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CHAPTER 1

Basics

We will assume familiarity with the terms field, vector space, subspace, basis, di-
mension, and direct sums. If you are not sure what these terms mean, please look
them up in lecture notes of earlier (linear) algebra courses.

1.1. Products and sums

Given a collection (Vi)i∈I of vector spaces labelled by a (possibly infinite) set I,
their direct product

∏
i∈I Vi (or sometimes ×i∈IVi) is defined as the set of tuples

(vi)i∈I with vi ∈ Vi. This product is a vector space with component-wise addition
and scalar multiplication. In the special case where all Vi are equal to a fixed vector
space V we also write V I (or sometimes V ×I).

On the other hand, the direct sum
⊕

i∈I Vi is defined as the subspace of
∏
i∈I Vi

consisting of all tuples in which only finitely many of the vi are non-zero. In the
case where all Vi are equal to V we write V ⊕I .

Clearly, if I is finite, then the two notions coincide, while if I is infinite, then the
direct sum is a proper subspace of the direct product. An amusing and disturbing
exercise exploiting this is Exercise 1.5.10 below.

1.2. Linear maps

Given K-vector spaces V and W , a map φ : V →W is called linear (or K-linear if
we want to stress K) if φ(v+ v′) = φ(v) + φ(v′) for all v, v′ ∈ V and φ(cv) = cφ(v)
for all c ∈ K and v ∈ V .

We write L(V,W ) (or LK(V,W )) for the set of K-linear maps V → W . We also
write L(V ) (or LK(V )) for L(V, V ). The set L(V,W ) is itself a vector space over
K with addition defined by (φ + ψ)(v) := φ(v) + ψ(v) and scalar multiplication
defined by (cφ)(v) := c(φ(v)).

Any linear map φ : V → W has an image imφ := {φv | v ∈ V } ⊆ W and a kernel
kerφ := {v ∈ V | φv = 0} ⊆ V . These sets are subspaces of W and V , respectively,
and they satisfy

dim imφ+ dim kerφ = dimV ;

the so-called Dimension Theorem; see also Section 1.5. The map φ is called sur-
jective if imφ = W and injective if φv = φv′ implies v = v′. Since φ is linear, this
latter condition is equivalent to the condition that kerφ = {0}.
A linear map φ : V → W is called a (linear) isomorphism if there is a linear map
ψ : W → V such that φ ◦ ψ (“ψ followed by φ” or “φ after ψ”) is the identity map
W → W and ψ ◦ φ is the identity map V → V . This map ψ is necessarily unique,
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4 1. BASICS

and denoted φ−1. A linear map φ is an isomorphism if and only if it is surjective
and injective. An isomorphism maps any basis of V to a basis of W , showing that
dimV = dimW .

Suppose we are given a basis (vj)j∈J of V , with J some potentially infinite index
set. Then we have a linear map L(V,W )→W J , φ 7→ (φvj)j∈J . This map is itself
an isomorphism—indeed, if φ is mapped to the all-zero vector in W J , then φ is zero
on a basis of V and hence identically zero. Hence the map L(V,W ) → W J just
described is injective. On the other hand, given any vector (wj)j∈J ∈ W J there is
a linear map φ : V → W with φvj = wj . Indeed, one defines φ as follows: given v,
write it as

∑
j∈J cjvj with only finitely many of the cj non-zero (this can be done,

and in a unique way, since the vj form a basis). Then set φv :=
∑
i cjwj . Hence the

map L(V,W )→W J is surjective. We conclude that it is, indeed, an isomorphism.
In particular, this means that the dimension of L(V,W ) is that of W J .

1.3. Matrices and vectors

Given a basis (vj)j∈J of a K-vector space V , we have a linear isomorphism β :
K⊕J → V sending a J-tuple (cj)j∈J with only finitely many non-zero entries to the
linear combination

∑
j cjvj . Thus we may represent an element v of the abstract

vector space V by means of a J-tuple β−1v of numbers in K.

Given a basis (wi)i∈I of a second K-vector space W with corresponding isomor-
phism γ : K⊕I → W and given a linear map φ : V → W , we may represent φ by
a matrix A with rows labelled by the elements of I and the columns labelled by
the elements of J , and with (i, j)-entry equal to the j-th coordinate of γ−1(φvi).
Note that every column has only finitely many non-zero entries. Conversely, by
the results of the previous section, every I × J-matrix whose columns are elements
of K⊕I is the matrix of a unique linear map V → W . The fundamental relation
between φ and A is that applying φ on an abstract vector v boils down to perform-
ing matrix-vector multiplication of A with the vector β−1v representing v. More
precisely, the diagram

V
φ // W

K⊕J

β

OO

x 7→Ax
// K⊕I

γ

OO

commutes, i.e., the composition of linear maps along both paths from K⊕J to W
give the same linear map. Here Ax stands for the product of the I × J-matrix A
with the vector x ∈ K⊕J . Notice that since x has only finitely non-zero entries, this
product is well-defined, and since the columns of A are elements ofK⊕I , the product
is again an element of K⊕I . When I = {1, . . . , n} and J = {1, . . . ,m} for some
natural numbers m,n, this boils down to ordinary matrix-vector multiplication.

Matrices and column or row vectors will be used whenever we implement linear-
algebraic algorithms on a computer. For instance, an m-dimensional subspace of
an n-dimensional vector space W can be described as the image of an injective
linear map φ : Km → W (here m is necessarily at most n). After a choice of
basis w1, . . . , wn of W , φ can be represented as an n×m-matrix A as above (where
for vj , j ∈ J = {1, . . . ,m} we take the standard basis of V = Km). Hence the
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columns of this matrix represent a basis of imφ relative to the chosen basis of W .
The matrix A will have rank m.

Exercise 1.3.1. In this setting, two n × m-matrices A and B, both of rank m,
represent the same linear subspace of W if and only if there exists an invertible
m×m-matrix g such that Ag = B; prove this.

Exercise 1.3.2. Write a function Intersect in Mathematica which takes as input
two full-rank matrices A and B with n rows and at most n columns, and which
outputs an n×k-matrix C of rank k that represents the intersection of the subspaces
represented by A and by B. Also write a function Add that computes a full-rank
matrix representing the sum of the spaces represented by A and by B.

Alternatively, a codimension-n subspace of an m-dimensional vector space V can
be represented as the kernel of a surjective map φ : V → Kn (now m is necessarily
at least n); here we use the Dimension Theorem. Choosing a basis v1, . . . , vm of V
and the standard basis in Km, we may represent φ by an n×m-matrix.

Exercise 1.3.3. In this setting, two n × m-matrices A and B, both of rank n,
represent the same linear subspace of V if and only if there exists an invertible
n× n-matrix h such that hA = B; prove this.

1.4. The dual

Given a K-vector space V , the dual V ∗ of V is LK(V,K), i.e., the set of all K-linear
functions V → K.

By the discussion of L(V,W ) in Section 1.2, V ∗ is itself a K-vector space. Moreover,
V ∗ has the same dimension as KJ , if J is (the index set of) some basis of V , while
V itself has the same dimension as K⊕J . If, in particular, J is finite, i.e., if V is
finite-dimensional, then V and V ∗ have the same dimension. In general, since K⊕J

is a subspace of KJ , we still have the inequality dimV ≤ dimV ∗.

Exercise 1.4.4. Assume that J is infinite but countable. (A typical example is
V = K[t] = 〈1, t, t2, . . .〉K , the K-space of polynomials in a single variable t, with
J = N and basis (tj)j∈N.) Prove that V ∗ does not have a countable basis.

The following generalisation is trickier.

Exercise 1.4.5. Assume that J is infinite but not necessarily countable. Prove
that V ∗ has no basis of the same cardinality as J .

Whether V is finite-dimensional or not, there is no natural linear map V → V ∗

that does not involve further choices (e.g. of a basis). However, there is always
a natural map V → (V ∗)∗ that sends v ∈ V to the linear function V ∗ → K that
sends x ∈ V ∗ to x(v). This natural map is linear, and also injective: if v is mapped
to zero, then this means that for all x ∈ V ∗ we have x(v) = 0, and this means
that v itself is zero (indeed, otherwise v would be part of some basis (vj)j∈J , say
as vj0 , and one could define a linear function x to be 1 on vj0 and arbitrary on the
remaining basis elements; then x(v) 6= 0).

The fact that V → (V ∗)∗ is injective implies that its image has dimension dimV . If
V is finite-dimensional, then by the above we have dimV = dimV ∗ = dim(V ∗)∗, so
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that the map V → (V ∗)∗ is actually a linear isomorphism. Informally, we express
this by saying that for finite-dimensional vector spaces V we have V = (V ∗)∗.
In such a statement we mean that we have a natural (or canonical) isomorphism
in mind from one space to the other, i.e., an isomorphism that does not involve
further arbitrary choices. (We are being deliberately vague here about the exact
mathematical meaning of the terms natural or canonical.)

Exercise 1.4.6. Replacing V by V ∗ in the above construction, we obtain an injec-
tive linear map ψ : V ∗ → ((V ∗)∗)∗. Find a canonical left inverse to this map, that
is, a linear map π : ((V ∗)∗)∗ → V ∗ such that π ◦ ψ is the identity map on V ∗.

A linear map φ : V → W gives rise to a natural linear map φ∗ : W ∗ → V ∗,
called the dual of φ and mapping y ∈ W ∗ to the linear function on V defined by
v 7→ y(φv). More succinctly, we have φ∗y := y ◦ φ. It is convenient to see this in a
diagram: if y is a linear function on W , then φ∗y fits into the following diagram:

V
φ //

φ∗y   

W

y

��
K.

Note that duality reverses the arrow: from a map V → W one obtains a map
W ∗ → V ∗. The kernel of φ∗ is the set of all linear functions on W that vanish
identically on imφ. For the image of φ∗ see Exercise 1.5.9.

If (vj)j∈J is a basis of V and (wi)i∈I is a basis of W , then we have seen in Section 1.3
how to associate an I × J-matrix A with the linear map φ, each column of which
has only finitely many non-zero elements. We claim that the transpose AT , which is
a J × I-matrix each of whose rows has a finite number of non-zero elements, can be
used to describe the dual map φ∗, as follows. There is a linear map β∗ : V ∗ → KJ

defined as β∗x = (x(vj))j∈J (and dual to the map β from Section 1.3; check that
KI is the dual of K⊕I), and similarly a linear map γ∗ : W ∗ → KI . Then the
diagram

V ∗

β∗

��

W ∗
φ∗oo

γ∗

��
KJ KI

x 7→AT x
oo

commutes. Note that the product ATx is well-defined for every x ∈ KI , as each
row of AT has only finitely many non-zero entries. In the special case where I and
J are finite, we recover the familiar fact that “the matrix of the dual map with
respect to the dual basis is the transpose of the original matrix”. In the infinite
case, however, note that AT is not the matrix associated to φ∗ with respect to bases
of W ∗ and V ∗: e.g., the linear forms xi ∈ W ∗, i ∈ I determined by xi(wi′) = δi,i′

do not span W ∗ as soon as W is infinite-dimensional.

1.5. Quotients

Given a K-vector space V and a subspace U , the quotient V/U of V by U is defined
as the set of cosets (“affine translates”) v + U with v running over V . Note that
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v+U = v′+U if and only if v− v′ ∈ U . The quotient comes with a surjective map
π : V → V/U, πv := v+U , and often it is less confusing to write πv instead of v+U .
The quotient V/U is a K-vector space with operations π(v) + π(v′) := π(v + v′)
and cπ(v) := π(cv) (since the left-hand sides in these definitions do not depend on
the choices of v and v′ representing v + V and v′ + V , one needs to check that the
right-hand sides do not depend on these choices, either). The map π is linear with
respect to this vector space structure.

If U ′ is any vector space complement of U in V , i.e., if every element v ∈ V can be
written in a unique way as u+ u′ with u ∈ U and u′ ∈ U ′ (notation: V = U ⊕ U ′,
the direct sum), then the restriction π|U ′ of π to U ′ is an isomorphism U ′ → V/U .
Hence dim(V/U) satisfies

dimU + dim(V/U) = dimU + dimU ′ = dimV.

Here we have implicitly used that U has a vector space complement U ′; this holds
if one assumes the Axiom of Choice, as we do throughout.

One application of this is, once again, the Dimension Theorem: If φ : V → W is
a linear map, then there is natural isomorphism V/ kerφ → imφ sending π(v) to
φ(v). By the above with U replaced by kerφ we find

dim kerφ+ dim imφ = dim kerφ+ dim(V/ kerφ) = dimV.

The following exercise gives a construction that we will use a number of times in
this lecture.

Exercise 1.5.7. Let φ : V →W be a linear map, and let U be a subspace of kerφ.
Prove that there exists a unique linear map φ : V/U →W satisfying φ ◦ π = φ.

We say that φ factorises into π and φ, or that the diagram

V
φ //

π

��

W

V/U
φ

==

commutes, i.e., that both paths from V to W yield the same linear map. The entire
statement that φ factorises into π and a unique φ is sometimes depicted as

V
φ //

π

��

W

V/U
∃!φ.

==

Exercise 1.5.8. Let W be a subspace of V . Find a natural isomorphism between
(V/W )∗ and the subspace W 0 of V ∗ consisting of linear functions that restrict to
0 on W (the annihilator of W ), and prove that it is, indeed, an isomorphism.

The previous exercise shows that the dual of a quotient is a subspace of the dual,
i.e., duality swaps the notions of quotient and subspace.

Exercise 1.5.9. Let φ : V → W be a linear map. Find a natural isomorphism
between the image imφ∗ of the dual of φ and (V/ kerφ)∗, and prove that it is,
indeed, an isomorphism.
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Here is an amusing exercise, where the hint for the second part is that it appears
in the section on quotients; which quotient is relevant here?

Exercise 1.5.10. A countable number of prisoners, labelled by the natural numbers
N, will have rational numbers tattooed on their foreheads tomorrow. Each can then
see all other prisoners’ tattoos, but not his own. Then, without any communication,
they go back to their cells, where they individually guess the numbers on their own
foreheads. Those who guess correctly are set free, the others have to remain in
prison. Today the prisoners can agree on a strategy, formalised as a sequence of
functions gi : QN\{i} → Q, i ∈ N (one for each prisoner) describing their guess as a
function of the tatooed numbers that they can see.

(1) Prove that there exists a strategy that guarantees that all but finitely
many prisoners will be set free.

(2) Does there exist a strategy as in the previous part, where moreover all gi
are Q-linear functions?

(3) We have implicitly assumed that prisoner i indeed “sees” an element of
QN\{i}, which requires that he can distinguish his fellow prisoners from
one another. Does there exist a strategy when this is not the case?

Here is another amusing variant of this problem. The first part is standard (if you
get stuck, ask your colleagues or look it up!), the second part is due to Maarten
Derickx, a former Master’s student from Leiden University.

Exercise 1.5.11. Tomorrow, the countably many prisoners will all be put in a
queue, with prisoner 0 seeing all prisoners 1, 2, 3, 4, . . . in front of him, prisoner 1
seeing all prisoners 2, 3, 4, . . . in front of him, etc. Then each gets a black or white
hat. Each sees the colours of all hats in front of him, but not his own colour or
the colours behind. Then, each has to guess the colour of his hat: first 0 shouts
his guess (black or white) so that all others can hear it, then 1, etc. Each prisoner
hears all guesses behind him before it is his turn, but not whether the guesses were
correct or not. Afterwards, those who guessed correctly are set free, and those who
guessed incorrectly remain in prison. Today, the prisoners can decide on a strategy.

(1) For each finite natural number n find a strategy such that all prisoners
will guess correctly except possibly the prisoners 0, n, 2n, . . ..

(2) Prove the existence of a strategy where all prisoners guess correctly except
possibly prisoner 0.

(3) Generalise the previous exercise to other finite numbers of colours (fixed
before the strategy meeting).

Given a linear map φ : V → W and linear subspaces V ′ ⊆ V and W ′ ⊆ W such
that φ maps V ′ into W ′, we have a unique induced linear map φ : V/V ′ → W/W ′

making the diagram

V
φ //

πV/V ′

��

W

πW/W ′

��
V/V ′

φ

// W/W ′

commutative (this is just Exercise 1.5.7 with W replaced by W/W ′ and φ replaced
by πW/W ′ ◦ φ). Suppose we have a basis (vj)j∈J and a subset J ′ ⊆ J such that
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(vj)j∈J′ span (and hence form a basis of) V ′, and similarly a basis (wi)i∈I of W
with I ′ ⊆ I indexing a basis of W ′. Then the πV/V ′vj with j not in J form a basis

of V/V ′, and the πW/W ′wi with i ∈ I form a basis of W/W ′. The matrix of φ with
respect to these latter bases is the sub-matrix of the matrix of φ with respect to
the original bases, obtained by taking only the rows whose index is in I \ I ′ and the
columns whose index is in J \ J ′. Schematically, the matrix of φ has the following
block structure: [

AI′,J′ AI′,J\J′
0 AI\I′,J\J′

]
,

where the 0 block reflects that V ′ is mapped into W ′ (and the matrix AI′,J′ is the

matrix of the restriction φ|V ′ : V ′ →W ′), and where AI\I′,J\J′ is the matrix of φ.





CHAPTER 2

Group actions and linear maps

This chapter deals with group actions on L(V,W ) and on L(V ), where V and W
are (finite-dimensional) vector spaces. The group action on L(V ) is by conjugation,
and it will be further analysed in later chapters.

2.1. Actions and orbits

Let G be a group and let X be a set. An action of G on X is a map G×X → X,
denoted (g, x) 7→ gx, satisfying the axioms 1x = x and g(hx) = (gh)x for all x ∈ X
and g, h ∈ G. Here 1 is the identity element of the group and gh is the product
of g and h in the group. The G-orbit of x ∈ X (or just orbit if G is fixed in the
context) is Gx := {gx | g ∈ G} ⊆ X.

Remark 2.1.12. The term orbit may be related to the special case where G is the
group of rotations of three-space around the z-axis, and X is the unit sphere (the
“earth”) centered at the origin. Then orbits are trajectories of points on the earth’s
surface; they are all circles parallel to the (x, y)-plane, except the north pole and
the south pole, which are fixed points of the action.

The stabiliser of x ∈ X is Gx := {g ∈ G | gx = x}. An action gives rise (and is, in
fact, equivalent) to a homomorphism G→ Sym(X), where Sym(X) is the group of
all permutations of X, by means of g 7→ (x 7→ gx); this homomorphism is called a
permutation representation of G on X. If these notions are new to you, please look
them up in textbooks or lecture notes for previous algebra courses!

The relation x ∼ y :⇔ x ∈ Gy is an equivalence relation (if x = gy then y = g−1x
and if in addition y = hz then x = (gh)z), hence the orbits Gx, x ∈ X partition
the set X. Often, in mathematics, classifying objects means describing the orbits
of some group action in detail, while normal forms are representatives of the orbits.

2.2. Left and right multiplication

The most important example in this chapter is the case where X = L(V,W ) and
G = GL(V ) × GL(W ). Here GL(V ), the General Linear group, is the subset of
L(V ) consisting of invertible linear maps, with multiplication equal to composition
of linear maps. The action is defined as follows:

(g, h)φ = h ◦ φ ◦ g−1(= hφg−1).

To verify that this is an action, note first that (1, 1)φ = φ (where the 1s stand for
the identity maps on V and on W , respectively), and for the second axiom write

[(g, h)(g′, h′)]φ = (gg′, hh′)φ = hh′φ(gg′)−1 = h(h′φ(g′)−1)g−1 = (g, h)((g′, h′)φ).

11



12 2. GROUP ACTIONS AND LINEAR MAPS

Check that things go wrong if we leave out the inverse in the definition.

Two maps φ, ψ ∈ L(V,W ) are in the same orbit if and only if there exist linear
maps g ∈ GL(V ) and h ∈ GL(W ) such that the following diagram commutes:

V
φ //

g

��

W

h

��
V

ψ
// W ;

indeed, this is equivalent to ψ = hφg−1. From the diagram it is clear that g
must map kerφ isomorphically onto kerψ, and also induce a linear isomorphism
V/ kerφ → V/ kerψ. Similarly, h must map imφ isomorphically onto imψ and
induce a linear isomorphism W/ imφ→W/ imψ.

Conversely, assume that dim kerφ = dim kerψ and dim(V/ kerφ) = dim(V/ kerψ)
and dim(W/ imφ) = dim(W/ imψ). Then we claim that φ and ψ are in the same
orbit. Indeed, choose vector space complements V1, V2 of kerφ and kerψ, respec-
tively, and vector space complements W1,W2 of imφ, imψ, respectively. By the
first two dimension assumptions, there exist linear isomorphisms g′ : kerφ→ kerψ
and g′′ : V1 → V2, which together yield a linear isomorphism g : V → V mapping
kerφ onto kerψ. Then define h′ : imφ → imψ by h′(φ(v1)) := ψ(g′′v1) for all
v1. This is well-defined because φ maps V1 isomorphically onto imφ. By the last
dimension assumption there exists a linear isomorphism h′′ : W1 → W2, which
together with h′ gives a linear isomorphism W → W satisfying h ◦ φ = ψ ◦ g, as
required.

