now there are two possibilities: either U ′ 6= Kk, or U ′ = Kk but U ′′ 6= 0. In the
first case one finds that the right-hand side is at least

n

m
dim U ′ +

n

m
dim U ′′ =

n

m
dim U.

If, on the other hand, U ′ = Kk but U ′′ 6= 0, then we find that the right-hand side
in (5) is at least

l + dim(
∑

i

A′′i U ′′) ≥ n

m
(k + dim U ′′) =

n

m
dim U.

In other words, with Ai, A
′
i, A

′′
i as above the pair (Kk,Kl) is the only witness for

the nilpotency of (A1, . . . , Ap), and a fortiori this p-tuple lies in a unique C
(p)
k .

To find the A′i we show that for all k′ ∈ {1, . . . , k − 1} and l′ ∈ {0, . . . , l − 1}
with l′

k′ < n
m the dimension of the set of p-tuples (A′1, . . . , A

′
p) ∈ Ml,k that map a

k′-space into an l′-space is smaller than plk. To this end we want to apply the suffi-
cient condition of Proposition 2.4 with m,n, k, l replaced by k, l, k′, l′, respectively.
Compute therefore

l′

k′
+

k − k′

l − l′
<

n

m
+ 1 ≤ q + 1 ≤ p,

where for the second term we used l′ ≤ lk′ and the strict increasingness of the lk.
This shows the existence of A′1, . . . , A

′
p as required.

Similarly, to find the A′′i we show that for all k′ ∈ {k + 1, . . . ,m} and l′ ∈
{l, . . . , n − 1} with l′

k′ < n
m there exists there exists a p-tuple (A′′1 , . . . , A′′p) ∈

Mm−k,n−l that does not map any (k′−k)-dimensional space into an l′−l-dimensional
space. Again, we apply the proposition, but now with m,n, k, l replaced by m −
k, n− l, k′ − k, l′ − l, respectively. Consider therefore the expression

l′ − l

k′ − k
+

m− k′

n− l′
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As l′ ≤ lk′ and l = lk the first term is at most q. On the other hand, as l′ < n
mk′,

the denominator of the second term satisfies

n− l′ > n− n

m
k′ =

n

m
(m− k′) ≥ m− k′,

hence the second term smaller than 1. We conclude that

p ≥ q + 1 >
l′ − l

k′ − k
+

m− k′

n− l′
,

hence by Proposition 2.4 there exists a p-tuple as required, and this concludes the
case where p > q.

Finally, we assume that p = q. First suppose that there exists a k ∈ {1, . . . ,m−1}
with lk+1 − lk = q. Then any q-tuple (A1, . . . , Aq) ∈ C

(q)
k maps a k-space into an

lk-space, and adding one arbitrary dimension to that k-space yields a (k +1)-space
mapped by all Ai into a space of dimension lk + q = lk+1. In other words, we have
C

(q)
k ⊆ C

(q)
k+1, so that there are indeed inclusions among the C

(q)
k . Next suppose

that no such k exists. Then we have

n− 1 = lm ≤ l1 + (m− 1)(q − 1) = m(q − 1) < m
n

m
= n,

so that n = m(q − 1) + 1, where q ≥ 2. In this case lk = (q − 1)k for all k, and for
q > 2 the inequalities

lk′

k′
+

k − k′

lk − lk′
= (q − 1) +

1
q − 1

< q, k′ < k

and
lk′ − lk
k′ − k

+
m− k′

n− lk′
= (q − 1) +

m− k′

(q − 1)(m− k′) + 1
< q, k′ > k

readily imply that the construction of the Ai above still works to show that C
(q)
k

is not contained in any other C
(q)
k′ . The last case to be considered is q = 2 and

n = m + 1. Then lk = k for all k, and any pair of matrices mapping a k-space into
a k-space also maps a (k − 1)-space into a (k − 1)-space, so that the null-cone on
q = 2 copies is irreducible. �

As promised in the Introduction, we now investigate when the polarisations of
invariants on one copy of Hom(V,W ) define the null-cone on p copies. This question
is interesting only in the case where there are non-trivial invariants on one copy—
hence if dim V = dim W , in which case we may as well assume V = W . Then the
invariant ring is generated by the determinant on End(V ) (see, e.g., [10, Section
I.3]).

Theorem 2.7. The null-cone in End(V )p is defined by the polarisations of det if
and only if dim V ≤ 2 or p ≤ 2.

