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Abstract

From the action of an affine algebraic group G on an algebraic variety V', one
can construct a representation of its Lie algebra L(G) by derivations on the
sheaf of regular functions on V. Conversely, if one has a finite-dimensional Lie
algebra L and a homomorphism p : L — Derg (K[U]) for an affine algebraic
variety U, one may wonder whether it comes from an algebraic group action on
U or on a variety V containing U as an open subset. In this paper, we prove two
results on this integration problem. First, if L acts faithfully and locally finitely
on K[U], then it can be embedded in L(G), for some affine algebraic group G
acting on U, in such a way that the representation of L(G) corresponding to
that action restricts to p on L. In the second theorem, we assume from the
start that L = L(QG) for some connected affine algebraic group G and show that
some technical but necessary conditions on p allow us to integrate p to an action
of G on an algebraic variety V' containing U as an open dense subset. In the
interesting cases where L is nilpotent or semisimple, there is a natural choice
for G, and our technical conditions take a more appealing form.
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1 Introduction

Throughout this paper, K denotes an algebraically closed field of characteristic
0, and all algebraic varieties, algebraic groups and vector spaces are over K.
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If Ais a K-algebra, and M an A-module, we write Derg (A, M) for the space
of K-linear derivations of A with values in M. The Lie algebra Derg (A, A) is
abbreviated to Derg (A).
Let D™ be the Lie algebra of all K-linear derivations on K([[z1,...,z,]].
Its elements are of the form .
Z fz ai?
i=1

where the f; are elements of K[[z1,...,2y]], and 0; denotes differentiation with

respect to z;. Let Dén) be the subalgebra of D™ consisting of derivations that
leave the maximal ideal invariant. Note that D(()n) has co-dimension n in D™,
The Realization Theorem of Guillemin and Sternberg (see [5]) states that any
pair (L, M), where L is a Lie algebra and M is a subalgebra of L of co-dimension
n, has a realization: a homomorphism ¢ : L — D) such that gb*l(D(()")) =M.
The formal power series occurring as coefficients of the J; in the image of ¢ are
called the coefficients of the realization. The proof of the Realization Theorem
presented in [1] is constructive in the sense that it allows for computation of
these coefficients up to any desired degree. Moreover, in some special cases,
one can prove that these coefficients are in fact polynomials, or polynomials
and exponentials (see [3]). However, if L is the Lie algebra of an affine algebraic
group, and M is the Lie algebra of a closed subgroup, the following construction
is more natural.

Let G be an affine algebraic group with unit e, and denote the stalk at e
of the sheaf of regular functions on open subsets of G by O.. The Lie algebra
of G, which coincides with T, (G) = Derg (O., K) as a vector space, is denoted
by L(G). Let V be an algebraic variety, and a : G x V' — V a morphic action
of G on V, i.e., an action that is also a morphism of algebraic varieties. Then
we can ‘differentiate’ « to a representation of L(G) by derivations on K[U], for
any open affine subset U of V. Assuming that U is clear from the context, this
representation is denoted by X +— —X,; its construction, and the presence of
the minus sign, is explained in Subsection 2.4.

As a special case, take V. = G/H, where H is a closed subgroup of G.
The group G acts on V by «a(g1,92H) := gig2H. Let U be an affine open
neighbourhood of p := eH. Then (X #, f)(p) = 0 for all f € K[U] if and
only if X € L(H). Passing to the completion of the local ring O, at p, we
find a realization of the pair (L(G), L(H)) into D@™ V) whose coefficients are
algebraic functions. For example, if G is connected and semisimple, and H
is parabolic, then eH has an open neighbourhood in G/H that is isomorphic
to an affine space. Consequently, the pair (L(G), L(H)) has a realization with
polynomial coefficients. For G classical, this realization is computed explicitly
in [9].