Note that, if V is finite-dimensional, then the assumption that dim kerφ = dim kerψ
implies the other two dimension assumptions. If, moreover, W is also finite-
dimensional, then the construction just given shows that the rank of φ completely
determines its orbit: it consists of all linear maps of the same rank. After choosing
bases, this is equivalent to the fact that for n×m-matrices A,B there exist invert-
ible square matrices g and h with B = hAg−1 if and only if A and B have the same
rank.

Reformulating things entirely in the setting of (finite) matrices, we write GLn =
GLn(K) for the group of invertible n×n-matrices with entries in K. Then GLm×
GLn acts on the space Mn,m = Mn,m(K) of n×m-matrices by means of (g, h)A =
hAg−1, and the orbit of the n×m-matrix

In,m,k :=

[
I 0
0 0

]
,

where the k× k-block in the upper left corner is an identity matrix, is the set of all
rank-k matrices in Mn,m.

Exercise 2.2.13. Let A be the matrix
−21 3 −57 −84 −117
−3 21 39 63 93
27 51 199 308 443
69 93 423 651 933

 ∈M4,5(Q).

(1) Determine the rank k of A.
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(2) Determine invertible matrices g, h such that hAg−1 = I4,5,2.

2.3. Orbits and stabilisers

A fundamental observation about general group actions is that for fixed x ∈ X the
map G 7→ Gx ⊆ X, g 7→ gx factorises as follows:

G //

π

��

Gx

G/Gx

∃!

;; ,

where π : G → G/Gx is the projection g 7→ gGx mapping g to the left coset gGx
and where the dashed map sends gGx to gx—this is well-defined, since if h = gg′

with g′ ∈ Gx, then hx = (gg′)x = g(g′x) = gx by the axioms. The dashed map is
a bijection: it is surjective by definition of Gx and it is injective because gx = hx
implies that x = g−1(hx) = (g−1h)x so that g′ := g−1h lies in Gx and hence
h = gg′ ∈ gGx.

In particular, if G is finite, then G/Gx and Gx have the same cardinality. Moreover,
|G/Gx| is the number of left cosets of Gx. As these partition G and all have the
same cardinality |Gx|, we have |G/Gx| = |G|/|Gx|. Hence we find that

|G| = |Gx| · |Gx|;
this fundamental equality that can be used to compute |G| if you known |Gx| and
|Gx|, or |Gx| if you know |G| and |Gx|, etc.

2.4. Counting over finite fields

In this section we assume that K = Fq, a field with q elements.

Exercise 2.4.14. The group GLn(Fq) is finite; prove that its order is (qn−1)(qn−
q)(qn − q2) · · · (qn − qn−1).

Exercise 2.4.15. Consider the action ofG = GL2(Fq) on the setX of 1-dimensional
linear subspaces of F2

q defined by gU := {gu | u ∈ U} for g ∈ G and U a 1-

dimensional linear subspace of F2
q.

(1) Show that X consists of a single orbit, and compute its cardinality.
(2) Show that the kernel of the corresponding permutation representation

equals the centre Z consisting of all (non-zero) scalar matrices.
(3) Deduce that GL2(F2) is isomorphic to the symmetric group on 3 letters.
(4) Deduce that the quotient of GL2(F4) by its centre Z (of order 3) is iso-

morphic to the alternating group on 5 letters.

Note that the order can also be written as

q(
n
2)(qn − 1)(qn−1 − 1) · · · (q − 1)

or as
q(
n
2)(q − 1)n[n]q!,

where the q-factorial is defined as

[n]q! := [n]q[n− 1]q · · · [1]q
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and the q-bracket [a]q is defined as qa−1
q−1 = qa−1 + · · ·+ q1 + 1.

Next we compute the order of the stabiliser in GLn × GLm of the matrix In,m,k;
this is the group of tuples (g, h) such that hIn,m,k = In,m,kg. Splitting into blocks:

h =

[
h11 h12
h21 h22

]
and g =

[
g11 g12
g21 g22

]
we find that

hIn,m,k =

[
h11 0
h21 0

]
and In,m,kg =

[
g11 g12
0 0

]
.

Hence it is necessary and sufficient that g12 and h21 both be zero, and that g11 =
h11. So take g21 an arbitrary element of Mm−k,k and g11 an arbitrary element of
GLk and g22 an arbitrary element of GLm−k; for this there are

q(m−k)k+(k2)+(m−k2 )(q − 1)k+(m−k)[k]q![m− k]q! = q(
m
2 )(q − 1)m[k]q![m− k]q!

possibilities. Then h11 = g11 is fixed, but for h12 and h22 there are still

qk(n−k)+(n−k2 )(q − 1)n−k[n− k]q! = q(
n
2)−(k2)(q − 1)n−k[n− k]q!

possibilities. Hence the number of matrices of rank equal to k equals

q(
m
2 )+(n2)(q − 1)m+n[m]q![n]q!

q(
m
2 )+(n2)−(k2)(q − 1)m+n−k[k]q![m− k]q![n− k]q!

= q(
k
2)(q−1)k

[m]q![n]q!

[m− k]q![n− k]q![k]q!
.

Exercise 2.4.16. Compute the number of k-dimensional subspaces of Fnq . (Hint:
these form a single orbit under GLn(Fq). Compute the order of the stabiliser in
GLn(Fq) of the k-dimensional space spanned by the first k standard basis vectors.)

2.5. Invariants

Given an action of a group G on a set X, a function (or map) f : X → Y is called
invariant if f is constant on orbits, or, equivalently, if f(gx) = f(x) for all x ∈ X
and all g ∈ G. Here the co-domain Y can be anything: some finite set, a field, a
vector space, an algebra, etc.

For example, we have seen that the function Mn,m(K)→ N that maps a matrix to
its rank is an invariant under the action of GLm×GLn studied above. And in fact
it is a complete invariant in the sense that it completely classifies the orbits.

2.6. Conjugation

In the coming weeks we will intensively study another group action, namely, the
conjugation action of GL(V ) on L(V ) defined by gA := g◦A◦g−1. We actually never
use the notation gA, because of potential confusion with our preferred short-hand
gAg−1 for the right-hand side.

Exercise 2.6.17. Let K = Fq with q odd (so that 1 6= −1). Compute the cardina-
lities of of the orbits of the matrices[

2 0
0 2

]
,

[
1 0
0 −1

]
, and

[
0 1
0 0

]
under the conjugation action of GL2(Fq).
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Throughout the discussion of conjugation we will assume that V is a finite-dimensional
vector space of dimension n. To warm up, here are a number of invariants for this
action:

(1) rank: of course the rank of A equals that of gAg−1;
(2) determinant: we have det(gAg−1) = (det g)(detA)(det g)−1 = detA;
(3) trace: using tr(AB) = tr(BA) for linear maps (or matrices) A,B, one

finds that trace is invariant under conjugation;
(4) spectrum: this is the set of eigenvalues of A in some fixed algebraic closure

K of K, and it is invariant under conjugation;
(5) characteristic polynomial: this is the degree-n polynomial det(tI − A) ∈

K[t], which remains the same when we conjugate A by g.

Exercise 2.6.18. Assume that K = C. Using your knowledge of the Jordan
normal form, argue that these invariants, even taken together, are not complete
in the sense that they do not completely characterise orbits. Do so by giving two
square matrices A,B of the same size with the property that the above invariants
all coincide, but such that B is not conjugate to A.

Exercise 2.6.19. Let P ∈ K[t] be any polynomial in one variable. Prove that the
function L(V ) → {yes,no} sending φ to the answer to the question “Is P (φ) the
zero map?” is an invariant under conjugation. (Here P (φ) is defined by replacing
the variable t in P by φ and interpreting powers of φ as repeated compositions of
φ with itself.)

Exercise 2.6.20. Let SLn (for Special Linear group) denote the subgroup of GLn
consisting of matrices of determinant 1. Let SLn×SLn act on Mn by left-and-right
multiplication, i.e., (g, h)A equals hAg−1.

(1) Prove that det : Mn → K is an invariant.
(2) Prove that det and rank together form a complete set of invariants.
(3) Assume that K = R. Prove that for every continuous function f : Mn →

R invariant under the action there exists a continuous function g : R→ R
such that the diagram

Mn
f //

det

��

R

R
g

>>

commutes.

In the next two lectures, we will derive a complete set of invariants, and correspond-
ing normal forms, for linear maps under conjugation. What makes these normal
forms different from the Jordan normal form is that they are completely defined
over the original field K, rather than over some extension field.

2.7. Symmetric polynomials

No discussion of invariants is complete without a discussion of symmetric polyno-
mials. Let n be a natural number and let G = Sym(n) act on the polynomial
ring K[x1, . . . , xn] in n variables by πf := f(xπ(1), . . . , xπ(n)), so that, for instance
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(1, 2, 3)(x21x2 − x2x3) = x22x3 − x1x3). A polynomial f is called symmetric if it
is invariant under Sym(n), i.e., if πf = f for all π ∈ Sym(n). In particular, the
elementary symmetric polynomials

s1 := x1 + x2 + . . .+ xn

s2 := x1x2 + x1x3 + . . .+ xn−1xn
...

sk :=
∑

i1<...<ik

xi1 · · ·xik

...

sn := x1x2 · · ·xn
are symmetric polynomials. They are in fact a complete set of symmetric polyno-
mials, in the following sense.

Theorem 2.7.21. If f is a symmetric polynomial in x1, . . . , xn, then there exists a
polynomial g in n variables y1, . . . , yn such that f is obtained from g by replacing
yi by si.

In fact, the polynomial g is unique, but we will not need that. The relation of
this theorem with the notion of invariants above is the following: Sym(n) acts by
means of linear maps on Kn permuting the standard basis. Symmetric polynomials
give rise to invariant polynomial functions Kn → K, and the theorem states that
all invariant polynomial functions can be expressed in the elementary symmetric
polynomial functions. Here, strictly speaking, we have to assume that K is infinite,
since if it is finite of order q then xq1, while clearly a different polynomial from x1,
defines the same polynomial function Kn → K as x1 does.

Proof. Define a linear order on monomials in the xi as follows: xa11 · · ·xann is

larger than xb11 · · ·xbnn if the first non-zero entry of (a1− b1, . . . , an− bn) is positive.
Hence the largest monomial of sk equals x1 · · ·xk. It is easy to see that this linear
order is a well-order: there do not exist infinite, strictly decreasing sequences m1 >
m2 > . . . of monomials.

The Sym(n)-orbit of a monomial xa11 · · ·xann consists of all monomials of the form

x
aπ(1)

1 · · ·xaπ(n)
n . Among these, the monomial corresponding to permutations such

that the sequence aπ(1), . . . , aπ(n) decreases (weakly) is the largest monomial.

Now let m = xa11 · · ·xann be the largest monomial with a non-zero coefficient in f .
Since f is symmetric, all monomials in the Sym(n)-orbit of m also have non-zero
coefficients in f . Since m is the largest among these, we have a1 ≥ . . . ≥ an.

Now consider the monomial g1 := yann y
an−1−an
n−1 · · · ya1−a21 . It is easy to see that

the polynomial g1(s1, . . . , sn) obtained by replacing yk by sk has the same largest
monomial m as f . Hence subtracting a suitable scalar multiple we arrive at a
polynomial

f1 := f − cg1(s1, . . . , sn)

where the coeffient of m has become zero, so that the largest monomial is strictly
smaller than m. By induction, this proves the theorem. �
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The following exercise shows the link with invariants of matrices under conjugation.

Exercise 2.7.22. Take K = C. Let ck : Mn(C) → C be the i-th coefficient of the
characteristic polynomial, i.e., we have

det(tI −A) = tn + c1(A)tn−1 + . . .+ cn−1(A)t+ cn(A),

so that, in particular, cn(A) = (−1)n detA and c1(A) = − tr(A). Then the ck are
polynomial functions Mn(C)→ C that are invariant under conjugation.

(1) Check that ck(A) = (−1)ksk(λ1, . . . , λn), where λ1, . . . , λn are the eigen-
values (listed with multiplicities) of A.

In the following parts, let f : Mn(C)→ C be any polynomial function of the matrix
entries that is invariant under conjugation.

(2) Prove that the restriction of f to the space of diagonal matrices, identified
with Cn, is a polynomial function of the elementary symmetric polynomi-
als in those diagonal entries.

(3) Prove that f itself (on all of Mn(C)) is a polynomial in the functions
c1, . . . , cn. (Hint: you may use that polynomials are continuous functions,
and that diagonalisable matrices are dense in Mn(C).





CHAPTER 3

The minimal polynomial and nilpotent maps

In this chapter, we study two important invariants of linear maps under conjugation
by invertible linear maps. These are the minimal polynomial on the one hand, which
is defined for any linear map, and a combinatorial object called associated partition,
which is defined only for so-called nilpotent linear maps.

3.1. Minimal polynomial

Throughout this chapter, V is a finite-dimensional vector space of dimension n
over K, and φ is a linear map from V to itself. We write φ0 for the identity
map I : V → V , φ2 for φ ◦ φ, φ3 for φ ◦ φ ◦ φ, etc. Let p = p(t) ∈ K[t] be a
polynomial in one variable t, namely p = c0 + c1t + . . . + cdt

d. Then we define
p(φ) := c0I + c1φ+ . . .+ cdφ

d. We say that φ is a root of p if p(φ) is the zero map
V → V . A straightforward calculation shows that the map K[t] → L(V ), p 7→
p(φ) is an algebra homomorphism, i.e., it satisfies (p + q)(φ) = p(φ) + q(φ) and
(pq)(φ) = p(φ)q(φ) = q(φ)p(φ), where the multiplication in K[t] is multiplication
of polynomials and the multiplication in L(V ) is composition of linear maps. Since
L(V ) has finite dimension over K, the linear maps I, φ, φ2, . . . cannot be all linearly
independent. Hence the linear map p 7→ p(φ) must have a non-zero kernel I. This
kernel is an ideal in K[t]: if q, r ∈ I , which means that q(φ) = r(φ) = 0, then also
q + r ∈ I and pq ∈ I for all p ∈ K[t].

Let pmin be a non-zero polynomial of minimal degree in I that has leading coefficient
equal to 1, i.e., which is monic. Every polynomial p ∈ I is a multiple of pmin. Indeed,
by division with remainder we can write p = qpmin + r with deg r < deg pmin. But
then r = p− qpmin lies in I, and hence must be zero since pmin had the least degree
among non-zero elements of I. Hence p = qpmin. In particular, it follows that
pmin ∈ I with the required properties (minimal degree and monic) is unique, and
this is called the minimal polynomial of φ. The minimal polynomial of a square
matrix is defined in exactly the same manner.

Exercise 3.1.23. Write a Mathematica function MinPol that takes as input a
square integer matrix A and a number p that is either 0 or a prime, and that
outputs the minimal polynomial of A over Q if p = 0 and the minimal polynomial
of A over K = Z/pZ if p is a prime.

Exercise 3.1.24. Show that pmin is an invariant of φ under the conjugation action
of GL(V ) on L(V ).

19
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3.2. Chopping up space using pmin

The minimal polynomial will guide us in finding the so-called rational Jordan nor-
mal form of φ. The first step is the following lemma.

Lemma 3.2.25. Suppose that φ is a root of p · q, where p and q are coprime poly-
nomials. Then V splits as a direct sum ker p(φ)⊕ ker q(φ).

Perhaps a warning is in order here: (pq)(φ) = 0 does not imply that one of p(φ), q(φ)
must be zero.

Proof. Write 1 = ap + bq for suitable a, b ∈ K[t]; these can be found using
the extended Euclidean algorithm for polynomials. Then for v ∈ V we have v =
a(φ)p(φ)v + b(φ)q(φ)v. The first term lies in ker q(φ), because

q(φ)a(φ)p(φ)v = a(φ)(p(φ)q(φ))v = 0

(while linear maps in general do not commute, polynomials evaluated in φ do—
check this if you haven’t already done so). Similarly, the second term b(φ)q(φ)v
lies in ker p(φ). This shows that ker p(φ) + ker q(φ) = V . Finally, if v is in the
intersection ker p(φ) ∩ ker q(φ), then the above shows that v = 0 + 0 = 0. Hence
the sum in ker p(φ) + ker q(φ) is direct, as claimed. �

Exercise 3.2.26. Prove that, in the setting of the lemma, im p(φ) = ker q(φ) (and
vice versa).

In the lemma, both subspaces V1 := ker p(φ) and V2 := ker q(φ) are stable under
φ, which means that φ maps Vi into Vi for i = 1, 2. Indeed, if v ∈ V1, then
p(φ)φv = φp(φ)v = 0 so that φv ∈ V1, as well.

Now factor pmin as pm1
1 · · · pmrr where the pi are distinct, monic, irreducible poly-

nomials in K[t], and the exponents mi are strictly positive. Write qi := pmii . The
polynomial q1 is coprime with q2 · · · qr. Hence we may apply the lemma and find

V = ker q1(φ)⊕ ker(q2 · · · qr)(φ).

Now let W be the second space on the right-hand side. This space is stable under
φ, and the restriction φ|W on it is a root of the polynomial q2 · · · qr. Moreover, q2
is coprime with q3 · · · qr. Hence we may apply the lemma with V replaced by W ,
φ replaced by φ|W , p replaced by q2 and q replaced by q3 · · · qr to find

W = ker q2(φ|W )⊕ ker(q3 · · · qr)(φ|W ).

Now ker q2(φ) ⊆ V and ker(q3 · · · qr)(φ) ⊆ V are both contained in W , so that we
may as well write

W = ker q2(φ)⊕ ker(q3 · · · qr)(φ),

and hence

V = ker q1(φ)⊕ ker q2(φ)⊕ ker(q3 · · · qr)(φ).

Continuing in this fashion we find that

V =
⊕

ker qi(φ);

in what follows we write Vi := ker qi(φ) and φi : Vi → Vi for the restriction of φ to
Vi.
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Now recall that we are trying to find invariants and normal forms for linear maps
under conjugation. Suppose that we have a second element ψ ∈ L(V ) and want
to find out whether it is in the same orbit as φ. First, we have already seen in
Exercise 3.1.24 that both minimal polynomials must be the same. Moreover, if φ =
gψg−1, then for each i = 1, . . . , r, the linear map g maps ker qi(ψ) isomorphically
onto Vi. This proves that the dimensions of these spaces are invariants. Conversely,
if these dimensions are the same for φ and for ψ, then one can choose arbitrary
linear isomorphisms hi : ker qi(ψ) → Vi. These together give a linear isomorphism
h : V → V with the property that for ψ′ := hψh−1 we have ker qi(ψ

′) = Vi. Write
ψ′i for the restriction of ψ′ to Vi. Of course, ψ and φ are GL(V )-conjugate if and
only if ψ′ and φ are, and this is true if and only if each ψ′i is GL(Vi)-conjugate to
each φi. Indeed, if φi = giψ

′
ig
−1
i , then the gi together define an element g of GL(V )

conjugating ψ′ into φ. Conversely, a g that conjugates ψ′ into φ necessarily leaves
each Vi stable, and the restrictions gi to the Vi conjugate ψ′i into φi.

Now replace φ by a single φi, and V by Vi. The point of all this is that we have thus
reduced the search for invariants and normal forms to the case where φ ∈ L(V ) is
a root of a polynomial pm with p irreducible and monic. Then it follows that the
minimal polynomial of φ itself must also be a power of p; assume that we have taken
m minimal, so that pmin = pm. In the next chapter, we will split such a linear map
φ into two commuting parts: a semi-simple part φs whose mimimal polynomial is
p itself, and a nilpotent part φn. The remainder of the present chapter deals with
the latter types of matrices.

3.3. The partition associated to a nilpotent map

Starting afresh, let V be a finite-dimensional vector space of dimension n, and let
φ ∈ L(V ) be a linear map such that φm = 0 for some sufficiently large nonnegative
integer m; such linear maps are called nilpotent. Note that any linear map conjugate
to φ is then also nilpotent. Let m be the smallest natural number with φm = 0, so
that pmin = tm; m is also called the nilpotency index of φ.

Exercise 3.3.27. In the setting preceding this exercise, fix a non-zero vector v ∈ V
and let p ≥ 0 be the largest exponent for which φpv is non-zero. Prove that
v, φv, . . . , φpv are linearly independent. Derive from this that m, the degree of
pmin, is at most n. If p = n − 1, give the matrix of φ with respect to the basis
v, φv, . . . , φn−1v.

Write Vi for imφi; so for i ≥ m we have Vi = {0}. Then we have a chain of
inclusions

V = V0 ⊇ V1 ⊇ · · · ⊇ Vm = {0}.
Now note that φ(Vi) = Vi+1, so that φ induces a surjective linear map Vi−1/Vi →
Vi/Vi+1. For i ≥ 1 write λi := dimVi−1 − Vi. By surjectivity and by the fact that
φm−1 6= 0 we have λ1 ≥ · · · ≥ λm > 0 = λm+1 = . . .. Moreover, by construction,
we have

∑m
i=1 λi = n = dimV . A non-increasing sequence (λ1, . . . , λm) of positive

numbers adding up to n is called a partition of n with parts λ1, . . . , λm. We call λ
the partition associated to φ—though this is not completely standard terminology:
often, the partition associated to φ is defined as the transpose of λ in the following
sense.
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λ = (5, 5, 2, 1) λ′ = (4, 3, 2, 2, 2)

Figure 1. A Young diagram of a partition and its transpose.