Proof of Theorem 2.7. The result for p = 2 follows from the Kronecker-Weierstrass
theory of matrix pencils, see [5]; for completeness we include a short proof in our
terminology. By Theorem 2.1 we have to show that if A,B ∈ End(V ) satisfy
det(sA + tB) = 0 for all s, t ∈ K, then there exists a witness V ′,W ′ ⊆ V for the
nilpotentcy of (A,B). Indeed, regarding s, t as variables, sA + tB has a non-zero
vector u(s, t) in K[s, t] ⊗K V in its kernel. But then any non-zero homogeneous
component of u(s, t), say of degree d, is also annihilated by sA + tB; hence we find
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u0, . . . , ud ∈ V such that (sA+ tB)(sdu0 + sd−1tu1 + . . .+ tdud) = 0, where we may
assume that u0 6= 0. Taking the of coefficients of sd+1, sdt, . . . , td+1, we find

Au0 = 0, Au1 = −Bu0, . . . , Aud = −Bud−1, and Bud = 0.

But then every element of KA + KB maps the space V ′ :=
∑

i Kui into the space
U ′ :=

∑
i KAui, which is strictly smaller because Au0 = 0 while u0 6= 0.

The statement for dim V = 2 is easy: in a linear space of matrices of rank ≤ 1
either all matrices have the same image, or all matrices have the same kernel. Now
suppose that m,n ≥ 3. To show that the null-cone in End(V )m is then not defined
by the polarisations of det, it suffices to construct a 3-dimensional singular subspace
of End(V ) for which there do not exist V ′,W ′ as above. The space8>>>>>>>>><>>>>>>>>>:

26666666664

0 a b
−a 0 c
−b −c 0

a
a

. . .

a

37777777775
| a, b, c ∈ K

9>>>>>>>>>=>>>>>>>>>;
(empty entries are always zero),

is such a space, as one easily verifies. �

3. SL(V ) on symmetric bilinear forms

The group SL(V ) acts on bilinear forms as follows: if α is a bilinear form and
g ∈ SL(V ), then (gα)(v, w) = α(g−1v, g−1w). It will be convenient to associate to
every bilinear a linear map as follows: we fix, once and for all, a non-degenerate,
symmetric bilinear form (., .) on V , and denote the transpose of A ∈ End(V ) relative
to this form by At. If α is a bilinear form on V , then we associate to α a linear
map A by the requirement that α(x, y) = (x,Ay) for all x, y ∈ V . Then g acts on
A by g ·A := (g−1)tAg−1. Note that the image of SL(V ) in GL(End(V )) under this
representation is contained in the image of SL(V )×SL(V ) under the representation
of Section 2.

As in Section 2 the invariants of SL(V ) on S2(V ∗) are generated by the deter-
minant of (the linear map associated to) the form, and the null-cone on one copy
is therefore the irreducible variety of singular forms.

Theorem 3.1. For p ≥ 2 and n := dim V , the null-cone of SL(V ) on S2(V ∗)p has
bn+1

2 c irreducible components given by

C
(p)
k := {(α1, . . . , αp) | ∃U ⊆ W ⊆ V : dim U = k,dim W = n− k + 1, and

αi(U,W ) = 0 for all i = 1, . . . , p}, k = 1, . . . , bn + 1
2

c.

Suppose that (α1, . . . , αp) lies in C
(p)
k , and that U and W are a witness of its

nilpotency as in the theorem. A dimension argument shows that U must intersect
the radical of each αi non-trivially; in particular, if αi has rank n − 1, then its
radical is contained in U , and W is precisely U⊥αi := {v ∈ V | αi(U, v) = 0}; we
refer to this space as the orthoplement of U relative to αi.

Suppose now that all αi have rank n − 1. Then a geometric interpretation of
U,W as in the theorem is the following: PU is a linear subspace of PV common
to all quadrics Qi = {x ∈ PV | αi(v, v) = 0} and containing their radicals, and
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for each i, PW is the space tangent to Qi at all of PU . For example, if n = 4 and
p = 2, then a pair (α1, α2) of rank 3 forms lies in C1 if and only if α1 and α2 have
the same radical (a projective point); if (α1, α2) 6∈ C1, then the pair lies in C2 if
and only if the quadrics Q1, Q2 are tangent along the (projective) line through their
radicals. This interpretation will yield a nice proof of the following theorem.

Theorem 3.2. The null-cone on S2(V ∗)p is defined by the polarisations of det if
and only if dim(V ) ≤ 4 or p ≤ 2.

Remark 3.3. The description of the null-cone in Theorem 3.1 already appears in
[14, Theorem 0.1(ii)]. However, Wall claims in Corollary 1 of loc. cit. that the
null-cone on any number of copies is defined by the polarisations of det—which, as
we will see below, is false for n ≥ 5.

First, however, we proof Theorem 3.1. In contrast to our proof for tuples of
matrices, we will give explicit pairs of symmetric forms representing the various
components of the null-cone; for this the following lemma is useful.