This paper deals with a converse of the above construction: given a finite-
dimensional Lie algebra L and a homomorphism p : L — Der g (K[U]) for some
affine algebraic variety U, can we find an affine algebraic group G, an algebraic
variety V containing U as an open dense subset, an action o : G x V — V| and



an embedding L — L(G) such that p is the restriction of the homomorphism
X — —Xx,7

The two main results of this paper answer this question affirmatively for
many interesting cases. First, if G is to act on U itself, the action of L on K[U]
must be locally finite (see Subsection 2.1 for the precise definition). Conversely,
we have the following theorem for p an inclusion.

Theorem 1.1. Let U be an affine algebraic variety, and let L be a locally finite
Lie subalgebra of Derg (K[U]). Then there exist a linear algebraic group G,
a morphic action G x U — U, and an embedding L — L(G) such that the
representation X — — X, restricts to the identity on L.

Note that we do not require L to be the Lie algebra of an algebraic group.
Indeed, in Example 3.3 we shall see that L need not coincide with L(G).

As an example, let U be the affine line, with coordinate Y. Then the deriva-
tion dy acts locally nilpotently on K[U] = K[Y], whence locally finitely. The
derivation Y0y acts semisimply on K[U], whence also locally finitely. On the
other hand, the derivation Y20y does not act locally finitely. Theorem 1.1
can be applied to (Jy,Ydy)r, but not to (dy,Ydy,Y?0y) k. However, any
differential equation of the form

Y'(T)=XA+pY(T)+vY(T)? Y(0)=Y,

with A\, u,v € K has a solution which is a rational expression in Yy,7 and
exp(aT) for some o € K. This observation is a key to our results in the case
that p is not locally finite.

More formally, we introduce the exponential map. For simplicity, let us
assume that U be irreducible, so that K[U] is an integral domain with field
K(U) of fractions. Let T be a variable, and denote by K[U][[T]] the algebra of
formal power series in T" with coefficients from K[U]. For f1,..., fr € K[U][[T]],
we denote by K[U|(f1,..., fx) the subfield of the field of fractions of K[U][[T]]
generated by the f;. For V € Derg (K[U]), we define the map exp(T'V) from
K[U] to K[U][[T]] as follows.

exp(TV)f =3 oV (f), feKU) (1)

n=0

Here, we only mention two consequences of our second main result (which is
Theorem 4.4).

Theorem 1.2. Let L be a nilpotent Lie algebra, U an irreducible affine algebraic
variety, p : L — Derg (K[U]) a Lie algebra homomorphism, and X1,..., Xy a
basis of L such that (X;,...,Xg) is an ideal in L for alli=1,... k.

Suppose that p satisfies

exp(Tp(X;))K[U] € K[UI(T)

for alli.



Then there exist a connected linear algebraic group G having L as its Lie
algebra, an algebraic variety V containing U as an open dense subset, and a
morphic action a : G X V. — V such that the corresponding representation
X — —X#q, L — Derg(K[U]) coincides with p.

Theorem 1.3. Let L be a semi-simple Lie algebra of Lie rank 1, U an irreducible
affine algebraic variety, and p : L — Derg (K[U]) a Lie algebra homomorphism.
Choose a Cartan subalgebra H C L, and let ® be the root system with respect to
H. Choose a fundamental system o, ..., € ®, and a corresponding Chevalley
basis

{Xo|ae@U{H;|i=1,...,1}.

Suppose that p satisfies
exp(Tp(Xa))K[U] € K[U|(T)

for all a € @, and
exp(Tp(H;))K[U] € K[U)(exp T)

foralli=1,...,1.

Then there exist an algebraic variety V containing U as an open dense subset,
and a morphic action o : G X V. — V of the universal connected semi-simple
algebraic group G with Lie algebra L such that the corresponding Lie algebra
homomorphism X — —Xx, coincides with p.

Here, the ‘universal’ connected semi-simple algebraic group G with Lie alge-
bra L is the unique such group with the property that every finite-dimensional
representation of L is the differential of a representation of G.

Technical conditions on the exponentials as appearing in these theorems are
shown to be necessary in Lemma 4.2. For example, the vector field Y30y on the
affine line cannot originate from an action of the additive or the multiplicative
group, because exp(TY 30y )Y = Y/v/1 —2TY?2, which is not a rational expres-
sion in Y, T and some exponentials exp(«;T). In Example 4.8, Theorem 1.3 is
applied to L = (0y, Y0y, Y20y ) k.