Definition 3.3.28. Given any partition λ = (λ1, . . . , λm) of n, we define a second
partition λ′ = (λ′1, . . . , λ

′
p) of n by p := λ1 and λ′k := |{i ∈ {1, . . . ,m} | λi ≥ k}|.

The partition λ′ is called the transpose of λ.

Why this is called the transpose is best illustrated in terms of Young diagrams
depicting λ and λ′; see Figure 1.

Exercise 3.3.29. Prove that λ′ is, indeed, a partition of n, and that (λ′)′ = λ.

A straightforward check shows that the associated partition is an invariant un-
der conjugation. The following theorem states that it is a complete invariant for
nilpotent linear maps.

Theorem 3.3.30. Two nilpotent linear maps φ, ψ ∈ L(V ) are in the same orbit of
the conjugation action of GL(V ) if and only if the partitions of n as constructed
above from φ and ψ are the same. Morever, every partition of n occurs in this
manner.

The proof of the first part of this theorem will be carried out in the next subsection.
For the second part, it suffices to exhibit an n×n-matrix giving rise to any partition
λ = (λ1, . . . , λm) of n.

Let λ′ = (λ′1, . . . , λ
′
p) be the transpose of λ. Let A be the block-diagonal n×n-block

matrix J1 . . .

Jp

 where Ji =


0 1

0 1
. . .

. . .

0 1
0

 ,
with λ′i rows and columns (the block consists of a single zero if λ′i equals 1). We
claim that A gives rise the partition λ in the manner above. Indeed, Ji contributes
1 to dim imAk−1 − dim imAk if λ′i ≥ k, and zero otherwise. Hence dim imAk−1 −
dim imAk is the number of indices i for which λ′i is at least k. This gives the
transpose of λ′, which is λ itself again.

3.4. Completeness of the associated partition

Given a nilpotent linear map φ ∈ L(V ) with associated partition λ = (λ1, . . . , λm)
whose transpose is λ′ = (λ′1, . . . , λ

′
p), we will prove that there exists a basis of

V with respect to which φ has the matrix A constructed above. This implies that
any other nilpotent ψ ∈ L(V ) with the same associated partition λ is conjugate to φ.
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We proceed as follows:

(1) First, choose a basis z1, . . . , zλm of Vm−1.
(2) Next, choose y1, . . . , yλm ∈ Vm−2 such that φyi = zi. This is possible

because φ : Vm−2 → Vm−1 is surjective. Now y1 + Vm−1, . . . , yλm +
Vm−1 are linearly independent elements of Vm−2/Vm−1, because their φ-
images in Vm−1/Vm = Vm−1 are linearly independent. Choose a basis
yλm+1 + Vm−1, . . . , yλm−1

+ Vm−1 ∈ Vm−2/Vm−1 of the kernel of the map

φ : Vm−2/Vm−1 → Vm−1/Vm = Vm−1. This means that each φ(yi) = 0.
The elements y1, . . . , yλm−1

thus found represent a basis of Vm−2/Vm−1.
(3) The pattern is almost clear by now, but there is a catch in the next

step: choose x1, . . . , xλm−1 ∈ Vm−3 such that φxi = yi, and further a
basis x̃λm−1+1 + Vm−2, . . . , x̃λm−2 + Vm−2 ∈ Vm−3/Vm−2 of the kernel

of induced map φ : Vm−3/Vm−2 → Vm−2/Vm−1. This means that each
φ(x̃i) is in Vm−1, i.e., is a linear combination of z1, . . . , zλm . Hence, by
subtracting the corresponding linear combinations of y1, . . . , yλm from x̃i
we obtain a vector xi ∈ Vm−3 that is in the kernel of φ. The vectors
x1 + Vm−2, . . . , xλm−2 + Vm−2 are a basis of Vm−3/Vm−2.

(4) . . . (in the next step, one chooses w̃λm−2+1, . . . , w̃λm−3 that map to a basis

of the kernel of φ : Vm−4/Vm−3 → Vm−3/Vm−2. This means that each
φ(w̃i) is a linear combination of y1, . . . , yλm−1

, z1, . . . , zλm . Subtracting
the corresponding linear combination of x1, . . . , xλm−1

, y1, . . . , yλm , one
finds vectors wi properly in the kernel of φ, etc.) . . . until:

(5) Choose a1, . . . , aλ2 ∈ V0 such that φai = bi, and extend to a basis a1 +
V1, . . . , aλ1 + V1 of V0/V1 such that φ(ai) = 0 for i > λ2.

By construction, a1, . . . , aλ1
, b1, . . . , bλ2

, . . . , z1, . . . , zλm form a basis of V . Indeed,
let v ∈ V . Then there is a unique linear combination a of a1, . . . , aλ1

such that
v−a ∈ V1, and a unique linear combination b of b1, . . . , bλ2

such that v−a−b ∈ V2,
etc. We conclude that v is a unique linear combination of the vectors above.

Moreover, each ak generates a Jordan block as follows: φ maps ak 7→ bk 7→ . . . 7→ 0,
where the zero appears when the corresponding λi is smaller than k, so that there
are no basis vectors indexed k in that step. In other words, the number of Jordan
blocks is equal to λ1, and the k-th Jordan block has size equal to the number of i
for which λi is ≥ k. This is precisely the k-th part λ′k of the transposed partition.

Exercise 3.4.31. Write a Mathematica program that takes as input a nilpotent
matrix and computes the associated partition. Apply this program to the matrix

1 1 −1 0 −1
0 0 0 0 0
0 1 0 1 −1
1 0 −1 −1 0
1 0 −1 −1 0

 .
Exercise 3.4.32. Let n = 3 and let K = Fq be a field with q elements.

(1) How many orbits does GL3(K) have by conjugation on the set of nilpotent
3× 3-matrices? For each orbit, give a representative matrix A as above.
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(2) For each of these matrices A, compute the cardinality of the stabiliser
{g ∈ GL3(K) | gAg−1 = A} of A, and deduce the cardinality of these
orbits.

As observed out by Jorn van der Pol in Fall 2011, the cardinalities of the orbits
add up to q6, which gives a check that you carried out the right computation in the
second part of the exercise. This is, in fact, a general result.

Theorem 3.4.33. The number of nilpotent n× n-matrices over Fq equals qn(n−1).

Various proofs of this fact are known in the literature, but here is one found by An-
dries Brouwer and Aart Blokhuis after Jorn’s observation, (also implicit in existing
literature).

Proof. Denote the number of nilpotent n×n-matrices over Fq by an. We first
derive a linear relation among a0, . . . , an, and then by a combinatorial argument
show that the numbers qk(k−1) satisfy this relation. Since a0 = 1 (the empty matrix
is nilpotent) this proves the theorem.

To derive the relation among a0, . . . , an, let φ be a general n × n-matrix, defining
a linear map Kn → Kn. Let d be the exponent of t in the minimal polynomial
pmin of φ, and write pmin = tdq. By Lemma 3.2.25 we can write V = V0 ⊕ V1 with
V0 = kerφd and V1 = ker q(φ). The fact that q is not divisible by t means that it
is of the form c+ tq1 with c a non-zero constant and q1 a polynomial. This means
that the restriction of φ to V1 is invertible (with inverse − 1

c q1(φ)), while of course
the restriction of φ to V0 is nilpotent. Thus to every linear map φ : Kn → Kn we
associate the four-tuple (V0, V1, φ|V0 , φ|V1) with the third entry a nilpotent linear
map and the fourth entry an invertible linear map. Conversely, splitting Kn into
a direct sum U0 ⊕ U1 and choosing any nilpotent linear map ψ0 : U0 → U0 and
any invertible linear map ψ1 : U1 → U1 we obtain a “block-diagonal” linear map
ψ : Kn → Kn which restricts to ψ0 on U0 and to ψ1 on U1. Thus we have found two
ways to count linear maps Kn → Kn: first, the straightforward way by counting

matrix entries, which gives qn
2

, and second, the detour through splitting Kn into
a direct sum U0 ⊕ U1 where U0 has dimension k, say, for which we denote the
number of possibilities by bk, then choosing a nilpotent linear map in L(U0) (ak
possibilities) and an invertible linear map in L(U1) (ck possibilities). This gives the
equality

qn
2

=

n∑
k=0

akbkck.

In this expression we know ck and bk explicitly, namely,

ck = |GLn−k|

bk =
|GLn|

|GLk||GLn−k|
,

where the expression for bk is explained by choosing a basis of Kn and then letting
U0 be the span of the first k columns and U1 be the span of the last k columns,
and accordingly dividing by the number of bases of U0 and U1, respectively. Thus
we obtain

bkck =
|GLn|
|GLk|

= (qn − 1) · · · (qk+1 − 1)q(
n
2)−(k2).
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Hence to prove that ak = qk(k−1) it suffices to prove the equality

qn
2

=

n∑
k=0

(qn − 1) · · · (qk+1 − 1)qk(k−1)+(n2)−(k2).

For this, we start all over and enumerate general n × n-matrices yet in a different
manner, namely, as follows. If φ is a matrix, then let k be minimal such that the
first n − k columns of φ are linearly independent. So k = 0 if φ is invertible and
k = n if the first column of k is the zero column. Then the (n − k + 1)st column
(if existent) is a linear combination of the first n − k columns, and the remaining
columns are arbitrary. This yields the equality

qn
2

=

n∑
k=0

(qn − 1)(qn − q) · · · (qn − qn−k−1)qn−kqn(k−1),

where the factor qn−k counts the number of possibilities for the (n−k+1)st column.
Note that the term with k = 0 is also valid because then the last two factors cancel.
Now we claim that the k-th terms in the two found expressions for qn

2

coincide.
Indeed, the k-th term in the latter is equal to

(qn − 1)(qn−1 − 1) · · · (qk+1 − 1)q
1
2 (n−k)(n−k−1)+(n−k)+n(k−1).

Finally, the exponents of q in both k-th terms are equal to
(
n
2

)
+
(
k
2

)
. This concludes

the proof of the theorem. �





CHAPTER 4

Rational Jordan normal form

This chapter concludes our dicussion started in Chapter 3 of linear maps under
the action of conjugation with invertible linear maps. We derive a complete set of
invariants under a technical assumption on the field, namely, that it is perfect—this
is needed from Section 4.3 on.

4.1. Semisimple linear maps

In Chapter 3 we have seen nilpotent linear maps and their orbits. In this section we
will get acquainted with the other extreme: semisimple linear maps. In the sections
following this one, we combine results on both types of maps to derive the rational
Jordan normal form.

A polynomial p ∈ K[t] is called square-free if it has no factor of the form q2 with
q a non-constant polynomial. Writing p as pm1

1 · · · pmrr where the pi are distinct
irreducible polynomials and the mi are positive integers, p is square-free if and only
if all mi are equal to 1. The polynomial f := p1 · · · pr is then called the square-free
part of f . Note that f divides p, while p in turn divides fm where m := maximi.

Now let V be a finite-dimensional vector space. A linear map φ ∈ L(V ) is called
semisimple if there exists a square-free polynomial p such that p(φ) = 0. As such a
polynomial is automatically a scalar multiple of the minimal polynomial pmin of φ,
semisimplicity of φ is equivalent to the requirement that pmin itself is square-free.
Write pmin = p1 · · · pr where the pi are distinct and irreducible. In Chapter 3 we
have seen that then V =

⊕r
i=1 Vi where each Vi := ker pi(φ) is a φ-stable subspace

of V , so if we choose bases in the subspaces Vi separately, then the matrix of φ
becomes block-diagonal with r diagonal blocks, one for each Vi. Let us concentrate
on these blocks now: the restriction φi of φ to Vi is a root of pi, so if we now zoom
in and write V for Vi and φ for φi and p for pi, then the minimal polynomial of φ is
the irreducible polynomial p. The following example gives fundamental examples
of linear maps of this type.

Example 4.1.34. Let W = K[t]/(p) be the quotient of K[t] by the ideal consisting
of all multiples of a monic polynomial p. Let ψ = ψp : W → W be the linear map
defined by ψ(f + (p)) := tf + (p). Then we claim that ψ has minimal polynomial
p. Indeed, let q = cet

e + ce−1te−1 + . . .+ c0 be any polynomial. Then we have

(q(ψ))(f + (p)) = (ceψ
e + ce−1ψ

e−1 + . . .+ c0I)(f + (p))

= (cet
e + ce−1t

e−1 + . . .+ c0)f + (p)

= qf + (p).

27
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Hence ψ is a root of q if and only if qf is a multiple of p for every polynomial f ,
which happens if and only if q is a multiple of p (substitute f = 1 for the “only
if” direction). Now write p = td + bd−1td + · · · + b0. Then the matrix of ψp with
respect to the monomial basis 1 + (p), t+ (p), . . . , td−1 + (p) of W equals

Cp :=


0 −b0
1 0 −b1

. . .
. . .

...
1 0 −bd−2

1 −bd−1

 ,

called the companion matrix of p.

Returning to the discussion above, where φ has an irreducible polynomial p as mi-
nimal polynomial, we claim that we can choose a basis of V such that the matrix of
φ becomes block-diagonal with diagonal blocks that are all copies of the companion
matrix Cp. This means, in particular, that dimV must be a multiple ld of the
degree d of p. Why would that be true? For an analogy, recall the argument
why the cardinality of a finite field K is always a prime power al: it is a vector
space of dimension l over its subfield consisting of 0, 1, 2, . . . , a − 1 where a is the
(necessarily prime) characteristic of K. Here the argument is similar: in addition
to the vector space structure over K, we can give V a vector space structure over
the field F := K[t]/(p) containing K. Note that this is, indeed, a field because p is
irreducible. We do not need to re-define addition in V , but we do need to define
scalar multiplication with an element f +(p) of F . This is easy: given v ∈ V we set
(f + (p))v := f(φ)v. This is well-defined, since if we add a multiple bp to f , with
b ∈ K[t], then (bp)(φ) maps v to zero. One readily verifies all the axioms to show
that this gives V the structure of an F -vector space. Let v1, . . . , vl be a basis of V as
an F -vector space, and set Wi := Fvi. This is a 1-dimensional F -vector space, and
since F is a d-dimensional K-vector space, so is Wi. Since every element of V can
be written as a unique F -linear combination of v1, . . . , vl, we have the direct sum
decomposition V = W1⊕ . . .⊕Wl of V into K-subspaces. Each Wi is φ-stable, so if
we choose bases of the Wi separately, then the matrix of φ becomes block-diagonal
with l blocks of size d× d on the diagonal. Finally, when we take for Wi the basis
vi, φvi, . . . , φ

d−1vi, then these block matrices are exactly the companion matrices
Cp, as claimed above.

Summarising all of this section, we have proved the following structure theorem for
semisimple linear maps.

Theorem 4.1.35. Assume that φ ∈ L(V ) is semisimple with minimal polynomial
p1 · · · pr where the pi are irreducible. Let di be the degree of pi and set li :=
1
di

dim ker pi(φ). Then the li are natural numbers satisfying l1d1 + . . . lrdr = dimV ,
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zizi+1

f (zi)

Figure 1. The Newton method for finding roots of a function.

and V has a basis with respect to which the matrix of φ is

Cp1
. . .

Cp1
Cp2

. . .

Cpr


,

where the number of blocks containing the companion matrix Cpi equals li.

4.2. Hensel lifting

Recall the Newton method for finding roots of a real-valued function (see Figure 1):
if zi is the current approximation of a root, then the next approximation is found
by

zi+1 := zi −
f(zi)

f ′(zi)

where f ′ denotes the derivative of f . Under suitable initial conditions, which in
particular imply that the denominator f ′(zi) never becomes zero, the sequence
z1, z2, z3, . . . converges to a nearby root of f . Remarkably, the same formula works
beautifully in the following completely different set-up.

Theorem 4.2.36 (Hensel lifting). Let f, q ∈ K[t] be polynomials for which the
derivative f ′ is co-prime with q, and assume that q|f . Then for every i = 1, 2, 3, . . .
there exists a polynomial zi ∈ K[t] such that f(zi) = 0 mod qi and zi = t mod q.

Here f(z) is the result of substituting the polynomial z for the variable t in f . So
for instance, if f = t2 and z = t+ 1, then f(z) = (t+ 1)2. The property f(zi) = 0
mod qi expresses that f(zi) gets “closer and closer to zero” as i→∞, while zi = t
mod q expresses that the approximations of the root thus found are “nearby” the
first approximation t.

Proof. We will use the Taylor expansion formula:

f(t+ s) = f(t) + sf ′(t) + s2g(t, s)

for some two-variable polynomial g ∈ K[t, s]—check that you understand this!
Define z1 := t, so that f(z1) = f(t) = 0 mod q since q|f . Assume that we have
found zi with the required properties. Since f ′ and q are co-prime, by the extended
Euclidean algorithm one finds polynomials a and b such that af ′ + bq = 1. This
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means that af ′ = 1 mod q, which leads us to let a play the role of 1/f ′ in the
formula above. We therefore define, for i ≥ 1,

zi+1 := zi − a(zi)f(zi),

and we note that zi+1 = zi mod qi, so that certainly zi+1 = z1 mod q = t mod q.
Next we compute

f(zi+1) = f(zi − a(zi)f(zi))

= f(zi)− [a(zi)f(zi)]f
′(zi) + [a(zi)f(zi)]

2g(zi, a(zi)f(zi))

= f(zi)− [1− b(zi)q(zi)]f(zi) mod qi+1

= b(zi)q(zi)f(zi),

where the third equality follows from f(zi)
2 = 0 mod q2i and 2i ≥ i+ 1. Now use

that zi = t mod q, which implies q(zi) = q(t) mod q, or in other words q divides
q(zi). Since qi divides f(zi), we find that qi+1 divides the last expression, and we
are done. �

4.3. Jordan decomposition

We will use Hensel lifting to split a general linear map into a semisimple and
nilpotent map. However, we will do this under an additional assumption on our
ground field K, namely, that it is perfect. This means that either the characteristic
of K is zero, in which case there is no further restriction, or the characteristic of
K is a prime a, in which we impose the condition that every element of K is an
a-th power. Every finite field K of characteristic a is perfect, because taking the
a-th power is in fact an Fa-linear map K → K with trivial kernel, so that it is a
bijection and in particular surjective. A typical example of a non-perfect field is
the field Fa(s) of rational functions in a variable s. Indeed, the element s in this
field has no p-th root (but of course it does in some extension field).

We will use the following characterisation of square-free polynomials over perfect
fields.

Exercise 4.3.37. Assuming that K is perfect, prove that p ∈ K[t] is square-free
if and only if it is coprime with its derivative p′. (Hint: use the decomposition of
p into pm1

1 · · · pmrr with irreducible and coprime pi, and apply the Leibniz rule. If
the characteristic of K is zero, then the derivative of a non-constant polynomial
is never zero, and you may use this fact. However, if the characteristic of K is a
positive prime number a, then derivatives of non-constant polynomials are zero if
all exponents of t appearing in it are multiples of a. For this case, use the fact that
K is perfect.)

We can now state the main result of this section.

Theorem 4.3.38 (Jordan decomposition). Let V be a finite-dimensional vector
space over a perfect field K and let φ ∈ L(V ). Then there exist unique φn, φs ∈ L(V )
such that

(1) φ = φs + φn,
(2) φn is nilpotent,
(3) φs is semisimple, and
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(4) φsφn = φnφs (i.e., they commute).

The proof will in fact show that φs can be taken equal to z(φ) for a suitable
polynomial z ∈ K[t]. Being a polynomial in φ, φs then automatically commutes
with φs and with φ− φs = φn.

Proof. Let pmin be the minimal polynomial of φ and let f be its square-free
part. Then f and f ′ are coprime by Exercise 4.3.37; this is where we use perfectness
of K. We may therefore apply Hensel lifting with q equal to f . Hence for each
i ≥ 1 there exists a polynomial zi ∈ K[t] with f(zi) = 0 mod f i and zi = t
mod f . Take i large enough, so that f i is divisible by pmin. Then f i(φ) is the zero
map, hence so is f(zi(φ)). Set φs := zi(φ). Then we have f(φs) = 0, and since
f is square-free, φs is semisimple. Next, since t − zi is a multiple of f , we find
that (t − zi)i is a multiple of f i, and therefore (φ − φs)i, which is obtained from
(t−zi(t))i by substituting φ for t, is the zero map. Hence φn := φ−φs is nilpotent.
As remarked earlier, φs is a polynomial in φ and hence commutes with φ and with
φn. This proves the existence part of the theorem. The uniqueness is the content
of the following exercise. �
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Exercise 4.3.39. Assume that φ = ψs + ψn where ψs is semisimple and ψn is
nilpotent, and where ψnψs = ψsψn.

(1) Prove that ψs and ψn both commute with both φs and φn constructed in
the proof above.

(2) Prove that φs − ψs, which equals ψn − φn, is nilpotent.

It turns out that the sum of commuting semisimple linear maps is again semisimple;
we will get back to that in a later chapter.

(3) Prove that −φs is semisimple, and conclude that so is φs − ψs.
(4) From the fact that φs−ψs is both semisimple and nilpotent, deduce that

it is zero.

This proves the uniqueness of the Jordan decomposition.

4.4. Rational Jordan normal form

We can now prove the main result of this chapter.