Lemma 3.4. Let m,n, k be non-negative integers and let π1, . . . , πp be partially
defined strictly increasing functions {1, . . . ,m} → {1, . . . , n}, that is, every πl is
defined on a subset dom(πl) of {1, . . . ,m} and satisfies

i < j ⇒ πl(i) < πl(j) whenever the right-hand side is defined.

For l = 1, . . . , p let Al : Km → Kn be a linear map mapping ei to a non-zero
multiple of eπl(i) if πl is defined at i, and to zero otherwise. Let U be a subspace of
Km and set

grU := {i ∈ {1, . . . ,m} | U ∩ (ei + 〈e1, . . . , ei−1〉K) 6= ∅}.
Then

dim
∑

l

AlU ≥

∣∣∣∣∣⋃
l

πl(grU ∩ dom πl)

∣∣∣∣∣
We will call a p-tuple (A1, . . . , Ap) of linear maps as in this lemma standard.

Proof. We have | gr(U)| = dim U , and defining grW for subspaces W of Kn in a
similar way the conditions on the Ai guarantee that

gr(
∑

l

AlU) ⊇
⋃
l

πl(grU ∩ dom πl),

whence the lemma follows immediately. �

Proof of Theorem 3.1. Suppose that (α1, . . . , αp) lies in the null-cone, and let Ai be
the matrix associated to αi. Then (A1, . . . , Ap) lies in the null-cone of SL(V ) acting
on End(V ) as indicated above and, a fortiori, in the null-cone of SL(V ) × SL(V )
on End(V ) discussed in Section 2. Hence by Theorem 2.1 there exist subspaces U ′

and W ′ of V with dim W ′ = n − dim U ′ + 1 and such that every Ai maps U ′ into
the orthoplement of W ′ relative to (., .). But then αi(w, u) = (w,Aiu) = 0 for all
u ∈ U ′ and w ∈ W ′. Now set U := U ′ ∩ W ′ and W := U ′ + W ′. Then clearly
U ⊆ W , dim U + dim W = dim U ′ + dim W ′ = n + 1, and αi(U,W ) = 0 for all i.

The C
(p)
k are closed and irreducible as usual (see the Introduction), and so it

only remains to check that there are no inclusions among them for p ≥ 2. To this
end, let k ∈ {1, . . . , bn+1

2 c}; we will construct a pair (α, β) ∈ C
(2)
k that does not
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lie in any C
(2)
k′ with k 6= k′. Take V = Kn and (x, y) :=

∑n
i=1 xiyn+1−i, so that

transposition relative to this form corresponds to reflection of the matrix in the
‘skew diagonal’. Now take the standard pair (A,B) of for which

sA + tB =

2666666666666666666666664

s t

. . .
. . .

s t

t

s
. . .

. . .
. . .

s t

t

s
. . .

. . . t
s

3777777777777777777777775

,

where the diagonal block sizes are, from top left to bottom right, (k − 1) × k,
(n−2k+1)×(n−2k+1), and k×(k−1). Let α and β be the forms defined by A and B,
respectively. Now if U and W are subspaces of Kn with dim U +dim W = n+1 and
α(U,W ) = β(U,W ) = 0, then one finds dim(AU + BU) < dim U . But by Lemma
3.4 the only pair subspaces of Kn having this property are U = 〈e1, . . . , ek〉K and
W = 〈e1, . . . , ek, . . . , en−k+1〉K . This shows that (U,W ) is the unique witness for
the nilpotency of (α, β), and hence (α, β) does not lie in any other component
C

(2)
k′ . �

Proof of Theorem 3.2. On p = 2 copies the null-cone is defined by the polarisations
of the determinant. This follows either from the Kronecker-Weierstrass theory of
pencils of forms [5] or from a direct construction of U and W as in Theorem 3.1 for
any two-dimensional space of singular forms.

Next we prove that for n ≤ 4 the null-cone on any number p of copies is defined
by the polarisations of det, or, in other words, that any space A of singular sym-
metric bilinear forms is spanned by a tuple (α1, . . . , αp) lying in some C

(p)
k ; slightly

inaccurately, we will then say that A lies in Ck. Note that we need only prove
this for maximal spaces of singular forms; in particular, we may assume that A
contains forms of rank n−1, because if it does not, we may add any rank 1 form to
A without creating non-degenerate forms. In what follows we heavily use the fact
that any 2-dimensional space of singular forms does already lie in some Ck.

For n = 2, the quadric of a rank 1 form is a point on the projective line PV . As
for any two non-zero forms in A this point coincides, it is the same for all forms in
A. Hence A lies in C1.