This paper is organized as follows. Section 2 deals with standard facts on
affine groups and their actions on varieties. In Section 3, Theorem 1.1 is proved,
and Section 4 presents the proof of our second main theorem, from which The-
orems 1.2 and 1.3 readily follow. Finally, Section 5 discusses some possible
extensions of our results.

2 Preliminaries

In this section we introduce some notation, and we collect some facts on affine
algebraic groups that will be used later on. All of them are based on [2].



2.1 Locally Finite Transformations

Let A be a finite-dimensional vector space and let Y € End g (A). Then we write
Y, and Y,, for the semi-simple and the nilpotent part of Y. Let I' be the Z-
module generated by the eigenvalues of Y; on A. Decompose A = @&, M), where
Ysm = Am for all m € M. For any Z-module homomorphism ¢ : I' — K, let
Y, € Endg (A) be defined by Yym = ¢(A)m for all m € M. The collection of
all such Yy is denoted by S(Y).

Now let A be any vector space (not necessarily finite-dimensional). A subset
E of Endg(A) is said to be locally finite, if each element of A is contained in
a finite-dimensional subspace of A which is invariant under all elements of E.
A representation p : U — Endg(A) of an associative algebra or Lie algebra U
over K is called locally finite if p(U) is locally finite. In this case, U is said
to act locally finitely. A homomorphism p : G — GL(A) from an algebraic
group G is called locally finite if p(G) is locally finite, and in addition p is
a homomorphism G — GL(M) of algebraic groups for each finite-dimensional
p(G)-invariant subspace M of A. In this case, G is said to act locally finitely.

If'Y € Endk (A) is locally finite, the finite-dimensional Y-invariant subspaces
of A form an inductive system. If N C M C A are two such subspaces, then
(Y|a)s and (Y|ar)n leave N invariant, and restrict to (Y|n)s and (Y|n)n,
respectively. Furthermore, each element of S(Y|y) leaves N invariant, and
restricts to an element of S(Y|n); this restriction is surjective. It follows that
there are unique Y;,Y, € Endg(A) such that (Ys)|am = (Ym)s and (V)| =
(Y'|ar)n for all finite-dimensional Y-invariant subspaces M of A. Also, we denote
by S(Y) the projective limit of the S(Y|ps). If A has a countable basis, then
S(Y) projects surjectively onto each S(Y|ar).

2.2 Localization

If B is a commutative algebra, and J is an ideal in B, then we denote by By
the localization B[(1+ J)~!]. If B = K[U] for some irreducible affine algebraic
variety U, and J is a radical ideal, then By € K(U) is the algebra of rational
functions whose denominators are non-zero constants on the zero set of J.

2.3 Comorphisms

If o is a morphism from an algebraic variety V' to an algebraic variety W, and
U is an open subset of W, then « induces a comorphism from the algebra of
regular functions on U to the algebra of regular functions on a~!(U). We denote
this comorphism by o if U is clear from the context. If W is affine, then U
is implicitly assumed to be all of W. By abuse of notation, we also write a°
for the induced comorphism of local rings O ) — Op, where p € V, and for
the comorphism K(W) — K(U) of rings of rational functions if o denotes a
dominant rational map. This notation is taken from [2].



2.4 Differentiation of Group Actions

Let G be an affine algebraic group with unit e, V' an algebraic variety, and
a: G xV — V a morphic action of G on V. Then we can ‘differentiate’ « to a
representation of L(G) = T.(G) = Derk (O, K) as follows. Let U be an open
subset of V. For p € U, define the map o, : G — V by g — a(g,p). It maps
e to p, so we may view the comorphism ozg as a homomorphism O, — O.. A
function f € Oy (U) defines an element of O, to which ag may be applied.