Theorem 4.4.40. Let V be a finite-dimensional vector space over a perfect field
K and let φ ∈ L(V ). Write pmin = pm1

1 · · · pmrr for the minimal polynomial of
φ, where the pi are distinct, monic, irreducible polynomials and where the mi are
positive integers. For each i = 1, . . . , r write Vi := ker(pi(φ)mi) and write φi for
the restriction of φ to Vi. Let (φi)s + (φi)n be the Jordan decomposition of φ. Let
λ(i) denote the partition of dimVi associated to the nilponent map (φi)n. Then the
map that sends φ to the unordered list of pairs (pi, λ

(i)) is a complete invariant for
the action of GL(V ) on L(V ) by conjugation.

We have already convinced ourselves that this map is, indeed, an invariant. To
prove completeness, we have to show that we can find a basis of V with respect to
which the matrix of φ “depends only on those pairs”. We do this by zooming in on
a single Vi, which we call V to avoid indices. Similarly, we write φ for φi, p,m for
pi,mi, as well as φs, φn, λ for their i-indexed counterparts.

Recall from the proof of the Jordan decomposition that φs is a root of p, the
square-free part of pmin = pm. Thus we may give V the structure of a vector space
over F := K[t]/(p), with multiplication given by (f + (p))v := f(φs)v, as in the
discussion in Section 4.1. The K-linear nilpotent map φn is even F -linear, since
it commutes with φs. Let λF be the partition of dimF V associated to φn, with
λ′F = (a1, . . . , as) its dual. Then our structure theory for nilpotent maps shows that
there exists an F -basis v1, . . . , vl of V with respect to which φn is block-diagonal
with block sizes a1, . . . , as, where the j-th block equals

0 1
0 1

. . .
. . .

0 1
0

 ,
with aj rows and columns. Now in each one-dimensional F -space Fvi choose the K-
basis vi, φsvi, . . . , φ

d−1
s vi, where d is the degree of p. With respect to the resulting



4.4. RATIONAL JORDAN NORMAL FORM 33

K-basis of V , the matrix of φn becomes block-diagonal with the same shape, except
that the zeroes and ones in the matrix above now stand for d × d-zero matrices
and d × d-identity matrices, respectively. Moreover, the matrix of φs relative to
the resulting K-basis is block-diagonal with all diagonal blocks equal to the d× d-
companion matrix Cp. We conclude that the matrix of φ with respect to the K-basis
thus found is block-diagonal with block sizes a1, . . . , as, where the j-th block equals

Cp I
Cp I

. . .
. . .

Cp I
Cp

 ,
with aj · d rows and columns. We have thus found the required normal form:
zooming out again to the setting in the theorem, we see that we can find a matrix
for our original, arbitrary linear map φ, with diagonal blocks of the above type,
where p runs from p1 to pr. This matrix is called the rational Jordan normal form
of φ. There is one minor issue, though: we have used the partition λF rather than
the original partition λ. The following exercise explains the relation, showing in
particular that the latter determines the former.

Exercise 4.4.41. Let V be a finite-dimensional vector space over F of dimension
l, where F is a field extension of K of finite dimension d over K. Let φ ∈ LF (V ) be
a nilpotent linear map; then φ may also be regarded as a nilpotent K-linear map.
Describe the relation between the associated partitions λF (when φ is regarded
F -linear) and λK (when it is regarded merely K-linear).

Exercise 4.4.42. In this exercise you may use the full power of Mathematica.
Download the large matrix A over Q from the course webpage.

(1) Find the minimal polynomial of A.
(2) Perform Hensel lifting to find the a polynomial z(x) such that As := z(A)

is semisimple and A−As is nilpotent. Also find As and An.
(3) For each irreducible factor of the minimal polynomial, compute the asso-

ciated partition (over Q).
(4) Find the rational Jordan normal form B of A over Q.
(5) Find a linear map g ∈ GL(V ) such that gAg−1 = B.





CHAPTER 5

Tensors

In many engineering applications, data are stored as multi-dimensional arrays of
numbers, where two-dimensional arrays are just matrices. The mathematical notion
capturing such data objects, without reference to an explicit basis and therefore
amenable to linear algebra operations, is that of a tensor. Tensors are the subject
of this and later chapters.

5.1. Multilinear functions

Let V1, . . . , Vk,W be vector spaces over a field K. A map f : V1 × · · · × Vk →W is
called multilinear if it satisfies

f(v1, . . . , vj−1, uj + vj , vj+1, . . . , vk)

= f(v1, . . . , vj−1, uj , vj+1, . . . , vk) + f(v1, . . . , vj−1, vj , vj+1, . . . , vk) and

f(v1, . . . , vj−1, cvj , vj+1, . . . , vk) = cf(v1, . . . , vj−1, vj , vj+1, . . . , vk)

for all j = 1, . . . , k and all uj ∈ Vj and all vi ∈ Vi, i = 1, . . . , k and all c ∈ K.
Put differently, f is linear in each argument when the remaining arguments are
fixed. Multilinear maps to the one-dimensional vector space W = K are also called
multilinear forms.

Multilinear maps V1× · · · ×Vk →W form a vector space with the evident addition
and scalar multiplication. To get a feeling for how large this vector space is, let
Bj be a basis of Vj for each j = 1, . . . , k. Then a multilinear map f is uniquely
determined by its values f(u1, . . . , uk) where uj runs over Bj (express a general
vector vj ∈ Vj as a linear combination of the uj and make repeated use of the
multilinearity of f). These values can be recorded in a B1×B2× · · · ×Bk-indexed
table of vectors in W . Conversely, given any such table t, there exists a multilinear
f whose values at the tuples (u1, . . . , uk) with uj ∈ Bj , j = 1, . . . , k are recorded in
t, namely, the map that sends (

∑
u1∈B1

cu1
u1, . . . ,

∑
uk∈Bk cukuk) to the expression∑

u1∈B1,...,uk∈Bk
cu1
· · · cukt(u1, . . . , uk).

Hence we have a linear isomorphism between the space of multilinear maps and
WB1×···×Bk . In particular, the dimension of the former space equals |B1||B2| · · · |Bk|·
dimW .

Example 5.1.43. Take all Vj equal to V = Rk, where k is also the number of
vector spaces under consideration. Then the function f : V k → R assigning to
(v1, . . . , vk) the determinant of the matrix with columns v1, . . . , vk is multilinear.
This function has the additional property that interchanging two arguments results

35
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in multiplication by −1; such alternating forms will be studied in more detail in
Chapter 8.

There are many more (non-alternating) multilinear forms: any function g : V k → R
of the form g(v1, . . . , vk) = (v1)i1 · · · (vk)ik with fixed 1 ≤ i1, . . . , ik ≤ k is multi-
linear. There are kk of such functions, and they span the space of all multilinear
functions V k → R, confirming the computation above.

5.2. Free vector spaces

Given any set S, one may construct a K-vector space KS, the free vector space
spanned by S of formal K-linear combinations of elements of S. Such linear com-
binations take the form

∑
s∈S css with all cs ∈ K and only finitely many among

them non-zero, and the vector space operations are the natural ones. Note that
we have already encountered this space in disguise: it is canonically isomorphic to
K⊕S . The space KS comes with a natural map S → KS sending s to 1 · s, the
formal linear combination in which s has coefficient 1 and all other elements have
coefficient 0.

Here is a so-called universal property of KS: given any ordinary map g from S into
a K-vector space V , there is a unique K-linear map g̃ : KS → V that makes the
diagram

S //

g
!!

KS

g̃

��
V

commute. This formulation is somewhat posh, but analogues of it out to be very
useful in more difficult situations, as we will see in the next section.

5.3. Tensor products

We will construct a space V1 ⊗ · · · ⊗ Vk with the property that multilinear maps
V1 × · · · × Vk → W correspond bijectively to linear maps V1 ⊗ · · · ⊗ Vk → W . For
this, we start by taking S to be the set V1×· · ·×Vk, where for a moment we forget
the vector space structure of Vi. Then set H := KS (for Huge), the free vector
space formally spanned by all k-tuples (v1, . . . , vk) with vj ∈ Vj , j = 1, . . . , k. This
is an infinite-dimensional vector space, unless the Cartesian product is a finite set
(which happens only if either all Vi are zero or K is a finite field and moreover all
Vi are finite-dimensional).

Next we define R (for Relations) to be the subspace of H spanned by all elements
of the forms

1 · (v1, . . . , vj−1, uj + vj , vj+1, . . . , vk) + (−1) · (v1, . . . , vj−1, uj , vj+1, . . . , vk)

+ (−1) · (v1, . . . , vj−1, vj , vj+1, . . . , vk) and

1 · (v1, . . . , vj−1, cvj , vj+1, . . . , vk) + (−c) · (v1, . . . , vj−1, vj , vj+1, . . . , vk)

for all j = 1, . . . , k and all uj ∈ Vj and all vi ∈ Vi, i = 1, . . . , k and all c ∈ K.
Note the similarity with the definition of multilinear functions. When reading the
expressions above, you should surpress the urge to think of the k-tuples as vectors;
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the addition and scalar multiplication are taking place in the space H where the
k-tuples are just symbols representing basis elements.

Finally, we set V1 ⊗ · · · ⊗ Vk := H/R, the quotient of the huge vector space H
by the relations R. This vector space is called the tensor product of V1, . . . , Vk,
and its elements are called tensors. The tensor product comes with a map V1 ×
· · · × Vk → V1 ⊗ · · · ⊗ Vk sending (v1, . . . , vk) to the equivalence class modulo R of
(v1, . . . , vk) ∈ S ⊆ H. This equivalence class is denoted v1 ⊗ · · · ⊗ vk, called the
tensor product of the vectors vi, and a tensor of this form is called a pure tensor.
By construction, every tensor is a linear combination of pure tensors.

Exercise 5.3.44. (1) Prove that v1 ⊗ · · · ⊗ vk is the zero tensor as soon as
one of the vi is the zero vector in Vi.

(2) Prove that, in fact, every tensor is a sum of pure tensors (so no coefficients
are needed in the linear combination).

We claim that the map (v1, . . . , vk) 7→ v1 ⊗ · · · ⊗ vk is multilinear. Indeed, by the
relations spanning R, we have

v1 ⊗ · · · ⊗ (uj + vj)⊗ · · · ⊗ vk = v1 ⊗ · · · ⊗ uj ⊗ · · · ⊗ vk + v1 ⊗ · · · ⊗ vj ⊗ · · · ⊗ vk
and v1 ⊗ · · · ⊗ (cvj)⊗ · · · ⊗ vk = c(v1 ⊗ · · · ⊗ vj ⊗ · · · ⊗ vk),

which is exactly what we need for the map to be multilinear. The most important
property of the tensor product thus constructed is the following universal property
(compare this with the easier universal property of KS).

Theorem 5.3.45. Given any vector space W and any multilinear map f : V1 ×
· · · × Vk → W , there is a unique linear map f : V1 ⊗ · · · ⊗ Vk → W such that the
diagram

V1 × · · · × Vk //

f

��

V1 ⊗ · · · ⊗ Vk

f
vv

W

commutes.

Proof. Such a linear map f must satisfy

f(v1 ⊗ · · · ⊗ vk) = f(v1, . . . , vk)

for all vi ∈ Vi, i = 1, . . . , k. Since pure tensors span the tensor product, this shows
that only one such linear map f can exist, i.e., this shows uniqueness of f . To prove
existence, consider the following diagram:

S = V1 × · · · × Vk //

f
((

H = KS //

f̃

��

H/R
f

yy
W.

Here the existence of a linear map f̃ making the left-most triangle commute follows
from the universal property of KS discussed earlier. We claim that ker f̃ contains
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R. Indeed, we have

f̃((v1, . . . , vj−1, uj + vj , vj+1, . . . , vk)− (v1, . . . , vj−1, uj , vj+1, . . . , vk)

− (v1, . . . , vj−1, vj , vj+1, . . . , vk))

= f(v1, . . . , vj−1, uj + vj , vj+1, . . . , vk)− f(v1, . . . , vj−1, uj , vj+1, . . . , vk)

− f(v1, . . . , vj−1, vj , vj+1, . . . , vk)

= 0,

because f is multilinear, and similarly for the second type of elements spanning
R. Thus R ⊆ ker f̃ as claimed. But then, by Exercise 1.5.7 f̃ factorises through
H → H/R = V1 ⊗ · · · ⊗ Vk and the required linear map f : V1 ⊗ · · · ⊗ Vk →W . �

The universal property at first seems somewhat abstract to grasp, but it is fun-
damental in dealing with tensor products. In down-to-earth terms it says that, to
define a linear map φ : V1 ⊗ · · · ⊗ Vk → W , it suffices to prescribe φ(v1 ⊗ · · · ⊗ vk)
for all vi, and the only restriction is that the resulting expression is multilinear in
the vi.

5.4. Two spaces

In this section we consider the tensor product U ⊗ V . In this context, multilinear
maps are called bilinear. Here is a first fundamental application of the universal
property.

Proposition 5.4.46. Let (ui)i∈I be a basis of U . Then for every tensor ω ∈ U ⊗V
there exist unique (vi)i∈I , with only finitely many non-zero, such that ω =

∑
i∈I ui⊗

vi.

Proof. This is the same as saying that the map ψ : V ⊕I → U⊗V sending (vi)i
to
∑
i ui ⊗ vi is bijective. Note that this map is linear. We will use the universal

property to construct its inverse. For this let f : U ×V → V ⊕I be the map defined
by f(

∑
i ciui, v) = (civ)i∈I . This map is clearly bilinear, so that it factorises as

U × V //

f

��

U ⊗ V
f

zz
V ⊕I ;

and we claim that f is the inverse of ψ. Indeed, we have

f(ψ((vi)i)) = f(
∑
i

ui ⊗ vi) =
∑
i

f(ui, vi) = (vi)i,

which shows that f ◦ ψ is the identity on V ⊕I ; and

ψ(f((
∑
i

ciui)⊗ v)) = ψ((civ)i∈I) =
∑
i∈I

ui ⊗ civ = (
∑
i∈I

ciui)⊗ v,

which shows that ψ ◦ f is the identity on a spanning set of U ⊗ V , and hence by
linearity the identity everywhere. �

This proposition has the following immediate corollary.
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Corollary 5.4.47. If (ui)i∈I is a basis of U and (wj)j∈J is a basis of V , then
(ui ⊗ wj)i∈I,j∈J is a basis of U ⊗ V .

Proof. Indeed, by the proposition, every element ω ∈ U ⊗ V can be written
as
∑
i∈I ui ⊗ vi with vi ∈ V . Writing vi =

∑
j∈J cijwj gives

ω =
∑
i∈I

ui ⊗ vi

=
∑
i∈I

ui ⊗ (
∑
j∈J

cijwj)

=
∑

i∈I,j∈J
cij(ui ⊗ wj).

This shows that the ui ⊗ wj span U ⊗ V . Moreover, if the latter expression is the
zero vector, then by the proposition we have

∑
j∈J cijwj = 0 for all i, and hence,

since the wj form a basis, all cij are zero. This proves linear independence. �

This shows that dim(U ⊗ V ) = dimU · dimV .

Example 5.4.48. A common mistake when encountering tensors for the first time is
the assumption that every tensor is pure. This is by no means true, as we illustrate
now. Take U = V = K2, both equipped with the standard basis e1, e2. A pure
tensor is of the form

(ae1 + be2)⊗ (ce1 + de2) = ace1 ⊗ e1 + ade1 ⊗ e2 + bce2 ⊗ e1 + bde2 ⊗ e2.
The tensor’s coefficients with respect to the basis (ei ⊗ ej)i,j=1,2 of U ⊗ V can be
recorded in the matrix [

ac ad
bc bd

]
,

and we note that the determinant of this matrix is (ac)(bd)− (ad)(bc) = 0. Thus if
ω =

∑
i,j cijei ⊗ ej ∈ U ⊗ V is a tensor for which the coefficient matrix (cij)ij has

determinant unequal to zero, then ω is not a pure tensor.

Exercise 5.4.49. Extend the previous discussion to U = Km and V = Kn, as
follows: prove that the coefficient matrix (cij)ij of a tensor with respect to the
basis (ei ⊗ ej)ij is that of a pure tensor if and only if the matrix has rank 0 or 1.

As the preceding example shows, there is a tight connection between tensor prod-
ucts of two spaces and matrices. At the more abstract level of linear maps, this
connection goes as follows. Let U and V be vector spaces, and consider the map
f : U∗ × V → L(U, V ) that sends a pair (x, v) to the linear map u 7→ x(u)v. This
linear map depends bilinearly on x and v, so f is bilinear, hence by the universal
property there exists a unique linear map Ψ = f : U∗ ⊗ V → L(U, V ) that maps
x⊗ v to u 7→ x(u)v. We claim that Ψ is linear isomorphism from U∗ ⊗ V onto the
set of linear maps φ : U → V of finite rank.

Exercise 5.4.50. Prove that the linear maps φ : U → V of finite rank, i.e., for
which imφ is finite-dimensional, do indeed form a linear subspace of L(U, V ).

First of all, x ⊗ v is mapped by Ψ to a linear map whose image is spanned by
v, hence its rank is at most 1. An arbitrary element ω of U∗ ⊗ V is a linear
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combination of finitely many such tensors, and hence mapped by Ψ to a finite
linear combination of rank-at-most-1 linear maps. Hence Ψω indeed has finite
rank. Second, let φ : U → V be a linear map of finite rank r. Let v1, . . . , vr be a
basis of imφ and let u1, . . . , ur ∈ U be elements such that φ(ui) = vi. Then the
ui are linearly independent (because the vi are), and we may extend u1, . . . , ur to
a basis of U . Let xi, i = 1, . . . , r be the element of U∗ defined by xi(uj) = δij for
j = 1, . . . , r and xi(u) = 0 for all further elements in the chosen basis of U . Then
φ = Ψ(x1 ⊗ v1 + . . . + xr ⊗ vr). This shows that Ψ is surjective onto the space
of finite-rank linear maps. Finally, for injectivity of Ψ, suppose that Ψ(ω) is zero,

and write ω =
∑l
i=1 xi ⊗ vi), where by Proposition 5.4.46 we may assume that

the xi are linearly independent. Then there exist uj ∈ U, j = 1, . . . , r such that
xi(uj) = δij , and we have

0 = Ψ(ω)uj =
r∑
i=1

xi(uj)wi = wj

for all j = 1, . . . , r. Hence ω = 0. This concludes the proof that Ψ is a linear
isomorphism from U∗ ⊗ V to the space of finite-rank linear maps U → V .

This relation between tensors and linear maps strongly suggest the following defi-
nition of rank of a tensor; we will generalise this notion in the next chapter to more
tensor factors.

Definition 5.4.51. The rank of a tensor ω ∈ U ⊗ V is the minimal number of
terms in any expression of ω as a sum u1 ⊗ v1 + . . .+ ur ⊗ vr.

Exercise 5.4.52. Define a natural linear map U∗ → V associated to ω, and prove
that the rank of ω is equal to the rank of that linear map.

Specialising to U = Km and V = Kn, the exercise above shows that the rank of
ω equals the rank of a certain linear map (Km)∗ → Kn. The matrix of this linear
map is the n × m-matrix whose transpose is the coefficient matrix of ω relative
to the basis (ei ⊗ ej)ij . Thus we find that the rank of ω equals the rank of this
coefficient matrix.

The following exercise is a prelude to material on communication complexity.

Exercise 5.4.53. Fix a natural number n. Let Disjn be the 2n × 2n-matrix whose
rows and columns are labelled by all subsets of the numbers {1, . . . , n}, with a 1 at
position (S, T ) if S ∩ T is empty and a 0 otherwise.

(1) Make a programme that on input n computes Disjn in Mathematica.
(2) Experiment with this programme, and formulate a conjecture what the

rank of Disjn should be.
(3) Prove that conjecture.



CHAPTER 6

Tensor rank

Tensor rank is a ubiquitous notion in applications ranging from electrical engineer-
ing and computer science to phylogenetics. In this chapter we will encounter one
application, having to do with complexity theory.

6.1. Higher-dimensional tensors

We start by determining a basis of arbitrary tensor products. Let V1, V2, . . . , Vk be
vector spaces over K.

Theorem 6.1.54. If B1, . . . , Bk are bases of V1, . . . , Vk, respectively, then B :=
{u1 ⊗ · · · ⊗ uk | uj ∈ Bj for all j} is a basis of V1 ⊗ · · · ⊗ Vk.

Proof. Given vectors vj ∈ Vj , j = 1, . . . , k, write vj =
∑
u∈Bj cuu. Then the

pure tensor v1 ⊗ · · · ⊗ vk can be expanded as∑
u1∈B1,...,uk∈Bk

cu1
· · · cuku1 ⊗ · · · ⊗ uk,

a linear combination of B. Since pure tensors span the tensor product, so does B.
On the other hand, to prove linear independence, assume that

0 =
∑

u1∈B1,...,uk∈Bk
cu1,...,uku1 ⊗ · · · ⊗ uk.