For n = 3, the quadric of a rank 2 form α is the union of two lines in the
projective plane PV , whose intersection is the radical of α. If the radicals of any
two forms in A of rank 2 coincide, then A lies in C1; suppose, therefore, that there
exist forms α0, α1 in A of rank 2 whose radicals are distinct. We have (α0, α1) ∈ C2,
so that their quadrics Q0 and Q1 have a line L in common (see Figure 2). Now a
generic element β ∈ A has rank 2, does not have the same radical as α0 or α1, and
its quadric Qβ is not the union of the non-common lines of Q0 and Q1. But Qβ
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1rad(Q  )

rad(Q  )0

L

Figure 2. Proof of Theorem 3.2 for n = 3

rad(Q  )0

rad(Q  )1

rad(Q  )t

L

P

rad(Q  )1 rad(Q  )0

L

Figure 3. Proof of Theorem 3.2 for n = 4

must have lines in common with both Q0 and Q1, and therefore it contains L. But
then L is isotropic relative to all forms in A, and A lies in C2.

For n = 4, suppose that there exist forms α0, α1 ∈ A of rank 3 whose radicals
do not coincide (otherwise A lies in C1). The corresponding quadrics Q0, Q1 ⊆ PV
are tangent along the line L connecting their radicals (see Figure 3, left). For t ∈ K
set αt := (1− t)α0 + tα1 and

T := {t ∈ K | rk(αt) = 3}.

For each t ∈ T , the quadric Qt of αt is tangent to Q0 along L, and its radical lies
on L; the set of all radicals thus obtained forms a dense set of L.

If all rank 3 forms in A have their radicals on L, then their quadrics are all
tangent to Q0 along L and A lies in C2. Suppose, on the other hand, that there
exists a rank 3 form β ∈ A whose radical does not lie on L. Then its quadric
Qβ is tangent to each Qt with t ∈ T along the line connecting P := P rad(β) and
P rad(αt); in particular, Qβ contains all lines connecting P with a dense subset of L
(see Figure 3, right). The closure of the union of these lines—the projective plane
spanned by L and P—is therefore contained in Qβ . Hence, the pre-image in V of
this plane is a 3-dimensional β-isotropic space—but this contradicts the assumption
that rk(β) = 3.

Finally, we need to show that if n ≥ 5 and p ≥ 3, then the null-cone is not
defined by the polarisations of det. Consider, to this end, the triple (α1, α2, α3)
of bilinear forms on V = Kn such that the linear map associated to sα + tβ + uγ
relative to the orthogonal sum of the skew diagonal form (., .) on K5 and the skew
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diagonal form on Kn−5 equals

sA1 + tA2 + uA3 =

26666664

s t 0 0 0
0 s t 0 0

−u 0 0 t 0
0 2u 0 s t
0 0 −u 0 s

sIn−5

37777775 .

A direct computation shows that det(sA1 + tA2 +uA3) = 0. On the other hand, by
Lemma 3.4 there does not exist a subspace U of Kn with dim(

∑
i AiU) < dim U .

We conclude that (α1, α2, α3) is not nilpotent, and this concludes the proof of
Theorem 3.2. �

4. SL(V ) on skew-symmetric forms

Our results for skew-symmetric forms are similar to those for symmetric forms,
except that the irreducible components of the null-cone become visible only on 3
or 4 copies. Recall that if n := dim(V ) is odd, then all skew bilinear forms are
singular and there are no invariants on one copy of

∧2(V ∗), so that the null-cone
is the whole space. If n is even, then the invariant ring is generated by the Pfaffian
(see, e.g. []), and the null-cone is irreducible.

Theorem 4.1. The null-cone SL(V ) on
∧2(V ∗)p is equal to

{(α1, . . . , αp) |∃U ⊆ W ⊆ V with dim U + dim W = n + 1 and

αi(U,W ) = 0 for all i = 1, . . . , p}.

Let C
(p)
k denote the subset of the null-cone where U can be chosen of dimension

k(= 1, . . . , dn
2 e =: q). Then the irreducible components of the null-cone are as

follows.

(1) If n = 2q ≥ 2 is even, then the null-cone on p = 2 copies is C
(2)
q (hence

irreducible), while the null-cone on p ≥ 3 copies has precisely q components,
namely C

(p)
k for k = 1, . . . , q.

(2) If n = 2q−1 ≥ 3 is odd, then the null-cone on p = 2 copies is all of
∧2(V ∗)p;

on p = 3 copies there are non-trivial invariants, and the components of the
null-cone are precisely the C

(3)
k with k ∈ {1, 2, . . . , q − 4, q} (in particular,

for n ≤ 7 the null-cone is irreducible); on p = 4 copies the components of the
null-cone are precisely the C

(4)
k with k ∈ {1, 2, . . . , q−3, q} (in particular, for

n ≤ 5 the null-cone is irreducible); and on p ≥ 5 copies the components of
the null-cone are precisely the C

(p)
k with k ∈ {1, 2, . . . , q−2, q} (in particular,

for n ≤ 3 the null-cone is irreducible).