Now the function X *, f, defined pointwise by
(X #a [)(p) == (Xoap)f, pel,

is an element of Oy (U). The map Xx*, : f — X %, f is a K-linear derivation of
Oy (U), and the map X +— —Xx, is a homomorphism L(G) — Derg (Oy (U))
of Lie algebras.

In this way, L(G) acts by derivations on the sheaf of regular functions on V.
As V may not have any non-constant regular functions at all, it makes sense
to compute these derivations on Oy (U) for an affine open subset U of V, so
that Oy (U) equals the affine algebra K[U]. Let us assume for convenience that
G and V are irreducible; then so are U and G x U. In this case, a® sends
K[U] to Ogxva~t(U), an element of which defines an element of Ogxy[(G %
U) Na~1(U)] by restriction. This algebra consists of fractions a/b where a,b €
K[G x U] and b vanishes nowhere on (G x U) N a~}(U). In particular, b(e,.)
vanishes nowhere on U and is therefore invertible in K[U]. After dividing both
a and b by b(e,.), we have that b is an element of K* 4 J, where J is the
ideal in K[G x U] defining {e} x U. Thus, we can view o’ as a map K[U] —
K[GxUlgsy. The derivation V := X ®@ Iy : K[G]@ K[U] — KU] is extended
to (K[G] & K[U]) () by

v(g) _ V(a)b(e,éz - az(e, IV (D)
e,.)

for a € K[G x U] and b € K* + J. As b(e,.) is a non-zero constant on U, the
right-hand side is an element of K[U]. We have thus extended X ® Iy to a
derivation

(K[Gl @ K[U)) sy — KU,

also denoted by X ® Iy}, and we may write

Xo = (X @ Ig)) 0. (2)

2.5 The Associative Algebra K[G]"

The following construction is based on Section 3.19 of [2]. Let G be an affine
algebraic group. Denote the multiplication by p : G x G — G, and the affine
algebra by K|[G]. For vector spaces V and W, we define a K-bilinear pairing
(X,Y)— X Y :=(X®Y)ou°,
Homg (K[G],V) x Homg (K[G], W) — Homg (K[G],V @ W).



The multiplication - turns K [G]Y = Homg (K[G], K) into an associative algebra,
and the map
X1 X, K[G]Y — Endg(K[G))

is a monomorphism from K|[G]Y onto the K-algebra of elements in End x (K[G])
commuting with all left translations A, for g € G, which are defined by

Agf)(@) = fg™"2), [ e K[G].

We shall write f* X for (I-X)f, and xX for the map f — f=*X. In particular,
X +— *X is a linear isomorphism from the tangent space L(G) = T.(G) onto
the Lie algebra of elements of Dery (K[G]) commuting with all Ag.

We recall the following well-known fact.

Proposition 2.1. The universal enveloping algebra U(L(G)) of L(G) is iso-
morphic to the associative algebra with one generated by L(G) in K[G]Y.

2.6 Algebraicity of Lie Algebras

We reformulate some results of Chevalley on algebraicity of subalgebras of L(G),
where G is an affine algebraic group; see [2], paragraph 7. For M C L(G), we
let A(M) be the intersection of all closed subgroups of G whose Lie algebras
contain M, and for X € L(G) we write A(X) := A({X}).

Recall that «(K[G]Y) is locally finite. For X € L(G), both the semi-simple
part and the nilpotent part of *X are in *L(G), and we denote their pre-images
in L(G) by X, and X, respectively. As K[G] contains a finite-dimensional
faithful L(G)-module that generates K[G] as an algebra, the Z-module I'x of
eigenvalues of X in K[G] is finitely generated. As I'x is a torsion-free Abelian

group, it is free, and we may choose a basis a7, ...,aq of I'x. For a variable T,
consider the map exp(TX) : K[G] — K[[T]] defined by

ep(TX)f = 3 X)), e K[

n=0

where X™ is viewed as an element of K[G]". Alternatively, we could write this
formal power series as (exp(T'(xX))f)(e), where the exponential is the one de-
fined in Section 1. Clearly, exp(T'X) is a homomorphism of K-algebras, whence
an element of G(K]{[T]]) (see [2], Section 1.5). However, the following lemma
shows that the image lies in a much smaller algebra.