For each Bj and each u ∈ Bj let xu ∈ V ∗j be the linear form that takes the value 1 on
u and the value 0 on all other elements of Bj . Fix any k-tuple (w1, . . . , wk) ∈ B1×
· · ·×Bk. Then function f sending (v1, . . . , vk) ∈ V1×· · ·Vk to xw1(v1)xw2(v2) · · ·xwk(vk)

is multilinear, and hence factorises through a linear form f : V1 ⊗ · · · ⊗ Vk → K.
Applying this linear form to both sides of the equality above yields

0 =
∑

u1∈B1,...,uk∈Bk
cu1,...,ukxw1(u1) · · ·xwk(uk) = cw1,...,wk ,

which proves linear independence of B. �

This proposition shows that one may think of a tensor in V1⊗· · ·⊗Vk as a B1×· · ·×
Bk-indexed table of numbers with only finitely many non-zero entries. In fact, in
applications the Vj are often all equal to some Knj and the Bj are standard bases,
and with these choices a tensor is nothing but at n1 × · · · × nk-array of numbers
from K.

41
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6.2. Definition of rank

The central definition in this chapter is the following.

Definition 6.2.55. The rank of a tensor ω ∈ V1 ⊗ · · · ⊗ Vk, denoted rkω, is the
minimal number r in any decomposition of ω as a sum ω1 + . . .+ωr of pure tensors.

Hence the zero tensor has rank zero, a non-zero pure tensor v1 ⊗ · · · ⊗ vk has rank
one, a non-pure tensor that can be written as the sum of two pure tensors has
rank two, etc. We have seen in the previous chapter that when k = 2, the rank of
a tensor ω ∈ V1 ⊗ V2 equals the rank of the corresponding linear map V ∗1 → V2.
Specialising even further, when Vj = Knj , j = 1, 2 equipped with the standard
basis, the rank equals the rank of the coefficient matrix of ω with respect to the
basis ei1 ⊗ ei2 , i1 = 1, . . . , n1, i2 = 1, . . . , n2. So rank is well-understood for tensor
products of two spaces. The situation is much more complicated for tensor products
of more spaces, as the following example illustrates.

Example 6.2.56. Let ω ∈ C2 ⊗C2 ⊗C2 be a non-zero tensor. With respect to the
basis e1 ⊗ e1 ⊗ e1, e1 ⊗ e1 ⊗ e2, . . . , e2 ⊗ e2 ⊗ e2 the tensor ω is represented by a
2×2×2-block of complex numbers. Write ω as e1⊗A+e2⊗B where A,B ∈ C2⊗C2

are represented by 2× 2-matrices.

First, if ω is a pure tensor u⊗ v⊗w with u, v, w ∈ C2, then we have A = u1(v⊗w)
and B = u2(v ⊗ w) and together they span the one-dimensional space Kv ⊗ w
spanned by the rank-one tensor v ⊗ w. Conversely, when the span of A and B is
one-dimensional and spanned by a pure tensor, then ω is pure (and hence of rank
one).

Second, when the span of A and B is one-dimensional but not spanned by a pure
tensor, then it is spanned by a rank-two tensor (since 2× 2-matrices have rank at
most two) C = v1 ⊗ w1 + v2 ⊗ w2. Writing A = aC and B = bC we have

ω = (ae1 + be2)⊗ v1 ⊗ w1 + (ae1 + be2)⊗ v2 ⊗ w2,

so that ω has rank at most two. By the above it is not pure, hence it has rank two.

Third, when A and B are linearly independendent, and their span 〈A,B〉C also has
a basis consisting of two pure tensors C1 = v1 ⊗ w1, C2 = v2 ⊗ w2, then writing
A = a1C1 + a2C2 and B = b1C1 + b2C2 we have

ω = e1 ⊗ (a1C1 + a2C2) + e2 ⊗ (b1C1 + b2C2)

= (a1e1 + b1e2)⊗ C1 + (a2e1 + b2e2)⊗ C2

= (a1e1 + b1e2)⊗ v1 ⊗ w1 + (a2e1 + b2e2)⊗ v2 ⊗ w2,

showing that ω has rank at most two, hence equal to two since it is not pure.

Exercise 6.2.57. Conversely, show that if A and B are linearly independent and
ω has rank two, then the span 〈A,B〉C has a basis of two rank-one tensors.

Finally, we have to analyse the case where A and B are linearly independent,
and their span does not contain two linearly independent rank-one tensors. In
particular, at least one of A and B has rank at least two; assume that this is true
for A. Now consider the polynomial pω(x) := det(xA+B) = f(A,B)x2+g(A,B)x+
h(A,B), where we identify A and B with their 2× 2-matrices. This is a quadratic
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polynomial in x, whose coefficients are homogeneous quadratic polynomials in the
entries of A and B. The coefficient of x2 is det(A), which we have assumed non-
zero, so that pω is really a quadratic polynomial. The assumption that 〈A,B〉C
does not contain two linearly independent rank-one matrices is equivalent to the
condition that pω does not have two distinct roots, which in turn is equivalent to
the condition that the discriminant ∆ := g(A,B)2− 4f(A,B)h(A,B) of pω is zero.
This discriminant equals

∆ = a211b
2
22 + a222b

2
11 + a212b

2
21 + a221b

2
12

− 2a11a12b21b22 − 2a11a21b12b22 − 2a11a22b11b22

− 2a12a21b12b21 − 2a12a22b11b21 − 2a21a22b11b12

+ 4a11a22b12b21 + 4a12a21b11b22,

and this quartic polynomial in the entries of ω is called Cayley’s hyperdeterminant.
We conclude that if ω does not fall into any of the three previous three cases, then
its hyperdeterminant is zero.

Exercise 6.2.58. Show that, in the last case, ω has rank three.

This example makes a few important points. First, that tensor rank for more
than two factors is a more complicated notion than that for two factors (matrices);
indeed, it is known that it is NP-hard already for three factors [2]. Second, over the
complex numbers, that tensors of rank at most some fixed bound r do in general
not form a closed subset (they do for matrices, since they are characterised by
the vanishing of all (r + 1) × (r + 1)-subdeterminants, a closed condition on the
matrix entries). Indeed, a 2 × 2 × 2-tensor ω of the last type above, on which
Cayley’s hyperdeterminant vanishes, will have arbitrarily close tensors with non-
zero hyperdeterminant. Those all have rank at most 2, while ω has rank 3. Third,
the rank of a tensor may depend on the field one is working over, as the following
exercise shows.

Exercise 6.2.59. Prove that if a tensor ω ∈ R2⊗R2⊗R2 has negative hyperdeter-
minant (which means that pω has negative discriminant), then it has rank at least
three over the real numbers, while if we allow the pure tensors in the decomposition
of ω to be complex, it has rank at most two.

6.3. Rank under tensor operations

Although tensor rank is hard to grasp, it obeys a number of easy inequalities. These
inequalities involve the following three basic operations on tensors.

Tensor product. Given vector spaces V1, . . . , Vl, Vl+1, . . . , Vk, there is a nat-
ural bilinear map

(V1 ⊗ · · · ⊗ Vl)× (Vl+1 ⊗ · · · ⊗ Vk)→ V1 ⊗ · · · ⊗ Vk, (ω, µ) 7→ ω ⊗ µ
determined uniquely by sending (v1 ⊗ · · · ⊗ vl, vl+1 ⊗ · · · ⊗ vk) to v1 ⊗ · · · ⊗ vl ⊗
vl+1 ⊗ · · · vk. Since the latter expression is l-linear in (v1, . . . , vl) and (k − l)-
linear in (vl+1, . . . , vk), the existence of this bilinear map follows from the universal
properties of V1 ⊗ · · · ⊗ Vl and Vl+1 ⊗ · · · ⊗ Vk; we omit the details. The image
ω⊗µ of (ω, µ) is called the tensor product of ω and µ. The following exercise gives
a fundamantal inequality for the rank of a tensor product of tensors.
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Exercise 6.3.60. Prove that rk(ω ⊗ µ) ≤ rk(ω) rk(µ).

In other words: tensor rank is sub-multiplicative. To the best of my knowledge, it
is not known whether the inequality can be strict.

Flattening. In a sense, flattening is the inverse operation of tensor product:
the bilinear map (V1 ⊗ · · · ⊗ Vl)× (Vl+1 ⊗ · · · ⊗ Vk)→ V1 ⊗ · · · ⊗ Vk above factors
through a linear map (V1⊗· · ·⊗Vl)⊗ (Vl+1⊗· · ·⊗Vk)→ V1⊗· · ·⊗Vk. This linear
map is, in fact, a linear isomorphism. Let us denote the inverse by [. The pre-image
[ω of ω ∈ V1 ⊗ · · · ⊗ Vk is called a flattening of ω. It is a tensor in a tensor product
of two vector spaces, namely, U := V1 ⊗ · · · ⊗ Vl and W := Vl+1 ⊗ · · · ⊗ Vk and,
as such, has a well-understood rank (namely, that of a matrix). It turns out that
rk [ω ≤ rkω. Indeed, this follows immediately from the fact that [ maps a pure
tensor v1⊗ · · ·⊗ vk into a pure tensor (or matrix) (v1⊗ · · ·⊗ vl)⊗ (vl+1⊗ · · ·⊗ vk).

Exercise 6.3.61. Give an example of a rank-two tensor in C2 ⊗ C2 ⊗ C2 whose
flattening to an element of (C2)⊗ (C2 ⊗ C2) has rank one.

Here is a partial converse to the inequality above.

Proposition 6.3.62. Let ω be a tensor in V1 ⊗ · · · ⊗ Vk and for i = 1, . . . , k let [i
denote the flattening V1 ⊗ · · · ⊗ Vk → (Vi) ⊗ (V1 ⊗ · · · ⊗ V̂i ⊗ · · · ⊗ Vk), where the

hat means omission of the factor Vi. Then rkω ≤
∏k
i=1 rk([iω).

Proof. The flattening [iω defines a linear map (V1⊗· · ·⊗ V̂i⊗· · ·⊗Vk)∗ → Vi;
let Ui be the image of this map. Then dimUi = rk [iω by the interpretation of
tensor rank for factors. We claim that ω lies in U1 ⊗ · · · ⊗ Uk, a tensor product
that is naturally contained in V1 ⊗ · · · ⊗ Vk. Indeed, for each i choose a linear
map πi : Vi → Ui that restricts to the identity on Ui. Then, regarding [iω as a

linear map (V1 ⊗ · · · ⊗ V̂i ⊗ · · · ⊗ Vk)∗ → Ui ⊆ Vi, we have πi ◦ [iω = [iω, since πi
is the identity on the image of [iω. The maps π1, . . . , πk together define a linear
map ψ : V1 ⊗ · · · ⊗ Vk → U1 ⊗ · · · ⊗ Vk, determined by sending v1 ⊗ · · · ⊗ vk to
π1(v1) ⊗ · · · ⊗ πk(vk) (note that we use the universal property). By the argument
just given, ψω = ω, so that ω ∈ U1 ⊗ · · · ⊗ Uk as claimed. This claim implies the
desired result: after choosing bases Bi in all Ui, ω is a linear combination of the
corresponding |B1| · · · |Bk| pure tensors forming a basis of U1 ⊗ · · · ⊗ Uk. �

Contraction. A linear function x ∈ V ∗i gives rise to a linear map ψi,x : V1 ⊗
· · ·⊗Vk → V1⊗· · ·⊗ V̂i⊗· · ·⊗Vk sending v1⊗· · ·⊗vk to x(vi) ·v1⊗· · ·⊗ v̂i⊗· · ·⊗vk.
A tensor of the form ψi,xω for some i and some x ∈ V ∗i is called a contraction of ω.

Exercise 6.3.63. Show that rkψi,xω ≤ rkω.

The following converse to this exercise is open.

Conjecture 6.3.64. Fix a natural number r. Then there exists a universal bound
k0, depending on r (and perhaps on the ground field), such that for any k > k0 and
any tensor ω in any k-fold tensor product V1 ⊗ · · · ⊗ Vk we have rkω ≤ r if and
only if all contractions of ω have rank at most r.
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6.4. Communication complexity

The discussion that follows is based on the first chapter of [3]. Suppose that each
of two players, Alice and Bob, holds one argument to a two-argument function
f : {1, . . . ,m}×{1, . . . , n} → {0, 1}, and that they want to evaluate f with as little
communication as possible between them. Here the function f is known to both
players, and we will think of it as an m×n-matrix, of which Alice holds a row index
i and Bob holds a column index j. One possible protocol would be that Alice sends
her row index to Bob, Bob computes f and sends the result back to Alice. This
would require dlog2(m)e + 1 bits being exchanged. Here is an example, however,
where one can do much better.

Example 6.4.65. Suppose that G is a finite, undirected graph on V = {1, . . . , n}
without loops or multiple edges. Alice’s argument consists of a subset C of V which
is a clique in the graph (pairwise connected vertices), and Bob’s argument consists
of a subset I of V which is an independent set (pairwise non-connected vertices).
The function f counts the cardinality |C ∩ I|, which is at most 1. Sending Alice’s
entire coclique as a 0/1-vector indexed by V would yield n bits of information being
transmitted. However, as Yannakakis pointed out [4], they can do better.

The key point is the following. Suppose Alice and Bob have narrowed down the
search for an intersection to a subset V ′ ⊆ V , so that they know for sure that if C
and I share a vertex, then it lies in the intersection of C ′ := V ′∩C and I ′ := V ′∩I.
Then if C ′ contains a vertex with at most |V ′|/2 neighbours in V ′, Alice sends the
name of such a vertex u to Bob, using O(log2 n) bits. Of course, if u also lies in
I ′, then Bob returns “yes”, and the protocol is finished. If u 6∈ I ′, then they may
replace V ′ by the set of neighbours of u in V ′ and return to the beginning. If C ′

does not contain such a vertex, then Alice transmits this information to Bob (using
some constant number of bits). He then checks whether I ′ contains a vertex with
at most |V ′|/2 non-neighbours in V ′. If so, then he sends the name of such a vertex
v to Alice, using O(log2 n) bits. If v lies in C ′, then Alice reports “yes”, and the
protocol is finished; otherwise, they may both replace V ′ by the non-neighbours of
v in V ′ and start from the beginning. Finally, if neither Alice nor Bob can choose a
vertex to transmit, then all elements in C ′ have more than |V ′|/2 neighbours, while
all elements in I ′ have at less than |V ′|/2 neighbours, so that I ′ ∩C ′ is empty. Bob
transmits this information to Alice, and we are done.

With each choice of u or v, the cardinality of V ′ is (at least) halved. This means
that Alice and Bob come to a conclusion after at most O(log2 n) such steps. The
number of bits transmitted is therefore O((log2 n)2).

For the purpose of this section, a protocol is a finite, rooted, binary tree (i.e., all
internal edges have valency two), where each internal vertex v is labelled either
by A and a function av from {1, . . . ,m} to the two-element set of children of v
or by B and a function bv from {1, . . . , n} to the two-element set of children of v;
and where each leaf is labelled either 0 or 1. Running the protocol on a pair (i, j)
means starting at the root r =: v, repeatedly moving to av(i) or bv(j) according
as the current vertex is labelled A or B, until one ends in a leaf labelled 0 or 1,
which is then the output of the protocol. Thus the protocol defines a function
{1, . . . ,m} × {1, . . . , n} → {0, 1}, and if this function is identical to the function
f that we started with, then we say that the protocol computes f . The height
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of the tree, which is the longest distance in the tree from a root to a leaf, is the
communication complexity of the protocol. The communication complexity of a
function f is the minimal communication complexity of any protocol computing
it. This is the framework from [5]. It is easy (but boring) to translate the above
informal protocol for the clique vs. independent set problem into a protocol as just
described.

Theorem 6.4.66. The communication complexity of any protocol computing f is
at least log2 rk f , when f is considered an m× n-matrix with entries zero and one.

Note that we have not specified the field here. This is deliberate; the rank over any
field gives a lower bound on the complexity.

Proof. For a fixed leaf l of the protocol, consider the set Rl of all input pairs
(i, j) on which the protocol’s run ends in l. Clearly the sets Rl form a partition of
{1, . . . ,m} × {1, . . . , n}. We claim that each Rl is a rectangle, which means that it
is of the shape Il × Jl with Il a subset of the rows and Jl a subset of the columns.
To prove this, it is sufficient to prove that if (i0, j0) and (i1, j1) are both in Rl,
then also (i0, j1) lies in Rl. But this is clear: at internal vertices labelled A, the
chosen child depends only on the first argument. Since the first argument of (i0, j1)
agrees with that of (i0, j0), the same child is chosen. Similarly, at internal vertices
labelled B, the same child is chosen because the second argument of (i0, j1) agrees
with that of (i1, j1).

Let Al be the 0/1 matrix with ones in the positions labelled Il × Jl and zeroes
elsewhere. Then Al has rank one (or zero, if the leaf l is never reached). Moreover,
let cl be the output of the protocol at leaf l. Then we have the equality of matrices

f =
∑
l

clAl,

where the sum runs over all leaves l. The number of terms is at most 2 raised to
the height of the tree, which yields the desired inequality. �

Exercise 6.4.67. Let m = n = 2l, and f is the function that takes two l-bit strings
to the parity (0 or 1) of their inner product. Using the rank lower bound, prove that
the communication complexity of any protocol computing f is at least (roughly) l.
Hint: compute the square of the matrix representing f .

Exercise 6.4.68. Using Exercise 5.4.53 give a lower bound on the communication
complexity on the problem of deciding whether a subset S ⊆ {1, . . . , n} held by
Alice is disjoint from a subset T ⊆ {1, . . . , n} held by Bob.

Exercise 6.4.69. Let m = n, and let f(i, j) be the function that is 1 if i ≤ j and 0
if i > j. Prove that the communication complexity of any protocol for f is at least
(roughly) log2 n.

All definitions of protocol, communication complexity, etc. generalise in a straight-
forward manner to the case of k > 2 players: the internal vertices of the tree can
now have k different labels, corresponding to whose “move” it is. The leaves are still
labelled by the output, which we still assume equal to 0 or 1 (this requirement can
be weakened, as well). In the case of two players, the edge leading to a leaf furthest
away from the root contributed one bit to the communication complexity, which
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made sense since that bit still needed to be communicated to the other player. In
the k-player setting, one either has to adjust this by adding (k − 1) to the height
of the tree (in case of one-to-one communication channels), or else one assumes a
broadcast channel (sometimes called a blackboard channel in communication com-
plexity literature) where all broadcast bits are received by all players. The log-rank
theorem relating the communication complexity to the matrix of f generalises to
this setting, except that now f is represented by a n1×· · ·×nk-block of zeroes and
ones, and that the rank of this block is the tensor rank.

Exercise 6.4.70. This exercise concerns a small communication problem with three
players, each holding one bit of input. The function that they want to compute is 1
on the triple (0, 0, 0), (0, 1, 1), (1, 0, 1) and zero on all other triples. Find the exact
communication complexity of this function, as well the rank of this tensor.

When trying to bound the communication complexity of k-argument function, often
so-called partition arguments are used: the players are partitioned into two groups
1, . . . , l and l + 1, . . . , k, and each group is regarded one single player (communi-
cation among the members of the group is regarded “free”). The communication
complexity of the resulting two-argument function is clearly a lower bound to the
communication complexity of the original function.

Exercise 6.4.71. Discuss the relation of this partition argument with the behaviour
of tensor rank under flattening.

Exercise 6.4.72. Suppose three players A,B,C hold non-zero elements a, b, c of
Z/pZ, where p is a large prime, and want to decide whether abc = 1 mod p. Give
a protocol (in words, no complete tree needed) with communication complexity
some constant multiple of log2 p, and show that any protocol has communication
complexity at least some (potentially other) constant multiple of log2 p.

The relations between tensor rank, communication complexity, flattenings, and
partition arguments have been thoroughly dealt with in [1].
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CHAPTER 7

Matrix multiplication and tensors of linear maps

7.1. Tensors, direct sums, and duals

One aspect of tensor products that we have not yet stressed is their behaviour with
respect to direct sums and duals. In this section, for simplicity of notation, we con-
sider tensor products of two spaces, but everything generalises in a straightforward
manner.

Let U, V be vector spaces over K and suppose that we have a subspace U1 ⊆ U .
Then the map U1 × V → U ⊗ V, (u1, v) 7→ u1 ⊗ v is bilinear and hence factorises
through a linear map U1 ⊗ V → U ⊗ V . This linear map is in fact injective (as one
can see, for instance, from the fact that it maps a basis of pure tensors u⊗v with u
running over a basis of U1 and v running over a basis of V into a subset of a basis
of U ⊗ V ), and it allows us to see U1 ⊗ V as a subspace of U ⊗ V .

Now a second subspace U2 ⊆ U such that U = U1 ⊕ U2 gives rise to a second
subspace U2 ⊗ V of U ⊗ V , and we claim that

((U1 ⊕ U2)⊗ V =) U ⊗ V = (U1 ⊗ V )⊕ (U2 ⊗ V ).

This follows, for instance, by taking bases B1, B2 of U1, U2, respectively, and a basis
C of V , observing that U1⊗V is spanned by {u⊗ v | u ∈ B1, v ∈ C} and U2⊗V is
spanned by {u⊗ v | u ∈ B2, v ∈ V }, and recalling that the union of these two sets
is a basis of U ⊗ V . Thus, tensor product distributes over direct sum.