For the proof of this theorem we need a result from [8], which uses the following
notation: d(n, p) is the minimum, taken over all p-tuples α1, . . . , αp of skew bilinear
forms on Kn, of the maximal dimension of a subspace that is isotropic with respect
to all αi. In other words, d(n, p) is the maximal dimension of a common isotropic
subspace of a generic p-tuple of skew bilinear forms on Kn.

Theorem 4.2 ([8, Main Theorem]). d(n, p) = b 2n+p
p+2 c.
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Corollary 4.3. For n = 0, 2, 4, 6 any triple of skew bilinear forms on Kn has a
common isotropic subspace of dimension n/2. On the other hand, for all odd n ≥ 3
and for all even n ≥ 8 there exist triples (α1, α2, α3) of skew bilinear forms on Kn

for which there are no subspaces 0 ( U ⊆ W of Kn with dim U + dim W = n and
αi(U,W ) = 0 for all i.

Proof. The first statement is immediate from Theorem 4.2. Now let n = 2q ≥ 8 be
even, fix k ∈ {1, . . . , q}, and suppose that for any triple α1, α2, α3 of skew bilinear
forms on Kn there exist subspaces 0 6= U ⊆ W of Kn with dim U = k = n−dim W
and αi(U,W ) = 0 for all i = 1, 2, 3. The induced forms ᾱi, i = 1, 2, 3, on the
space W/U of dimension 2(q− k) have a common isotropic subspace U ′ ⊆ W/U of
dimension d(2(q − k), 3), by definition of the latter quantity. The pre-image of U ′

in W is then isotropic relative to all αi and has dimension d(2(q − k), 3) + k. We
thus find the inequality d(2q, 3) ≥ d(2(q − k), 3) + k, which by Theorem 4.2 reads

(6) b4q + 3
5

c ≥ b4(q − k) + 3
5

c+ k.

For n = 2q = 8, however, this inequality does not hold for any k ∈ {1, 2, 3, 4}. For
n = 2q = 10 the only k ∈ {1, . . . , 5} for which it holds is k = 1, but it is easy to
construct a triple of bilinear forms on K10 for which there are no U,W as above of
dimensions 1, 9—indeed, one can use for this the construction that follows.

Suppose that n = 2q ≥ 12, and note that inequality (6) can only hold for k ≤ 5.
On the other hand, let α1, α2, α3 be the skew bilinear forms on Kn corresponding
to the standard triple (A1, A2, A3) of matrices satisfying

t1A1 + t2A2 + t3A3 =

26666666666666664

t2 t3

t1 t2
. . .

. . .
. . . t3
t1 t2

−t2 −t3

−t1
. . .

. . .

. . . −t2 −t3
−t1 −t2

37777777777777775
.

Using Lemma 3.4 one verifies that any subspace U of Kn satisfying dim(A1U +
A2U + A3U) ≤ dim U has dimension 0, n/2, or n. In particular, we should have
k ∈ {0, q, n}—but we saw above that 1 ≤ k ≤ 5, a contradiction.

We conclude that for n = 2q ≥ 8 and fixed k ∈ {1, . . . , q} there exist triples
(α1, α2, α3) of skew bilinear forms on Kn for which there are no subspaces U ⊆ W
of Kn with dimU = k = n−dim W and αi(U,W ) = 0 for all i. As the non-existence
of such a pair U,W with dim U = k is an open condition on the triple (α1, α2, α3),
there also exist triples for which there is no pair (U,W ) with U of any dimension.
This proves the corollary for even n.

For n = 2q − 1 ≥ 3 odd we can construct α1, α2, α3 explicitly by a construction
similar to that above: choose them corresponding to a standard triple (A1, A2, A3)
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of matrices satisfying

t1A1 + t2A2 + t3A3 =

266666666666664

t2 t3

t1
. . .

. . .

. . . t2 t3
t1 0 −t3

−t1 −t2
. . .

. . .
. . . −t3
−t1 −t2

377777777777775
.

Using Lemma 3.4 one verifies that there are no subspaces U 6= 0,Kn of Kn with
dim(

∑
i AiU) ≤ dim U . �

Proof of Theorem 4.1. The description of the null-cone is proved in exactly the
same way as for symmetric bilinear forms. We first prove that there are inclusions
C

(p)
k ⊆ C

(p)
q for the following values of the parameters:

(1) n arbitrary, k arbitrary, and p = 2;
(2) n = 2q − 1 ≥ 3, k = q − 1, and p arbitrary;
(3) n = 2q − 1 ≥ 5, k = q − 2, and p ∈ {3, 4}; or
(4) n = 2q − 1 ≥ 7, k = q − 3, and p = 3.