Lemma 2.2. If X,, =0, then the map exp(TX) is a homomorphism
K[G] — Klexp(£a1T),...,exp(£aqT)],

whence the comorphism of a homomorphism v : (K*)* — G of algebraic groups.
If X,, #0, then exp(TX) is a homomorphism

K[G] — K[T,exp(+aqT),...,exp(faqT)],

whence the comorphism of a homomorphism v : K x (K*) — G of algebraic
groups. In either case, v is an algebraic group monomorphism onto A(X).



Proof. By [2], Proposition 1.11, we may assume that G is a closed subgroup of
GL,, for some n, and we may view X as an element of gl,,. After a change of
basis, X = diag(A1,..., ), and Aq,..., A\, generate I'y. Now exp(TX;) =
diag(exp(MT),...,exp(A,T)). We have

exp(MT)™ - .. -exp(A\,T)™ =1
for any m € Z™ such that )", m;\; = 0; hence by [2], paragraph 7.3, we have
expTX, € A(X,)(K[exp(£MT), ..., exp(£A,T))).
Now, any specialization
Klexp(£MT),...,exp(£A,T)] — K

sends exp(T'X) to an element of A(X,). The algebra on the left-hand side is
isomorphic to the algebra

Klexp(£a1T),. .., exp(£aqT)],

and as the «; are linearly independent over QQ, the latter is the affine algebra
of (K*)4. We have thus constructed the algebraic group homomorphism G¢, —
A(X,). Tt is injective, as the A; generate the same Z-module as the a;. As d is
also the dimension of A(Xj), and as A(X) is connected, the homomorphism is
surjective onto A(X5).

In [2], paragraph 7.3, it is also proved that the homomorphism G, — G corre-
sponding to the comorphism exp(TX,,) : K[G] — K|T] is a monomorphism from
G, onto A(X,,). The lemma now follows from exp(TX) = exp(TX,,) exp(T X)
and A(X) = A(X,,) x A(X;) (direct product). O

Recall the notation S(-) from Subsection 2.1. For X € L(G) the set S(xX)
is a subset of *L(G); we denote its pre-image in L(G) by S(X). Now L(A(X))
is spanned by X,, and S(X). More generally, we have the following theorem of
Chevalley (see Subsection 7.3 and Corollary 7.7 of [2]).

Theorem 2.3. Let M be a subset of L(G). Then L(A(M)) is generated by the
X, and S(X) as X wvaries over M.

Example 3.3 shows a subalgebra L C L(G) that is not equal to L(A(L)).

An element X € L(G) is called algebraic if L(A(X)) = (X)k is one-
dimensional. In this case, A(X) is isomorphic to either G, or G,,, and if we
denote the usual affine coordinate on the additive or multiplicative group by
Y, then the differential of the homomorphism G, — G (respectively G,, — G)
constructed above sends the basis vector dy |y of L(G,) (respectively Ydy |1 of
L(Gy)) to X.



3 The Locally Finite Case

In this section, we prove Theorem 1.1. Let G be an affine algebraic group, U
an affine algebraic variety, and a : G X U — U a morphic action. Then the
Lie algebra homomorphism X +— —Xx, from Section 1 can be described more
directly.

Proposition 3.1. For X € K|[G]", define the K-linear map Xx, : K[U] —
K[U] by
Xotg = (X ® I) o a’. (3)

Then X — X is an anti-homomorphism of associative K-algebras. Moreover,

(K[G]Y)xq is locally finite.

Proof. The fact that « is an action can be expressed in terms of comorphisms

by
(,uo (24 IK[U]) o = (IK[G] ® OéO) oal.