Next we discuss duals. Given a pair (x, y) ∈ U∗ × V ∗, there is a unique linear
function on U ⊗ V that sends a pure tensor u ⊗ v to x(u)y(v) (by the universal
property of U ⊗ V ). This linear function itself depends bilinearly on (x, y), so
that we obtain a linear map Ψ : U∗ ⊗ V ∗ → (U ⊗ V )∗ sending (x, y) to the linear
function mapping u⊗ v to x(u)y(v). We claim that Ψ is injective. Indeed, assume
that Ψ(ω) = 0 and write ω =

∑r
i=1 xi ⊗ yi, where we may assume that both the

xi and the yi are linearly independent. If r > 0 then find a vector u1 ∈ U such
that xi(u1) = δi1 and a vector v1 ∈ V such that yi(v1) = δi1 (why do these exist?).
Then Ψ(ω)(u1 ⊗ v1) = 1 · 1 6= 0, a contradiction. Thus we find that ω is zero.

When the dimensions of U and of V are finite, we find that the map U∗ ⊗ V ∗ →
(U ⊗ V )∗ is an isomorphism, by means of which we may identify the two spaces.
Thus, for finite-dimensional vector spaces, tensor product commutes with taking
duals.
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7.2. Tensor products of linear maps

Let U, V,W,X be vector spaces over K, and let φ ∈ L(U, V ) and ψ ∈ L(W,X) be
linear maps. Then we may define a bilinear map f : U ×W → V ⊗X by

f(u,w) = φ(u)⊗ ψ(w).

By the universal property of the tensor product U ⊗W this map factorises through
a linear map f : U ⊗W → V ⊗ X. This linear map is denoted φ ⊗ ψ and called
the tensor product of φ and ψ. In this chapter we derive some of its properties and
applications.

At first glance, confusion may potentially arise from the fact that we write φ ⊗ ψ
both for the linear map just constructed, which is an element of L(U ⊗W,V ⊗X),
and for the tensor product of φ and ψ in the tensor product L(U, V ) ⊗ L(W,X).
But on closer inspection the linear map φ⊗ψ depends bilinearly on (φ, ψ), so by the
universal property of L(U, V ) ⊗ L(W,X) there is a linear map Ψ from this tensor
product to L(U ⊗W,V ⊗X) that maps a pure tensor φ⊗ψ to the linear map φ⊗ψ
defined above.

Exercise 7.2.73. Prove that the linear map Ψ : L(U, V ) ⊗ L(W,X) → L(U ⊗
W,V ⊗ X) sending a pure tensor φ ⊗ ψ to the linear map sending a pure tensor
u⊗w to φ(u)⊗ ψ(w) is injective. When all spaces involved are finite-dimensional,
conclude that Ψ is a linear isomorphism.

Here are two fundamental properties of φ⊗ ψ.

Proposition 7.2.74. The kernel of φ⊗ψ equals (kerφ)⊗W+U⊗(kerψ) ⊆ U⊗W ,
and the image of φ⊗ ψ equals imφ⊗ imψ ⊆ V ⊗X.

Proof. Since (φ⊗ ψ)(u⊗ w) = φ(u)⊗ ψ(w) lies in the subspace imφ⊗ imψ
of V ⊗ X, and since pure tensors u ⊗ w span the space U ⊗W , the map φ ⊗ ψ
maps that entire space into imφ⊗ imψ. Moreover, since pure tensors φ(u)⊗ψ(w)
span imφ ⊗ imψ, the map φ ⊗ ψ is surjective onto imφ ⊗ imψ. This proves that
im(φ⊗ ψ) = imφ⊗ imψ.

For the kernel, first note that kerφ ⊗W and U ⊗ kerψ are clearly contained in
ker(φ ⊗ ψ). To prove that they span it, let U1 be a vector space complement of
kerφ in U and let W1 be a vector space complement of kerψ in W . Then we have

U ⊗W = (kerφ⊕ U1)⊗ (kerψ ⊕W1)

= (kerφ⊗ kerψ)⊕ (kerφ⊗W1)⊕ (U1 ⊗ kerψ)⊕ (U1 ⊗W1)

= ((kerφ⊗W ) + (U ⊗ kerψ))⊕ (U1 ⊗W1),

where the + indicates a not necessarily direct sum. So we need only show that
ker(φ ⊗ ψ) does not intersect U1 ⊗W1. But this is immediate from the fact that
φ|U1 and ψ|W1 are injective: as u1 runs through a basis of U1 and w1 runs through
a basis of W1, the element (φ⊗ ψ)(u1 ⊗w1) = φ(u1)⊗ ψ(w1) runs through part of
a suitable basis of V ⊗X. �

From this proposition we conclude that, in particular, the rank of φ ⊗ ψ is the
product of the ranks of φ and of ψ. This has the following application to tensor
rank.
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Corollary 7.2.75. Let U, V,W,X be finite-dimensional vector spaces and let ω ∈
U ⊗ V and µ ∈ W ⊗ X be tensors. Then the rank of the tensor product ω ⊗ µ ∈
U ⊗ V ⊗W ⊗X equals rkω · rkµ.

Compare this with the remark after Exercise 6.3.60: if tensor rank in general is not
multiplicative, then a counter-example would involve at least five vector spaces.
Finite-dimensionality is not really needed for the corollary, but makes the proof
easier to formulate.

Proof. We have already seen that tensor rank is submultiplicative, so we need
only show that the rank of ω ⊗ µ is not less than rkω · rkµ. The product ω ⊗ µ
lives in

U ⊗ V ⊗W ⊗X = U ⊗W ⊗ V ⊗X,
where we have re-arranged the tensor factors. Now consider the flattening [(ω⊗µ)
of ω ⊗ µ in (U ⊗W )⊗ (V ⊗X). We claim that this flattening has rank rkω · rkµ;
since tensor rank cannot go up under flattening, this gives the desired inequality.
To prove the claim, we re-interpret ω as an element of (U∗)∗ ⊗ V = L(U∗, V ) and
µ as an element fo (W ∗)∗ ⊗X = L(W ∗, X), where the equality signs are justified
by finite dimensionality. The ranks of ω and µ are equal to the ranks of these
linear maps. On the other hand, the flattening [(ω⊗µ) can be re-interpreted as an
element of L((U ⊗W )∗, (V ⊗X)) = L(U∗⊗W ∗, V ⊗X), namely the map sending a
pure tensor x⊗ y ∈ U∗⊗W ∗ to the tensor ω(x)⊗µ(y). But this linear map is just
the tensor product of the linear maps ω and µ, and by the above its rank equals
the product of the ranks of those linear maps. �

7.3. Extending scalars

Given a K-linear map ψ ∈ L(W,X), and an extension field F of K, we may apply
the tensor product construction with U = V = F and φ = 1, the identity F → F .
The resulting K-linear map 1⊗ψ : F ⊗U → F ⊗W is in fact F -linear if we define
the F -scalar multiplication on F ⊗W by c(d⊗W ) := (cd)⊗W for c, d ∈ F (note
that for c ∈ K this agrees with the K-scalar multiplication by properties of the
tensor product).

The resulting F -linear map 1 ⊗ ψ is denoted ψF , and the procedure leading from
ψ to ψF is called extension of scalars. At the level of matrices this is a trivial
operation: given K-bases (wj)j and (xi)i of W and X, respectively, the elements
1⊗wj and 1⊗ xi form F -bases of F ⊗W and F ⊗ V , respectively, and the matrix
of φF with respect to those bases is just the matrix of φ with respect to the original
bases, only now with its entries interpreted as elements of the larger field F ⊇ K.
Nevertheless, extension of scalars is a useful operation, partly due to the following
proposition, where we take X = W .

Proposition 7.3.76. Let W be finite-dimensional. A linear map ψ ∈ L(W ) is
semisimple if and only if φF is diagonalisable for F equal to the algebraic closure
of K.

Proof. If ψ is semisimple, then by the results of chapter 4 there is a basis of
W with respect to which the matrix of ψ has a block diagonal form, with companion
matrices Cp of irreducible polynomials along the diagonal. Thus to prove that φF
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is diagonalisable over the algebraic closure F of K it suffices to diagonalise Cp over
F . Now Cp is the matrix of the linear map ψ : K[t]/(p)→ K[t]/(p) sending f + (p)
to tf + (p). Over F the polynomial p factors as (t − t1) · · · (t − td) with distinct
t1, . . . , td ∈ F . Then setting fj :=

∏
i 6=j(t− ti) + (p) we find (t− tj)fj = 0 mod p

so that ψfj = tjfj . Since they are eigenvectors with distinct eigenvalues, the fj are
linearly independent, and since there are d of them, they form a basis of F [t]/(p)
diagonalising ψ.

Conversely, assume that φF is diagonalisable over F with distinct eigenvalues
λ1, . . . , λr. Then its minimal polynomial over F equals (t− λ1) · · · (t− λr), which
is square-free. The minimal polynomial of φ is a divisor of this, and therefore also
square-free. Hence φ is semisimple. �

Exercise 7.3.77. (1) Prove by induction that two commutating diagonalis-
able linear maps A,B on a finite-dimensional F -vector space W can be
diagonalised by one and the same basis.

(2) Conclude that A+B is then also diagonalisable.
(3) Prove that the sum of two commuting semisimple linear maps on a finite-

dimensionsional K-vector space W is semisimple.
(4) Use this to prove that the Jordan decomposition of a linear map into com-

muting semisimple and nilpotent parts is unique (see also Exercise 4.3.39).

7.4. Kronecker products and eigenvalues

Returning to the discussion of tensors of linear maps, assume that U, V,W,X are
finite-dimensional and that bases (uj)j , (vi)i, (wl)l, (xk)k have been chosen. Let
A = (aij) be the matrix of φ and let B = (bkl) be the matrix of ψ. Then

(φ⊗ ψ)(uj ⊗ wl) =
∑
i,k

aijbklvi ⊗ xk,

so that the matrix of φ⊗ψ equals (aijbkl)(i,k),(j,l), where the pair (i, k) plays the role
of row index and the pair (j, l) plays the role of column index. This matrix is called
the Kronecker product of A and B. By the above, its rank equals the product of the
ranks of A and of B. The following proposition gives further spectral information
about A⊗B.

Proposition 7.4.78. Assume that U = V and W = X, so that φ⊗ψ ∈ L(U ⊗W ),
and that both spaces are finite-dimensional. Then the eigenvalues of φ ⊗ ψ in the
algebraic closure F of K, counted with multiplicities, are exactly the numbers cidj
with ci running through the eigenvalues of φ (with multiplicities) and dj running
through the eigenvalues of ψ (with multiplicities).

Proof. If φ and ψ are both diagonalisable, then this is easy: if u1, . . . , um is
a basis of U consisting of φ eigenvectors with eigenvalues c1, . . . , cm and w1, . . . , wn
is an eigenbasis of ψ with eigenvalues d1, . . . , dn, then ui ⊗ wj , i = 1, . . . ,m, j =
1, . . . , n is an eigenbasis of φ⊗ ψ.

In the general case, choose F -bases for F ⊗U and F ⊗W with respect to which the
matrices A and B of φ, ψ are upper triangular. Their eigenvalues can then be read
off from the diagonal. Then the Kronecker product A⊗B is also upper triangular
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with respect to a suitable ordering, and its diagonal entries are exactly the products
cidj , with the right multiplicities. �

Exercise 7.4.79. Let φ ∈ L(U) and ψ ∈ L(W ) with U,W finite-dimensional of
dimensions m and n, respectively. Find and prove a formula for det(φ⊗ψ) in terms
of detφ, detψ,m, n.

Here is a very nice application of Kronecker products.

Exercise 7.4.80. A Hadamard matrix is an n× n-matrix A with entries −1 and 1
satisfying AAT = nI. An example is[

1 1
1 −1

]
.

Prove that if A is an n×n-Hadamard matrix and B is an m×m-Hadamard matrix,
then their Kronecker product A⊗B, with a suitable ordering of rows and columns,
is an mn×mn-Hadamard matrix.

Hadamard matrices are used in design of experiments. They are conjectured to exist
whenever n is a multiple of 4; unfortunately the preceding exercise gives Hadamard
matrices only for a rather sparse set of natural numbers.

7.5. Complexity of matrix multiplication

Computing the product of two n × n-matrices in the ordinary manner needs n3

multiplications of scalars, as well as n2(n − 1) scalar additions. In this section we
disregard the additions, and sketch Strassen’s algorithm for computing the product
with O(nlog2 7) multiplications [2]. The basic observating is that the product[
a b
c d

] [
e f
g h

]
=

[
ae+ bg af + bh
ce+ dg cf + dh

]
=

[
m1 −m2 +m5 +m7 m2 +m4

m3 +m5 m1 −m3 +m4 +m6

]
where

m1 = (a+ d)(e+ h) = ae+ ah+ de+ dh

m2 = (a+ b)h = ah+ bh

m3 = (c+ d)e = ce+ de

m4 = a(f − h) = af − ah
m5 = d(g − e) = dg − de
m6 = (c− a)(e+ f) = ce+ cf − ae− af
m7 = (b− d)(g + h) = bg + bh− dg − dh.

This is true for scalars a, . . . , h, but also for square matrices a, . . . , h of the same
size. Thus if we let T (n) denote the number of multiplications of scalars needed
for multiplying two matrices, then the above shows that T (2k) ≤ 7T (k). As a
consequence, T (2l) ≤ 7l. Hence to compute the product of two n × n-matrices,
let l be minimal with 2l > n, pad the matrices with zeroes to a 2l × 2l-matrix,
perform the above trick recursively, and finally drop the padded zeroes. This gives
an algorithm with O(nlog2 7) scalar multiplications. Here log2 7 is approximately
2.807; the best known exponent (with a much less practical algorithm) is about
2.376, due to Coppersmith and Winograd [1].
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Exercise 7.5.81. Let U, V,W be copies of the vector space K4, with bases a, b, c, d,
e, f, g, h, and i, j, k, l, respectively. Show that the tensor

a⊗e⊗i+b⊗g⊗i+a⊗f⊗j+b⊗h⊗j+c⊗e⊗k+d⊗g⊗k+c⊗f⊗l+d⊗h⊗l ∈ U⊗V ⊗W
has rank at most 7.
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CHAPTER 8

Alternating tensors

8.1. Introduction

In this chapter we discuss a certain quotient of a tensor power V ⊗k := V ⊗ · · · ⊗ V
of a vector space V . This quotient, denoted

∧k
V , is called the k-th alternating or

exterior power of V , and its elements are called alternating tensors (though there is
some ambiguity in this latter terminology; see below). The image of a pure tensor

v1 ⊗ · · · ⊗ vk in
∧k

is denoted v1 ∧ · · · ∧ vk, called the wedge product or alternating
product of the vi, and sometimes still called a pure tensor. Some important things
to remember are:

• The element ω = v1 ∧ · · · ∧ vk is zero if and only if v1, . . . , vk are linearly
dependent. If ω is non-zero, then a second pure tensor w1 ∧ · · · ∧ wk is a
non-zero scalar multiple of ω if and only if the span of v1, . . . , vk equals

that of w1, . . . , wk. In this sense, non-zero pure tensors in
∧k

V (up to
non-zero scalars) are in bijection with k-dimensional subspaces of V .

• There is a unique bilinear map
∧k

V ×
∧l

V →
∧k+l

V mapping (v1 ∧
· · · ∧ vk, w1 ∧ · · · ∧ wl) 7→ v1 ∧ · · · ∧ vk ∧ w1 ∧ · · · ∧ wl. Taking these

maps together makes
⊕

k≥0
∧k

V into an associative algebra called the
Grassmann algebra on V .

• If µ ∈
∧k

V and ω ∈
∧q

V are non-zero pure tensors representing a k-
dimensional subspace U ⊆ V and an l-dimensional subspace W ⊆ V ,
respectively, then their product µ ∧ ω in the Grassman algebra is zero if
and only if U ∩W 6= {0}.

• If V is finite-dimensional with basis v1, . . . , vn, and for every subset I =
{i1 < . . . < ik} ⊆ {1, . . . , n} of cardinality k we set uI := ui1 ∧ · · · ∧ uik ,

then the uI form a basis of
∧k

V . In particular, the dimension of the
latter space is

(
n
k

)
, and the dimension of the Grassmann algebra is 2n =∑n

k=0

(
n
k

)
.

• A linear map φ : V → W induces linear maps
∧k

φ :
∧k

V →
∧k

W
sending v1 ∧ · · · ∧ vk to (φv1) ∧ · · · ∧ (φvk) for every k. This holds, in
particular, when W = V and when dimV is finite and equal to k. In this

case dim
∧k

V = 1 so that the linear map
∧k

φ is just multiplication by
an element of K. You already know this number as the determinant of
φ. This is a beautiful, coordinate-free definition of the determinant of a
linear map.

Proofs of these statements, and others, are below. Alternating powers turn out to
be tremendously useful in applications to combinatorics.
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8.2. Definition and first properties of alternating powers

Fix a vector space V and let S (for “relationS”) be the subspace of V ⊗k spanned
by all pure tensors u1⊗· · ·⊗uk in which two of the factors are equal, i.e., for which

there exist i < j with ui = uj . We set
∧k

V := V ⊗k/S, and we write v1 ∧ · · · ∧ vk
for the image of a pure tensor v1 ⊗ · · · ⊗ vk. By construction, the space

∧k
V is

spanned by these k-fold wedge products v1 ∧ · · · ∧ vk, and these are also called pure

alternating tensors. General elements of
∧k

V are called alternating k-tensors.

A multilinear map f : V k →W is called alternating if f(v1, . . . , vk) is zero as soon

as two of the vi are identical. By the above, the map V k →
∧k

V, (v1, . . . , vk) 7→
v1 ∧ · · · ∧ vk is (multilinear and) alternating.

Exercise 8.2.82. (1) Prove that if a multilinear map f : V k → W is alter-
nating, then f(v1, . . . , vi, . . . , vj , . . . , vk) = −f(v1, . . . , vj , . . . , vi, . . . , vk)
for all i < j and all v1, . . . , vk ∈ V (here only the arguments vi and vj
have been swapped). Conversely, prove that if a multilinear map f has
the latter property for all i < j, then it is alternating, provided that the
characteristic of K is not 2.

(2) Prove that (regardless of the characteristic) a multilinear map f : V k →W
is alternating if and only if f(v1, . . . , vk) = 0 whenever some consecutive
arguments vi, vi+1 coincide.

We have the following universal property characterising
∧k

V . This follows from
the universal property of V ⊗k and some reasoning analoguous to the reasoning that
we used there; we omit the proof.

Proposition 8.2.83. Given any alternating k-linear map f : V k → W , there is a

unique linear map
∧k

V →W that makes the diagram

V k

f

��

// ∧k V
f||

W

commute.

Example 8.2.84. Take V = Kk. Then the map det : V k = (Kk)k → K sending
an k-tuple (v1, . . . , vk) of column vectors to the determinant of the matrix with
columns v1, . . . , vk is multilinear and alternating: if a matrix has two identical
columns, then its determinant is zero. By the universal property, this means that

there is a unique linear map det :
∧k

(Kk)→ K such that the diagram

(Kk)k

det

��

// ∧k(Kk)

detyy
K

commutes. Since det is not the zero map, neither is det. In particular,
∧k

Kk is
non-zero. We will soon see that it is one-dimensional, and how fundamental this
example is.
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Proposition 8.2.85. Let φ : V →W be a linear map and let k be a natural number.

Then there exists a unique linear map
∧k

φ :
∧k

V →
∧k

W mapping v1 ∧ · · · ∧ vk
to (φv1) ∧ · · · ∧ (φvk).

This follows immediately from the universal property applied to the alternating
multilinear map sending (v1, . . . , vk) to (φv1) ∧ · · · ∧ (φvk). A useful spacial case
is that where V is a subspace of W and φ is the inclusion map. By the following

exercise, this means that we can view
∧k

V as a subspace of
∧k

W .

Exercise 8.2.86. Prove that

(1) if ψ : W → U is a second linear map, then
∧k

(ψ ◦ φ) = (
∧k

ψ) ◦ (
∧k

φ);

(2) if φ is injective, then so is
∧k

φ;

(3) if φ is surjective, then so is
∧k

φ; and

(4) if φ is invertible, then so is
∧k

φ, with inverse
∧k

(φ−1).

Let B be a basis of V and assume that we have fixed a linear order < on B. By
Theorem 6.1.54 the tensors v1⊗· · ·⊗vk with all vi running through B form a basis

of V ⊗k. As a consequence, their images v1∧· · ·∧vk span
∧k

V . But they are not a
basis (unless k ≤ 1), because permuting two factors only multiplies the alternating

product by −1, and when two vi are equal, the image of v1 ⊗ · · · ⊗ vk in
∧k

V is
zero. This leads to the following theorem.

Theorem 8.2.87. The pure tensors v1∧· · ·∧vk with v1, . . . , vk ∈ B and v1 < . . . <

vk form a basis of
∧k

V .

We will refer to this basis as the “standard basis” of
∧k

V corresponding to B. If
|B| = n is finite, we will often label its elements by the indices 1, . . . , n and use
double indices (vi1 ∧ · · · ∧ vik with i1 < . . . < ik).