These statements are proved as follows: let (α1, . . . , αp) ∈ C
(p)
k and let U ⊆ W be

a pair with dim U = k,dim W = n− k + 1, and αi(U,W ) = 0 for all i. Then the αi

induce bilinear forms ᾱi on the space W/U of dimension n− 2k + 1, and we find a
subspace U ′ of W/U of dimension d(n − 2k + 1, p) that is isotropic relative to all
ᾱi. The pre-image of U ′ in W is then a space of dimension d(n− 2k +1, p)+ k and
isotropic relative to all αi. Using Theorem 4.2 one finds that for the above values
of the parameters this value d(n − 2k + 1, p) + k is at least bn

2 c + 1, which shows
that (α1, . . . , αp) ∈ C

(p)
q . This proves all inclusions above.

Now we prove that there are no other inclusions among the C
(p)
k for other values

of n, k, and p. Suppose first that n = 2q is even, p ≥ 3 and k ∈ {1, . . . , q}. Then we
find a p-tuple in C

(p)
k not lying in any other C

(p)
k′ by a construction similar to the

constructions in the proof of Corollary 4.3: Let α1, α2, α3 be forms with matrices
A1, A2, A3 for which t1A1 + t2A2 + t3A3 equals

(7)

266666666666666666664

t2 t3
t1 t2 t3

. . .
. . .

. . .

t1 t2 t3
t1A

′
1 + t2A

′
2 + t3A

′
3

−t3

−t2
. . .

−t1
. . . −t3
. . . −t2 −t3

−t1 −t2

377777777777777777775

,

where the diagonal blocks have sizes (k−1)×k, (n−2k+1)×(n−2k+1), and k×(k−1)
from top left to bottom right, and where the A′i are chosen such (skew relative to
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the skew diagonal) that they map no subspace U 6= 0,Kn−2k+1 of Kn−2k+1 into a
strictly smaller subspace; such A′i exist by Corollary 4.3. Write V1 := 〈e1, . . . , ek〉K ,
V2 := 〈ek+1, . . . , en−k〉K , and V3 := 〈en−k+1, . . . , en〉K . Now suppose that U is a
subspace of Kn for which dim

∑
AiU < dim U . Let U1 := U ∩ V1, let U2 be the

projection of U ∩ (V1 ⊕ V2) to V2 along V1, and let U3 be the projection of U to V3

along V1⊕V2. Then dim
∑

i AiU1 ≥ dim U1 unless U1 = V1, dim
∑

i AiU2 > dim U2

unless U2 = 0 or V2, and dim
∑

i AiU3 > dim U3 unless U3 = 0. Summing up these
dimensions, we find dim

∑
i AiU < dim U implies U1 = V1, U2 = 0 or U2 = V2, and

U3 = 0. We conclude that (V1, V1 ⊕ V2) is the only pair of subspaces U ⊆ W with
αi(U,W ) = 0 and dim U + dim W > n. Hence (α1, α2, α3) lie in C

(3)
k but not in

any other C
(3)
k′ .

Next suppose that n = 2q − 1 ≥ 9 is odd. Then we have to show that that
C

(3)
k for k 6∈ {q − 1, q − 2, q − 3} is not contained in any other C

(3)
k . This goes

using a construction similar to that above for even n, choosing the A′i—now square
skew matrices of size n − 2k + 1 = 2(q − k) ≥ 8—such that for all spaces U with
0 ( U ( K2(q−k) we have dim A′1U + A′2U + A′3U > dim U ; such matrices exist by
Corollary 4.3.

Next, assuming n = 2q− 1 ≥ 7, suppose that p ≥ 4 and k ∈ {1, . . . , q− 3, q}. By
writing down an appropriate standard quadruple of skew matrices (A1, . . . , A4) we
show that C

(p)
k is not contained in any other C

(p)
k′ : take A1, A2, A3, A4 such that∑

i tiAi has the block shape of (7), where the outer two blocks are unchanged (i.e.,
A4 has no non-zero entries there), but the inner block of size 2(q − k) ≥ 6 is as
follows: 26666666666666666664

t2 t3 t4

0 t2
. . .

. . .

t1 0
. . . t3 t4

. . .
. . . t2 0 −t4

t1 0 −t2 −t3
. . .

−t1 0
. . .

. . . −t4
. . .

. . . −t2 −t3
−t1 0 −t2

37777777777777777775
Again, applying Lemma 3.4, one readily verifies that this quadruple of skew matrices
does not map any space U into a space of dimension ≤ dim U .

A similar construction for n = 2q − 1 ≥ 5 with the following 4 × 4-block in the
middle: 2664

t3 t4 t5 0
t2 t3 0 −t5
t1 0 −t3 −t4
0 −t1 −t2 −t3

3775
shows that on p ≥ 5 copies the set C

(p)
q−2 is not contained in any other C

(p)
k ,

either. �

Finally, we settle the question, for n even, of when the null-cone on p copies of∧2(V ∗) is defined by the polarisations of the Pfaffian.
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Theorem 4.4. The null-cone N (
∧2(V ∗)p) with dim V =: n even is defined by the

polarisations of the Pfaffian if and only if either p = 2 or n ∈ {2, 4}.