Proof. By the above reasoning, these alternating products span
∧k

V . To
prove linear independence, let v1 < . . . < vk be elements of B. We will construct

a linear map with domain
∧k

V that is non-zero on v1 ∧ . . . ∧ vk and zero on all

other proposed basis elements of
∧k

V . For this let φ be the linear map from V to

Kk that maps vi to ei and all elements of B \ {v1, . . . , vk} to 0. Then
∧k

φ maps
v1 ∧ · · · ∧ vk to e1 ∧ · · · ∧ ek, and all other proposed basis elements to zero. Now

e1∧· · ·∧ek spans
∧k

Kk, and we have seen above that the latter space is non-zero.
Hence e1 ∧ · · · ∧ ek is non-zero, as desired. �

This theorem immediately implies that if dimV =: n is finite, then dim
∧k

V equals(
n
k

)
. In particular, this dimension is 1 for k = 0, then grows with k until k reaches

bn2 c, stays the same at dn2 e, and decreases all the way down to 1 for k = n and 0
for k > n.

8.3. Duals and quotients

Taking duals and alternating powers almost commute. More precisely, there is a

natural linear map
∧k

(V ∗) 7→ (
∧k

V )∗, determined by sending x1 ∧ · · · ∧ xk to the
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linear function on
∧k

V determined by

v1 ∧ · · · ∧ vk 7→
∑
π∈Sk

sgn (π)x1(vπ(1)) · · ·xk(vπ(k)).

Note that the right-hand side is alternating and k-linear in (v1, . . . , vk), so that

such a linear function exists by the universal property of
∧k

V . Moreover, the
map sending (x1, . . . , xk) to that linear function is itself alternating and k-linear,

which guarantees the existence of a unique linear map
∧k

(V ∗) → (
∧k

V )∗ as just
described.

Proposition 8.3.88. The map just described is injective. If V is finite-dimensional,
then it is also surjective.

Proof. We first prove this for finite-dimensional V , and then reduce the gen-
eral case to this case. For finite-dimensional V , let v1, . . . , vn be a basis of V ,
and let x1, . . . , xn be the dual basis of V ∗. Then the standard basis element

xi1 ∧ · · · ∧ xik ∈
∧k

(V ∗) (i1 < . . . < ik) gets mapped to the linear function that
maps the standard basis element vj1 ∧ . . .∧ vjk (j1 < . . . < jk) to 1 if each jl equals
the corresponding il and to 0 otherwise. In other words, the standard basis of∧k

(V ∗) is mapped to the basis dual to the standard basis of
∧k

V . In particular,
the linear map is an isomorphism.

In the general case, let ω ∈
∧k

(V ∗) be a tensor mapped to zero. Since ω is a

finite linear combination of pure tensors, it already lives in
∧k

U for some finite-
dimensional subspace U of V ∗. Let W be the subspace of all v ∈ V with x(v) = 0
for all x ∈ U . Then U is canonically isomorphic to (V/W )∗, and we have the
commutative diagram ∧k

U //

��

(
∧k

(V/W ))∗

��∧k
V ∗ // (

∧k
V )∗

where the vertical maps are inclusions (or at least canonical and injective: the

right-most one is the dual of the surjective linear map
∧k

V →
∧k

(V/W ) coming
from the surjection V → V/W ) and where upper map is injective by the previous,

finite-dimensional case. By assumption, ω ∈
∧k

U is mapped to zero when first
the left-most vertical map and then the bottom map is applied. But then it is also
mapped to zero by the composition of the other two maps. Since both of these are
injective, ω is zero. �

Exercise 8.3.89. Assume that V is infinite-dimensional.

(1) Prove that, in the above construction, every element of
∧k

V ∗ is mapped

to a linear function on
∧k

V that factorises through the surjective map∧k
V →

∧k
(V/U) and a linear function

∧k
(V/U)→ K for some subspace

U of finite codimension in V . [Note that the kernel of
∧k

V →
∧k

(V/U)
is spanned by pure tensors of the form u ∧ v2 ∧ · · · ∧ vk with u ∈ U and

v2, . . . , vk ∈ V . This kernel contains, but is typically larger than
∧k

U .]
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(2) Prove that, conversely, every linear function on
∧k

V that has such a
factorisation for some subspace U of finite codimension in V is the image

of some element of
∧k

(V ∗). [Apply the finite-dimensional part of the
proposition to V/U .]

(3) Assume that V is countable-dimensional, with basis v1, v2, . . .. Let f

be the linear function on
∧2

V that maps the standard basis elements
v2i−1 ∧ v2i, i = 1, 2, . . . to 1 and all other standard basis elements to
zero. Prove that there does not exist a non-zero vector u ∈ V such that
f(u ∧ v) = 0 for all v ∈ V . Conclude that f does not lie in the image of

the map
∧2

(V ∗)→ (
∧2

V )∗.

8.4. Grassmann algebra and the Plücker embedding

There is a well-defined bilinear map
∧k

V ×
∧l

V →
∧k+l

V mapping (v1 ∧ · · · ∧
vk, w1 ∧ · · · ∧ wl) 7→ v1 ∧ · · · ∧ vk ∧ w1 ∧ · · · ∧ wl—indeed, for fixed w1, . . . , wl
the right-hand side is k-linear and alternating in v1, . . . , vk and vice versa, hence
the existence of such a bilinear map follows from the universal properties of both
alternating powers. By convenient abuse of notation, we write ω ∧ µ for the image
of (ω, µ) under this map.

Taking these maps together makes
∧
V :=

⊕
k≥0

∧k
V into an associative algebra:

the product of ω ∈
∧k

V and µ ∈
∧l

V is ω ∧ µ, and this product is extended

linearly. If V is finite-dimensional of dimension n, then
∧k

V = 0 for k > n, and
we find that

∧
V has dimension 2n.

We will see another beautiful application of the Grassmann algebra in Chapter 9,
but for now we will focus on how we can use it to compute efficiently with finite-
dimensional subspaces of a vector space V . For this let U be a k-dimensional

subspace of V . The inclusion U → V gives an inclusion
∧k

U →
∧k

V . The
first of these vector spaces has dimension one, and is spanned by any pure tensor
ω = u1 ∧ · · · ∧ uk with u1, . . . , uk a basis of U . (In particular, the alternating
product of any other basis of U is scalar multiple of ω.) If W is a k-dimensional

subspace of V different from U , then we claim that
∧k

W is a one-dimensional

subspace of
∧k

V different from
∧k

U . This is almost immediate: choose a basis
v1, . . . , vn of V such that v1, . . . , vk form a basis of U and vm, . . . , vm+k−1 for some
m ≤ k+ 1 form a basis of W (for this one typically first chooses a (possibly empty)
basis vm, . . . , vk of their intersection). The dis-equality W 6= U implies m 6= 1. But

then
∧k

U,
∧k

W are spanned by the distinct standard basis elements v1 ∧ · · · ∧ vk
and vm ∧ · · · vm+k−1 of

∧k
V , respectively. Hence they are not equal. This proves

the following proposition.

Proposition 8.4.90. The map U 7→
∧k

U from the set of k-dimensional subspaces

of V to the set of one-dimensional subspaces of
∧k

V is an embedding. Its image
consists of those one-dimensional subspaces that are spanned by pure tensors.

This embedding is called the Plücker embedding. In the following exercise you get
acquainted with the smallest interesting example.
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Exercise 8.4.91. Let V = K4 thought of as row vectors, and let k = 2. Let a1, a2
be elements of K4 spanning a two-dimensional subspace U , and let A = (aij) be
the 2× 4-matrix with rows a1, a2, respectively.

(1) Verify that the coefficient in a1 ∧ a2 of the standard basis element ej ∧
el (1 ≤ j < l ≤ 4) equals the determinant djl := a1ja2l − a2ja1l.

(2) What happens with these determinants when A is multiplied from the left
with an invertible 2× 2-matrix g? (This corresponds to a change of basis
in U .)

(3) Verify by computation that the determinants djl satisfy the following fun-
damental relation:

d12d34 − d13d24 + d14d23 = 0.

(This is called a Grassmann-Plücker relation.)
(4) Conversely, given six elements djl ∈ K (1 ≤ j < l ≤ 4) satisfying the

previous equation (and not all zero), show that there exists a unique
subspace U having some basis a1, a2 such that djl = a1ja2l−a2ja1l for all
1 ≤ j < l ≤ 4. (Hint: argue first that you may assume that A contains
two columns that contain an identity matrix, and then reconstruct the
remaining entries of A.)

This exercise shows that the set of two-dimensional subspaces of a four-dimensional
space “is” the set of those one-dimensional subspaces of a certain six-dimensional
space that satisfy a certain quadratic equation. This “quadratic hypersurface”
(strictly speaking, in projective five-space) is called the Klein quadric.

We conclude this chapter with a proposition relating products in the Grassmann
algebra with intersections of subspaces.

Proposition 8.4.92. Let ω ∈
∧k

V and µ ∈
∧l

V be non-zero pure tensors repre-
senting subspaces U and W of V , respectively. Then U ∩W = {0} if and only if
ω ∧ µ 6= 0.

Proof. If U ∩W = {0}, then there exists a basis v1, . . . , vn of V such that
v1, . . . , vk is a basis of U and vk+1, . . . , vk+l is a basis of W . Then ω is a non-zero
scalar multiple of v1∧· · ·∧vk and µ is a non-zero scalar multiple of vk+1∧· · ·∧vk+l,
hence ω ∧ µ is a non-zero scalar multiple of v1 ∧ · · · ∧ vk+l. Since the latter vector

is part of the standard basis of
∧k+l

V , it is not zero, hence neither is ω ∧ µ.

Conversely, if v ∈ U ∩W is a non-zero vector, then for suitable u2, . . . , uk we have
ω = v ∧ u2 ∧ · · · ∧ uk and for suitable w2, . . . , wl we have µ = v ∧ w2 ∧ · · · ∧ wl.
Then ω∧µ is the alternating product of v, u2, . . . , uk, v, w2, . . . , wl, hence zero since
v appears twice. �

Exercise 8.4.93. Take V = Kn. Let ω be a non-zero element of
⊕n

k=1

∧k
V ,

where we have excluded the summand
∧0

V = K.

(1) Prove that there exists an m > 1 for which ωm, where the power is taken
in the Grassmann algebra, is zero, and ωm−1 is not yet zero.

(2) Find such an ω for which m of the preceding part is maximal. (Hint: pure
non-zero tensors will have m = 2, which is certainly not maximal.)



CHAPTER 9

Applications of alternating tensors

In this short chapter we discuss two beautiful applications of alternating tensors.

9.1. Bollobás’s theorem

The first application is Lovász’s proof of a 1965 theorem due to Bollobás; this part
of the chapter is based on [1, Chapters 5 and 6]. In this chapter, a simple graph
is understood to be undirected and without loops or multiple edges. First consider
the following elementary statement.

Exercise 9.1.94. If in a simple graph every collection of at most three edges has
a common vertex, then the graph has a vertex that lies in all edges.

There are various ways to generalise this statement; we will use the following ter-
minology. An r-uniform set system on a set X is a collection F of cardinality-r
subsets of X. Thus a simple graph on X is a 2-uniform set system. A subset S of
X is said to cover F if every element F has non-empty intersection with S. Thus a
single vertex contained in all edges of a graph covers all edges of that graph. Now
the elementary observation above can be generalised by considering covering sets
with s > 1 and/or r-uniform set systems with r > 2. Here is the first generalisation.

Theorem 9.1.95 (Erdös-Hajnal-Moon, 1964). Let s be a natural number, and let
G be a simple graph on a set X. If every family of at most

(
s+2
2

)
edges of G is

covered by some cardinality-s subset of X, then there is a cardinality-s subset of X
that covers all edges.

Note that the special case with s = 1 is the previous exercise.

Exercise 9.1.96. Give an example of a graph, depending on s, that shows that
the statement would be incorrect if

(
s+2
2

)
were replaced by

(
s+2
2

)
− 1.

The following theorem generalises the previous one to larger r.

Theorem 9.1.97 (Bollobás, 1965). Let F be an r-uniform set system on a set X
and let s be a natural number. If every subset of F of cardinality at most

(
s+r
r

)
is covered by some cardinality-s subset of X, then all of F is covered by some
cardinality-s subset of X.

Exercise 9.1.98. Give an example of an r-uniform set, depending on r and s, that
shows that the statement would be incorrect if

(
s+r
r

)
were replaced by

(
s+r
r

)
− 1.

Proof of Bollobás’s theorem due to Lóvász. We will prove this for fi-
nite X; below is an exercise that reduces the case of infinite X to this case. Assume

65
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that F is not covered by any cardinality-s subset of X. Then F has some minimal
sub-family F ′ (with respect to inclusion) with the property that F ′ is not covered
by any cardinality-s subset of X. To arrive at a contradiction, it suffices to prove
that |F ′| ≤

(
r+s
r

)
. Let F ′ = {A1, . . . , Am}, where the Ai are distinct cardinality-r

subsets of X. By minimality of F ′, for every i = 1, . . . ,m the sub-family F ′ \ {Ai}
is covered by some cardinality-s set Bi. We thus have

Ai ∩Bj

{
6= ∅ if i 6= j, and

= ∅ if i = j.

Now comes Lovász’s beautiful trick. Let K be a sufficiently large field (we will
see below what cardinality suffices) and let V = KX be the vector space formally
spanned by X. For i, j = 1, . . . ,m let Ui ⊆ V be the r-dimensional subspace
spanned by Ai and let Wj be the s-dimensional subspace spanned by Bj . Then, by
the above, we have

Ui ∩Wj

{
6= {0} if i 6= j, and

= {0} if i = j.

Now let φ : V → Kr+s be a linear map that maps each Ui to an r-dimensional
subspace of Kr+s and each Wj to an s-dimensional subspace of Kr+s, and that
satisfies φ(Ui)∩φ(Wi) = {0} for all i. (Below you will prove that such a linear map
exists when the cardinality of K is sufficiently large.)

Let µi span the one-dimensional subspace
∧r

φ(Ui) ⊆
∧r

Kr+s and let λi span
the one-dimensional subspace

∧s
φ(Wi) ⊆

∧s
Kr+s. Then, by the above and by

properties of the alternating product proved in the previous chapter, we have

µi ∧ λj

{
= 0 if i 6= j, and

6= 0 if i = j;

here first case follows from the fact that φ maps the non-zero space Ui ∩Wj , i 6= j
into a non-zero common subspace φ(Ui ∩Wj) of φ(Ui) and φ(Wj), and the second
case follows from the requirement that φ “keep Ui and Wi apart”.

We claim that µ1, . . . , µm are linearly independent (and so are λ1, . . . , λm). Indeed,
if
∑
i ciµi = 0, then by the above we find that, for each j,

0 = (
∑
i

ciµi) ∧ λj = cjµj ∧ λj ,

and cj = 0 since µj ∧ λj is non-zero. Since the µi are linearly independent, m is at

most the dimension of
∧r

Kr+s, which equals
(
r+s
r

)
. �

Exercise 9.1.99. (1) Prove that, for φ to satisfy the conditions in the proof,
it suffices that kerφ does not intersect any of the (r + s)-dimensional
subspaces Ui ⊕Wi, i = 1, . . . ,m of V .

(2) Let M be the (r+ s)× |X|-matrix of φ with respect to the standard basis
of Kr+s and the basis X of V . Show that the condition in the previous
exercise is equivalent to the condition that the (r + s) × (r + s) matrix
obtained by taking the columns of M corresponding to Ai ∪ Bi has non-
zero determinant.

(3) Prove the existence of a matrix M with the property in the previous part,
provided that |K| ≥ |X|. (Hint: Vandermonde matrices.)
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Exercise 9.1.100. Reduce the case of infinite X to the case of finite X.

9.2. Unique coclique extension property

This section contains an application of exterior powers to certain graphs whose
study is popular among Eindhoven combinatorialists. Recall that a coclique in a
(simple) graph is a set of vertices that are pairwise not connected.

Fix natural numbers n and k ≤ n/2. Then the Kneser graph K(n, k) has as vertex
set the collection of all cardinality-k subsets of [n] := {1, . . . , n}, and two are
connected by an edge if they are disjoint. Thus cocliques in the Kneser graph
are k-uniform set systems on [n] that pairwise intersect. By a famous theorem of
Erdös-Ko-Rado (with a beautiful proof due to Katona) the the maximal size of a
coclique is

(
n−1
k−1
)
, which is attained by the set of all cardinality-k subsets containing

1. If k = n/2, then this maximal size of a coclique C is 1
2

(
n
k

)
, and there are many

cocliques attaining this bound, all of the following form: for every n/2-subset A of
[n], C contains exactly one of the sets A and [n] \A.

Next we turn our attention to q-analogues. Fix a field F . Then the F -Kneser graph
KF (n, k) has as vertex set the collection of all k-dimensional subspaces of Fn, and
two subspaces U, V are connected if U ∩ V = {0}.
A coclique C in K(n, k) can be “thickened” to a subset CF of KF (n, k) defined as
the set of all k-dimensional subspaces U of Fn such that U∩〈{ei | i ∈ A}〉 6= {0} for
all A ∈ C. In words: to every set A ∈ C we associate the vector space UA spanned
by all standard basis vectors with index in A, and then CF is defined as the set
of all k-dimensional subspaces that are not connected, in KF (n, k), to any of the
spaces UA, A ∈ C. Note that, since C is a coclique, the UA themselves are elements
of C. The following theorem gives a sufficient condition for CF to be a coclique in
KF (n, k).

Theorem 9.2.101. Suppose that C is maximal (with respect to inclusion) among
all cocliques in the ordinary Kneser graph K(k, n). Then CF is a (neccessarily
maximal) coclique in the F -Kneser graph K(k, n, F ).

Example 9.2.102. Let n = 5 and k = 2 and let C = {{1, 2}, {1, 3}, {2, 3}}. This
is a maximal coclique in the ordinary Kneser graph (though not of maximal cardi-
nality). Then the set CF contains the space 〈e1 + e2, e2− e3〉 (which has non-trivial
intersection with each of 〈e1, e2〉, 〈e1, e3〉, 〈e2, e3〉) but not, for example, the space
〈e1, e2 + e4〉 (which only has non-trivial intersection with the first two).

Proof. We will prove only the case where n = 2k; another special case of the
general case will be among the exercises. We have to prove that for any U,W ∈ CF
we have U ∩W 6= {0}. Let µ ∈

∧k
Fn be the pure tensor (unique up to scalars)

representing U and let λ ∈
∧k

Fn be the pure tensor representing W . Then we have
to prove that µ∧λ = 0. To see this, expand µ on the standard basis {ei1 ∧· · ·∧eik |
1 ≤ i1 < . . . < ik ≤ n} of

∧k
Kn. Let A = {j1 < . . . < jk} be a cardinality-k set

not in C. Then by maximality of C the complement {i1 < . . . < ik} of A does lie in
C. By definition of CF we find that U intersects UA, which means that

µ ∧ (ei1 ∧ · · · ∧ eik) = 0.
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Now a standard basis vector of
∧k

Kn has alternating product zero with ei1∧· · ·∧eik
unless it equals ej1 ∧ · · · ∧ ejk , in which case it is ±e1 ∧ · · · ∧ en 6= 0. Hence the
coefficient in µ of the ej1 ∧· · ·∧ejk is zero, as claimed. This proves that µ lies in the
span of the standard basis vectors corresponding to elements of C. The same holds
for λ. As C is a coclique in the ordinary Kneser graph, the alternating product
of any two standard basis vectors corresponding to elements of C is zero. Hence
µ∧λ = 0, as well. This means that U ∩W 6= {0}, as required. We have thus proved
that CF is a coclique. That it is maximal follows from the fact that we have added
to the UA, A ∈ C all subspaces that are not connected to any of these. �

Exercise 9.2.103. Let n be arbitrary and set k := 2.

(1) Describe all (inclusion-)maximal cocliques in the Kneser graph K(n, k) (so
not only those of maximal cardinality!).

(2) Prove the theorem in this case.

Exercise 9.2.104. In this exercise we prove the Erdös-Ko-Rado theorem, as well
as its Fq-analogue, under the additional assumption that k divides n. First let C
be a coclique in the ordinary Kneser graph K(k, n).

(1) Argue that in any ordered partition (A1, . . . , An/k) of [n] into n/k parts
of cardinality k at most one of the parts Ai is in C.

(2) Prove C contains at most 1/(nk ) = k
n times the total number of k-sets

(which is
(
n
k

)
). (Hint: consider pairs ((A1, . . . , An/k), A) where (A1, . . . , An/k)

is a partition of [n] into parts of size k and where A is an element of C
that appears among the Ai; count such pairs in two different ways.)

Next let C be a coclique in the Fq-Kneser graph K(n, k,Fq). Recall that Fq has a

field extension Fqk , that the n
k -dimensional vector space (Fqk)n/k is n-dimensional

when regarded as a vector space over Fq, and that a one-dimension subspace of

(Fqk)n/k is k-dimensional over Fq.

(3) Fix any Fq-linear isomorphism φ : (Fq)n → (Fqk)n/k (this is the Fq-
analogue of the ordered partition above). Prove that C contains at most
one element U (a k-dimensional subspace of (Fq)n) such that φ(U) is a
one-dimensional subspace over Fqk .