Proof. The proof for p = 2 goes exactly as for symmetric bilinear forms, and for
n = 2 the statement is trivial. Suppose therefore that n = 4, and let A be a vector
space consisting of singular skew forms on K4. We have to show that either the
radicals of all forms in A intersect in a projective point, or there exist a line U and
a plane W ⊇ U in P3 with α(U,W ) = 0 for all α ∈ A. By the statement for p = 2
we know that any pair of elements in A is of one of these two types.

We prove that in fact every pair α, β ∈ A is of the first type. Indeed, take
α, β ∈ A non-zero (and hence of rank 2), suppose that radα and radβ are disjoint
lines in P3, and let U ⊆ W be a line and a plane in P3 such that α(U,W ) =
β(U,W ) = 0. For dimension reasons, U must intersect both radα and radβ, and
hence U is distinct from both of these lines. But then the α-orthoplement of U
and the β-orthoplement of U are both planes containing W , and hence equal to W .
On the other hand, the radicals of α and β are contained in the α-orthoplement
and the β-orthoplement of U , respectively, hence in W . But this contradicts the
assumption that the projective lines P radα and P radβ do not intersect.

We conclude that all radicals of elements in A intersect. But then they all lie in
some plane W . Now if U is any line in W , then α(U,W ) = 0 for all α ∈ A, so that
A ‘lies in’ C2. This proves the theorem for n = 4.

Finally, for n ≥ 6, we have to exhibit a triple of skew bilinear forms that is
not nilpotent but whose span lies in the null-cone on

∧2
V ∗. Choose for instance

α1, α2, α3 with matrices A1, A2, A3 such that

t1A1 + t2A2 + t3A3 =

26666666666666664

t2
. . .

t2
t2 t3 0
t1 0 −t3
0 −t1 −t2

−t2
. . .

−t2

37777777777777775
.

Using Lemma 3.4 one verifies that no subspace of Kn is mapped by all Ai into a
strictly smaller subspace. This concludes the proof of the theorem. �

5. SL(V ) on arbitrary bilinear forms

The invariants of SL(V ) on (V ∗ ⊗ V ∗) are known [1], but in contrast to the
situation for linear maps and symmetric bilinear forms, it is not clear from them
that the null-cone on one copy of V ∗ ⊗ V ∗ is irreducible. The following theorem
states that it is, and also describes the components in several copies.

Theorem 5.1. For p ≥ 2, the null-cone of SL(V ) on (V ∗ ⊗ V ∗)p has q := bn+1
2 c

irreducible components given by

C
(p)
k := {(α1, . . . , αp) | ∃U ⊆ W ⊆ V : dim U = k,dim W = n− k + 1, and

αi(U,W ) = αi(W,U) = 0 for all i = 1, . . . , p}, k = 1, . . . , q.



20 MATTHIAS BÜRGIN AND JAN DRAISMA

On p = 1 copy, the sets C
(1)
k form a chain C

(1)
1 ⊆ C

(1)
2 ⊆ . . . ⊆ C

(1)
q , and hence the

null-cone equals the irreducible set C
(1)
q .

In the proof of this theorem we use the following lemma.

Lemma 5.2. Let β be a symmetric form and γ a skew form on the vector space V
of dimension ≥ 2. Then there exists a β-isotropic v0 ∈ V for which

dim{v ∈ V | β(v0, v) = γ(v0, v) = 0} ≥ dim V − 1

Proof. If the radical of γ has dimension ≥ 2, we may take for v0 any β-isotropic
vector in rad γ. If rad γ has dimension 1 and is spanned by v1, say, then there are
two cases: either v1 is β-isotropic and we may set v0 := v1, or V = Kv1⊕V ′, where
V ′ := v

⊥β

1 . Then γ is non-degenerate on V ′ and if we find a v0 in V ′ satisfying
the conclusion of the lemma for V ′ instead of V , it also does the trick for V , as
β(v1, v0) = γ(v1, v0) = 0.

Hence the case remains where γ is non-degenerate. Let B,C be the linear maps
corresponding to β, γ relative to (., .) and choose any eigenvector v0 of C−1B.
Then we have Bv0 ∈ KCv0 so that γ(v, v0)(= (v, Cv0)) = 0 implies β(v, v0)(=
(v,Bv0)) = 0. In particular, v0 is β-isotropic, and the vector space on the left-hand
side in the lemma is the γ-orthoplement of v0. �

Proof of Theorem 5.1. For the first statement, let (α1, . . . , αp) be a nilpotent p-
tuple of bilinear forms and write αi = βi + γi for all i, with βi symmetric and γi

skew. Let Bi, Ci be the linear maps associated βi, γi, respectively. By assumption
there exists a one-parameter subgroup λ : K∗ → SL(V ) with limt→0 λ(t)αi = 0 for
all i. But this implies that also λ(t)βi, λ(t)γi → 0 for t → 0. A fortiori, the 2p-tuple
(B1, . . . , Bp, C1, . . . , Cp) is nilpotent under the larger group SL(V )×SL(V ), and by
Theorem 2.1 there exist subspaces U ′, U ′′ ⊆ V of dimensions k and k− 1 such that
BiU

′, CiU
′ ⊆ U ′′ for all i. Let W ′ be the orthoplement of U ′ relative to our fixed

form (., .), set U := U ′ ∩W ′ and W := W ′ + U ′. Then U ⊆ W , dim U + dim W =
n + 1, and βi(U,W ) = γi(U,W ) = 0. But then also αi(U,W ) = αi(W,U) = 0, as
claimed.

Now we prove C
(1)
k ⊆ C

(1)
k+1 for k < q. To this end, let U ⊆ W be subspaces

of V with dim U + dim W = n + 1. We want to prove that a form α ∈ V ∗ ⊗ V ∗

lying in C
(1)
k by virtue of α(U,W ) = α(W,U) = 0 also lies in C

(1)
k+1. Indeed, write

α = β +γ, where β is symmetric and γ is skew. The forms β, γ induce forms β̄, γ̄ of
the same signature on W/U , and by the preceding lemma there exists a w̄0 ∈ W/U
for which

dim{w̄ ∈ W/U | β̄(w̄, w̄0) = γ̄(w̄, w̄0) = 0} ≥ dim W/U − 1.

Let w0 be a pre-image of w̄ in W , set U ′ := U ⊕ Kw0, and let W ′ ⊆ W be a
subspace of codimension 1 that contains w0 and whose image in W/U is contained
in the space above. Then we still have α(U ′,W ′) = 0 and dimU ′+dim W ′ = n+1,
but now dim U ′ = k + 1, as claimed.

Finally, we have two show that on p ≥ 2 copies there are no inclusions among
the sets C(k) with k = 1, . . . , q are distinct. But their intersections with the set of
p-tuples of symmetric bilinear forms are already distinct, see Theorem 3.1. �

The last question to be answered here is whether the polarisations of the invari-
ants on one copy of V ∗ ⊗ V ∗ define the null-cone on more copies. The answer can
be deduced from the answers for symmetric forms and for skew forms.
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Theorem 5.3. The null-cone of SL(V ) on (V ∗⊗V ∗)p is defined by the polarisations
to p ≥ 2 copies of the invariants on V ∗ ⊗ V ∗ if and only if dim V ≤ 2.

Proof. For dim V = 1 the statement is trivial. Suppose that dim V = 2 and let A
be a space of nilpotent bilinear forms on V . If α ∈ A, then by theorem 5.1 both the
symmetric and the skew component of α is singular. As the skew component has
even rank, it is then zero. Hence A consists of symmetric forms only, and therefore
the existence of a common radical for forms in A follows from Theorem 3.2.

Suppose now that n ≥ 3. Let β1, β2, γ1 be the bilinear forms on Kn whose
matrices B1, B2, C1 relative to the orthogonal sum (., .) of the skew diagonal forms
on K3 and Kn−3 satisfy

s1B1 + s2B2 + t1C1 =


s1 s2 0
t1 0 s2

0 −t1 s1

sIn−4

 .

A direct computation shows that det(s1B1 + s2B2 + t1C1) is identically zero. We
claim that actually A := 〈β1, β2, γ1〉K consists entirely of nilpotent bilinear forms;
as the determinant is not the only invariant, the preceding computation does not
prove this yet. But let α be in A with matrix A. Then At—where transposition,
as always, is relative to the form (., .)—defines the form αt, which by the definition
of A also lies in A and the singular matrix pencil 〈A,At〉K has a subspace U of Kn

for which W ′ := AtU + AU has dimension < dim U . But then the orthoplement
W of W ′ relative to (., .) is a subspace of Kn of dimension > n− dim U satisfying
α(W,U) = αt(W,U)(= α(U,W )) = 0. Replacing (U,W ) by the pair (U∩W,U+W )
as usual, we find a witness for the nilpotency of α.

However, the pair (β1 + γ1, β2) of bilinear forms is not nilpotent. Indeed, if it
were, then there would be U ⊆ W with dim U + dim W = n + 1 and β1(U,W ) =
β2(U,W ) = γ1(U,W ) = 0, i.e., with dim B1U + B2U + C1U < dim U . By Lemma
3.4 no U with this property exists. �
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