(4) Prove that C contains at most 1/( q
n−1
qk−1 ) times the total number of k-

dimensional subspaces of Fnq , and that this gives the upper bound (qn−1−1)···(qn−k+1−1)
(qk−1−1)···(q−1)

on the cardinality of C.
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CHAPTER 10

Symmetric bilinear forms

We already know what a bilinear form β on a K-vector space V is: it is a function
β : V × V → K that satisfies β(u + v, w) = β(u,w) + β(v, w) and β(u, v + w) =
β(u, v) + β(u,w) and β(cv, w) = β(v, cw) = cβ(v, w) for all u, v, w ∈ V and c ∈ K.
In this chapter we study such forms that are, moreover, symmetric in the sense that
β(v, w) = β(w, v) holds for all v, w ∈ V .

10.1. Gram matrix

Linear combinations of symmetric bilinear forms on V are again symmetric bilinear
forms. Hence these forms form a vector sub-space of the space (V ⊗ V )∗ of all
bilinear forms (remind yourself why the space of bilinear forms is canonically the
same as the dual of V ⊗ V !). Together with a basis (vi)i∈I of V , the bilinear form
determines the Gram matrix (β(vi, vj))i,j∈I of β with respect to the vi. This is
a symmetric matrix. Conversely, given any symmetric matrix A = (aij)i,j∈I with
rows and columns labelled by I, there is a unique symmetric bilinear form with
Gram matrix A with respect to the vi. This form is defined by

β(
∑
i∈I

civi,
∑
j∈I

djvj) =
∑

i∈I,j∈I
ciaijdj = cTAd,

where in the last equality we think of c, d as a column vectors (with only finitely
many non-zero entries). In particular, if |I| is finite and equal to n, then a choice
of basis gives rise to a linear isomorphism between the space of symmetric bilinear
forms and the space of symmetric n × n-matrices, which has dimension

(
n+1
2

)
=

n+
(
n
2

)
.

10.2. Radicals, orthogonal complements, and non-degenerate forms

Let β be a symmetric bilinear form on V . Two vectors v, w are called perpendicular
or orthogonal (with respect to β) if β(v, w) = 0. For a subspace (or even a subset)
U ⊆ V we write U⊥ for the set of all v ∈ V such that β(v, U) = {0} (which,
by symmetry of the form, is equivalent to β(U, v) = {0}). Then U⊥ is called the
orthogonal complement or orthoplement of U , although it need not be a vector space
complement (for this reason, some people prefer the term perp).

Example 10.2.105. (1) Let K = F2, V = Kn and β(v, w) :=
∑n
i=1 viwi.

Assume that n is even. Then the vector (1, . . . , 1) is perpendicular to
itself (a non-zero vector with this property is called isotropic), hence it is
contained in its own orthoplement.
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(2) This is not just a positive-characteristic phenomenon; the same happens
with V = C2 and β(v, w) = v1w1+v2w2. Then the vector (1, i) is isotropic.
(Note that v1w1+v2w2 is not linear in w! We’ll get back to such Hermitian
forms later.)

(3) Even on the real vector space V = R2 with β(v, w) = v1w2+v2w1 isotropic
vectors, such as (1, 0), exist.

(4) But of course in V = Rn with β(v, w) =
∑
i viwi no isotropic vectors

exist.

The radical radβ of β is defined as the orthoplement V ⊥ of V itself. The form is
called non-degenerate if radβ = {0}.

Exercise 10.2.106. Verify that, given a basis (vi)i∈I of V , the radical of β consists
of all linear combinations

∑
i civi such that the column vector c lies in the kernel

of the Gram matrix of β with respect to the vi.

The following lemma shows how to “get rid of a radical”.

Lemma 10.2.107. The form β induces a unique, well-defined bilinear form β on
V/ radβ that makes the diagram

V × V
β //

π×π
��

K

(V/ radβ)× (V/ radβ),
β

66

commute (here π : V → V/ radβ is the natural projection).

Proof. Uniqueness follows from surjectivity of π. Existence (or “well-definedness”)
follows from the fact that β(u, v) equals β(u′, v′) for all u′ ∈ u + radβ and v′ ∈
v + radβ. �

The dimension of V/ radβ is also called the rank of β.

Exercise 10.2.108. Show that, if V is finite-dimensional, then the rank of β is the
rank of the Gram matrix of β with respect to any basis of V .

We now collect a number of facts about non-degenerate symmetric bilinear forms.

Lemma 10.2.109. If β is a non-degenerate symmetric bilinear form on a finite-
dimensional vector space V , then the map V → V ∗, v 7→ β(v, .) is a linear isomor-
phism.

Proof. An element of the kernel of this map is perpendicular to all of V , and
hence 0 since β is non-degenerate. This shows that the map is injective. It is also
surjective since dimV = dimV ∗ for finite-dimensional V . �

Although an orthoplement is not always a complement to a vector space, it does
have the right dimension, provided that the form is non-degenerate.

Lemma 10.2.110. Let β be a non-degenerate symmetric bilinear form on a finite-
dimensional vector space V , and let U be a subspace of V . Then dimU+dimU⊥ =
dimV .
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Proof. Let φ : V → V ∗ be the isomorphism v 7→ β(v, .), and let π : V ∗ →
U∗ be the (surjective) restriction map of linear functions (dual to the inclusion
U → V ). Now U⊥ is the kernel of π ◦ φ. By the dimension theorem, we have
dimU⊥ + dim im(π ◦ φ) = dimV . As π and φ are surjective, so is π ◦ φ, so the
dimension of the image equals dimU∗ = dimU . �

Exercise 10.2.111. Use the previous lemma to prove that for any symmetric bi-
linear form β on a finite-dimensional vector space V and for any subspace U of V
we have (U⊥)⊥ = U .

Exercise 10.2.112. The n inhabitants of Odd-Town enjoy forming clubs. To avoid
the foundation of all 2n possible clubs (all subsidised by the government, of course),
the government of the country to which Odd-Town belongs has imposed the follow-
ing two restrictions on clubs:

(1) the number of members of every club should be odd; and
(2) the number of common members of any two distinct clubs should be even.

In particular, these rules implies that two distinct clubs cannot have exactly the
same members.

(1) What is the maximal number of clubs that the inhabitants of Odd-Town
can form? (Hint: represent the clubs by vectors over F2.)

(2) Let N be that maximal number. Can any collection of less than N clubs
satisfying the rules be extended to a collection of N clubs satisfying the
rules?

Exercise 10.2.113. In Reverse-Odd-Town, which belongs to the same country as
Odd-Town, a local administrator has miscopied the nation-wide rules mentioned
before. Indeed, he has interchanged the words even and odd! Answer the same
questions for Reverse-Odd-Town. (This time, you may have to make a case distinc-
tion between even and odd n.)

10.3. Group action, equivalence

Our old friend GL(V ) acts on the space of symmetric bilinear forms by

(gβ)(v, w) := β(g−1v, g−1w).

Two symmetric bilinear forms β, γ on V are called equivalent if they are in the
same GL(V )-orbit. The rest of this chapter will be concerned with describing the
equivalence classes over easy fields. Note, first of all, that the dimension (and the
co-dimension) of the radical are invariants of symmetric bilinear forms under this
group action.

Lemma 10.3.114. Let (vi)i∈I be a basis of V and let β be a symmetric bilinear form
on V . A second symmetric bilinear form γ on V is equivalent to β if and only if
there exists a basis (wi)i∈I of V such that the Gram matrix of β with respect to the
vi equals the Gram matrix of γ with respect to the wi.

Proof. First, assume that gβ = γ. This means that γ(gvi, gvj) = β(vi, vj) for
all i, j, hence if we set wi := gvi, then the Gram matrix of γ with respect to the
wi equals the Gram matrix of β with respect to the vi. For the converse, assume



74 10. SYMMETRIC BILINEAR FORMS

that (wi)i∈I is a basis with the required property. There is a (unique) g ∈ GL(V )
satisfying gvi = wi. Then gβ = γ. �

The proof of this lemma is worth working out in detail for V = Kn. Let β be a
symmetric bilinear form on V and let A be the Gram matrix of β with respect to
the the standard basis. Also let g ∈ GLn(K) = GL(V ). Then the Gram matrix B
of gβ with respect to the standard basis has entries

bij = β(g−1ei, g
−1ej) = (g−1ei)

TA(g−1ej) = eTi (g−TAg−1)ej ,

so B = g−TAg−1 where g−T is the inverse of the transpose of A (which is also the
transpose of the inverse). In particular, that Gram matrix is not an invariant of
the action. However, note that the determinant det(B) equals det(g−1)2 det(A).
Hence if det(A) is a square in K, then so is det(B), and if det(A) is not a square
in K, then neither is det(B).

Moreover, consider a second basis he1, . . . , hen, where h ∈ GLn. With respect to
this basis β has Gram matrix equal to hTAh, and gβ has Gram matrix g−ThTAhg−1.
Again, the determinants of these matrices are squares if and only if detA is a square.
Thus the “squareness” of the determinant of a Gram matrix of a symmetric bilinear
form β does not depend on the basis, and does not change when β is replaced by
an element gβ in its orbit. This squareness is therefore a well-defined invariant of
symmetric bilinear forms (and can be transfered from Kn to abstract n-dimensional
vector spaces over K by means of a linear isomorphism).

Example 10.3.115. Consider the two symmetric bilinear forms on F2
5 for with

Gram matrices [
1 0
0 1

]
and

[
1 0
0 2

]
,

with respect to the standard basis. These are not in the same orbit under GL2(F5)
because the first Gram matrix has determinant 1, which is a square, while the
second Gram matrix has determinant 2, which is not a square.

Exercise 10.3.116. Prove that two symmetric bilinear forms β, γ on a finite-
dimensional vector space V are equivalent if and only if

(1) dim radβ = dim rad γ; and
(2) there exists a vector space isomorphism φ : V/ radβ → V/ rad γ such that

γ(φ(v + radβ), φ(w + radβ)) = β(v + radβ,w + radβ).

This exercise reduces the study of (equivalence classes of) arbitrary symmetric
bilinear forms to (equivalence classes of) non-degenerate ones.

10.4. Quadratic forms

A symmetric bilinear form β on V gives rise to a so-called quadratic form q : V → K
defined by q(v) := β(v, v). Conversely, the polarisation identity

β(v, w) =
1

4
(q(v + w)− q(v − w))

shows that q determines β, provided that the characteristic of K is not 2. In the
remainder of this chapter we will therefore assume that charK 6= 2.
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10.5. Non-degenerate forms over algebraically closed fields

In this section we assume that K is algebraically closed with charK 6= 2 and
we let V be an n-dimensional vector space over K. Then we have the following
classification result.

Theorem 10.5.117. The rank is a complete invariant of symmetric bilinear forms
on V under the action of GL(V ). In other words, for every symmetric bilinear form
there exists a basis v1, . . . , vn of V with respect to which the form has Gram matrix[

Ik 0
0 0

]
,

where Ik is the k × k-identity matrix and k is the rank of β. In particular, since k
can take the values 0, . . . , n, there are exactly n+ 1 orbits.

Proof. In view of the last paragraph of Section 10.3, it suffices to prove this
theorem under the condition that β has full rank n. By Lemma 10.3.114 it suffices,
in this case, to prove the existence of a basis w1, . . . , wn with respect to which β has
Gram matrix In. This goes by induction as follows. If n = 0, then nothing needs
to be done. Assume n > 0 and assume that the theorem holds for non-degenerate
symmetric bilinear forms on (n− 1)-dimensional spaces.

Since β is non-degenerate, the associated quadratic form q is not identically zero.
Hence there exists a v ∈ V with q(v) = β(v, v) = c 6= 0. Let d ∈ K be a square
root of c (here we use that K is algebraically closed) and set vn := 1

dv. Then

β(vn, vn) = 1 as required. Now set U := 〈vn〉⊥. By Lemma 10.2.110 the dimension
of U equals n−1. Moreover, vn 6∈ U . Hence V can be decomposed as U⊕〈vn〉K . We
claim that the restriction of β to U is non-degenerate. Indeed, since the orthogonal
complement U⊥ of U in V equals 〈vn〉 (see Exercise 10.2.111) and vn does not lie
in U , no non-zero vector in U is perpendicular to all of U . Hence we may apply the
induction hypothesis to the restriction of β to U , and find a basis v1, . . . , vn−1 of
U with respect to which that restriction has Gram matrix In−1. Then β has Gram
matrix In with respect to v1, . . . , vn, as desired. �

10.6. Non-degenerate forms over finite fields

In this section K = Fq is a finite field with q an odd prime power (so that the
characteristic is not 2).

Theorem 10.6.118. Let V be an n-dimensional vector space over Fq, and let β be
a symmetric bilinear form on V . Then the pair consisting of the rank of β and the
squareness of the (determinant of the Gram matrix of the) induced bilinear form β
on V/ radβ is a complete invariant under the action of GL(V ). In other words, fix
any non-square c ∈ F∗q . Then for any non-zero symmetric bilinear form β there is
a basis of V with respect to which the Gram matrix of β equals either[

Ik 0
0 0

]
or

c 0 0
0 Ik−1 0
0 0 0

 ,
where k is the rank of the form. In particular, there are precisely 2n+ 1 orbits.
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Proof. Again, it suffices to prove this when k = n, that is, for non-degenerate
forms. We proceed by induction. For n = 0 nothing needs to be done, because there
are no non-zero bilinear forms. For n = 1, fix a basis v1 of V . If a := β(v1, v1)
is a square, then take a square root d of a and observe that the quadratic form of
β evaluates to 1 on the vector 1

dv1. If a is not a square, then a = cd2 for some
d ∈ K∗ (check that you know and understand these elementary facts about finite
fields). Then the quadratic form of β evaluates to c on the vector 1

dv1. This settles
the cases where n ≤ 1; these are the base cases of our induction. Now assume that
the statement is true for n− 1, and we set out to prove it for n ≥ 2.

First, using the exact same proof as for the case where Fq is algebraically closed, we
find that there exists a basis w1, . . . , wn for which β has a diagonal Gram matrix.
We will only use the space W spanned by w1, w2. The restriction of β to W has
Gram matrix [

a 0
0 b

]
with a, b 6= 0 by non-degeneracy. If a is a square, then we may take a square root d,
set vn := 1

dw1 and proceed as in the proof in the case of algebraically closed fields.
Similarly if b is a square. Hence assume that not both are squares. Then consider

β(c1w1 + c2w2, c1w1 + c2w2) = ac21 + bc22 =: r.

As c1 runs through all elements of F∗q , the first term s := ac21 runs trough all non-

squares. Similarly, also the second term t := bc22 runs through all non-squares as
c2 runs through F∗q . We claim that, for suitable choices of c1, c2 the element r is
a non-zero square. This is equivalent to the claim that there exist non-squares s, t
such that s+ t is a non-zero square. Let s be any non-square (for instance, a), let
p be the prime dividing q, and let m be the smallest positive integer such that m
is not a square modulo p (half of the integers coprime with p have this property).
Then t := (m − 1)s is not a square but s + t = ms is. We conclude that some
w ∈ W has the property that β(w,w) is a square d2, and we may set vn := 1

dw,
and we may proceed by induction as before. �

Exercise 10.6.119. Let A be the symmetric matrix12 49 67
49 52 43
67 43 13


over the field F71.

(1) Determine the rank of the symmetric bilinear form β(v, w) = vTAw on
V = F3

71.
(2) Determine the squareness of the induced form on V/ radβ.
(3) Determine g ∈ GL3(F71) such that gAgT has the form in Theorem 10.6.118.

Exercise 10.6.120. Determine the order of the group of invertible 3× 3-matrices
g over Fq that satisfy

gT g = I.



CHAPTER 11

More on bilinear forms

11.1. Some counting

In this section we count non-degenerate symmetric bilinear forms on V = Fnq , where
q is a power of an odd prime. Let an denote that number. Then we have a0 = 1
(the zero form on a zero-dimensional vector space is non-degenerate) and a1 = q−1
(because the form is determined by its (non-zero) value on (v1, v1) with v1 a basis
of the space).

Proposition 11.1.121. The numbers an satisfy the following recurrence relation:

an = (qn − qn−1)an−1 + (qn−1 − 1)qn−1an−2.

Proof. For a non-degenerate form β there are two possibilities:

(1) c := β(e1, e1) 6= 0: then W := e⊥1 is a vector space complement of Ke1
in V , and the restriction β|W is non-degenerate. Moreover, β is uniquely
determined by the triple (c,W, β|W ) where c is a non-zero number, W is a
codimension-one subspace not containing e1, and β|W is a non-degenerate
form on W ; and any such triple gives rise to some β. Thus the number
of β’s with β(e1, e1) 6= 0 equals the number of triples, which is (q − 1) ·(
qn−1
q−1 −

qn−1−1
q−1

)
· an−1. This is the first term in the recurrence.

(2) β(e1, e1) = 0: then W := e⊥1 is a codimension-one subspace containing
e1, and the restriction of β to W has Ke1 as radical. Now β is uniquely
determined by W , the induced non-degenerate form β|W on the (n− 2)-
dimensional space W/Ke1, and the restriction of β to {vn} × V , where
Kvn is any vector space complement of W in V . These three pieces of

data are counted by qn−1−1
q−1 and an−2 and (q − 1)qn−1, respectively. To

see the last factor, note that in the Gram matrix with respect to the basis
(v1 followed by a basis of W followed by vn) the last bit counts the choices
for the n entries in the last column (or row). The first of these, which is
β(v1, vn) has to be non-zero (or else β would be degenerate). This yields
the second term in the recurrence.

�

Exercise 11.1.122. Prove that the numbers an also satisfy the following recurrence
relation:

an = q(
n+1
2 ) −

n∑
k=1

[
n
k

]
q

an−k,

77



78 11. MORE ON BILINEAR FORMS

where, as before, [
n
k

]
q

=
(qn − 1) · · · (qn−k+1 − 1)

(qk − 1) · · · (q − 1)
.

is the number of k-dimensional subspaces of V .

Exercise 11.1.123. Prove that the numbers an are as follows:

a2m+1 = (q2m+1 − 1)(q2m−1 − 1) · · · (q − 1)qm(m+1)

for n = 2m+ 1 odd, and

a2m = (q2m−1 − 1)(q2m−3 − 1) · · · (q − 1)qm(m+1)

for n = 2m even.

With the result of this exercise we can compute the orders of so-called finite ortho-
gonal groups, defined as follows: given a non-degenerate symmetric bilinear form β
on V , we define

O(β) := {g ∈ GL(V ) | gβ = β}.
Now for h ∈ GL(V ) we have O(hβ) = hO(β)h−1, i.e., the orthogonal groups
corresponding to forms in one GL(V )-orbit are all GL(V )-conjugate (and hence
isomorphic) to each other. Since there are only two orbits of such forms (with
square and non-square Gram matrix determinant, respectively), there are really
only two different orthogonal groups.

In fact, if n = dimV is odd, then multiplying β with a fixed non-square c has
the effect of multiplying the determinant of the Gram matrix with the non-square
cn. Hence then the map β 7→ cβ gives a bijection between the two orbits of non-
degenerate forms. Moreover, O(β) = O(cβ), so when n is odd there is up to
isomorphism only one orthogonal group, somewhat ambiguously denoted On(Fq).
By Lagrange and Exercise 11.1.123, its order equals

|O2m+1(Fq)| =
|GL(V )|

1
2 (q2m+1 − 1)(q2m−1 − 1) · · · (q − 1)qm(m+1)

= 2(q2m−1) · · · (q2−1)qm
2

.

On the other hand, if n = 2m is even, then there are really two types of finite
orthogonal groups: the stabiliser of a form with square Gram matrix determinant
is denoted O+

2m(Fq), and the stabiliser of a form with non-square Gram matrix
determinant is denoted O−2m(Fq). We will not discuss the details.

Exercise 11.1.124. It makes sense to define orthogonal groups for degenerate forms
as well.

(1) Determine the structure of matrices in GL5(Fq) stabilising the bilinear
form whose Gram matrix with respect to the standard basis of F5

q is
1

1
1

0
0

 .
(2) Determine the order of the group in the previous part.
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11.2. Real symmetric bilinear forms

We briefly discuss symmetric bilinear forms on the real vector space Rn. Let p and
q be natural numbers with p + q ≤ n, and denote by βp,q the symmetric bilinear
form defined by

βp,q(x, y) :=

(
p∑
i=1

xiyi

)
−

 p+q∑
i=p+1

xiyi

 .

The radical of βp,q is spanned by the last n − (p + q) standard basis vectors. The
classification result is as follows.

Theorem 11.2.125. Any symmetric bilinear form on Rn is equivalent to exactly
one βp,q.

Proof. Last chapter’s argument for diagonalising the Gram matrix carries
through, except that we cannot take square roots of negative numbers. But it does
show that any symmetric bilinear form on V is equivalent to some βp,q. So all we
need to do is show that βp,q cannot be equal to βp′,q′ for (p, q) 6= (p′, q′). This is
the content of the following exercise. �

A symmetric bilinear form β on a real vector space V is called positive definite if
β(v, v) > 0 for all non-zero v ∈ V . It is called negative definite if β(v, v) < 0 for all
non-zero v ∈ V .

Exercise 11.2.126. (1) Show that the restriction of βp,q to the span of the
first p standard basis vectors is positive definite.

(2) Show that any subspace W ⊆ Rn of dimension strictly larger than p
contains a non-zero vector w for which βp,q(w,w) ≤ 0.

(3) Conclude that p is the maximal dimension of a subspace of Rn restricted
to which βp,q is positive definite. Do something similar for q.

(4) Conclude from the previous part that βp,q cannot be equivalent to βp′,q′ .