Let X,Y € K[G]Y, and compute

(X Y)#a=(X®Y)op®) @ Ig) o a’
= (X @Y @ Igw) o (b’ @ Ixw)) o o’

which, by the above remark, equals

(X®Y @ Igu) o (kg ®a’) o a®
= (Y @ Ix)) 0’ o (X ® Igep)) 0 o’
= (Y*Q)O(X*a)

This proves the first statement. Next, if f € K[U] and o® = Zle a; ® b; with
a; € K[G] and b; € KJU], then clearly (K[G]Y) #o f C (b1,...,bk)x. This
proves the second statement. u

Note that the local finiteness of (K[G]Y)*, on K[G] is a special case of this
proposition. The proof that x(K[G]V) is locally finite, a fact that we used in
Subsection 2.6, is very similar. Also note the subtle difference between the
seemingly identical formulas (2) and (3). In the latter, a® is a map K[U] —
K|[G x U], whereas in the former, it is a map K[U] — K[G x Ul 3.

As a consequence of Proposition 3.1, the representation X — —Xx,, of L(G)
on K|U] is locally finite, and so is the representation G — Aut(K[U]) defined
by g — Ay, where (A, f)(p) := f(g~'p). The latter follows because \, = eg
where e, € K[G]Y denotes evaluation in g. Indeed, X +— — X, is the derivative
at e of the map g — A,. Conversely, we have the following theorem.

—1%q,

Theorem 3.2. Let B be a finitely generated K-algebra (not necessarily com-
mutative), and let L C Derg(B) be a finite-dimensional Lie subalgebra acting
locally finitely on B. Then there exist an affine algebraic group G, a faithful
locally finite representation p : G — Aut(B), and an embedding ¢ : L — L(G)
such that (d.p) o ¢ = id.



Proof. For any finite-dimensional L-invariant subspace M of B, denote by L,
the restriction of L to M, and set Ly; := L(A(Lxs)). The Ly form an inverse
system; let L be its projective limit. By Theorem 2.3 and the remarks of
Subsection 2.1, the projections Ly; — Ly for N C M are surjective. As B
is finitely generated, its dimension is (at most) countable, and the projections
L — Ly are all surjective.

By Theorem 2.3, the space L can be viewed as the Lie subalgebra of End g (B)
generated by the X,, and S(X) as X varies over L. We claim that these are all
derivations of B. To verify this, it suffices to check Leibniz’ rule on eigenvectors
of X,. To this end, let a,b € B be such that X;a = Aa and Xb = pb. This is
equivalent to

(X = Nra=(X-pw)b=0

for some k,l € N. From the identity

m

G- ke = Y- ()X - V@ = 0 )

i=0
it follows that the left-hand side is zero for some m € N. Hence,
Xs(ab) = (A + p)ab = X (a)b+ aXs(b),

and X, is a derivation, and so is X,, = X — X,. Now let ¢ be a Z-module
homomorphism from the Z-span of the eigenvalues of X, to K. Then the map
X, € S(X) satisfies

(Xpa)b + a(Xgb) = ($(A) + (n))ab = (A + p)ab = Xy(ab).

We have thus found that L is generated by, and hence consists of, derivations.
Let M be a finite-dimensional L-submodule of B that generates B as an algebra.
We have seen that the projection L — Ly is surjective, but as L consists of
derivations, which are determined by their values on M, it is also injective.
Hence, Ly; acts on B by derivations. Let G € GL(M) be A(Ly). Tt follows
that G acts locally finitely, and by automorphisms, on B; by construction, the
corresponding action of L(G) = Ly restricts to the identity on L. O

Note that the construction of G does not depend on the choice of M. The
triple (G, p, @) constructed in the proof has the property that A(¢(L)) = G, and
with this additional condition it is unique in the following sense: if (G', p’, ¢')
is another such triple, then there exists an isomorphism ¢ : G — G’ such that
p ot = pand (doy)) o ¢ = ¢'. Indeed, for any finite-dimensional G’-invariant
subspace M of B that generates B as an algebra, G’ must be isomorphic to
A(Lpy), just like G this defines the required isomorphism ).

Now the first main theorem follows almost directly.

Proof of Theorem 1.1. Apply Theorem 3.2 to B = KJ[U] to find G, and its
representation on K[U]. Let M C KJ[U] be a finite-dimensional G-invariant
subspace that generates K [U]. Then the surjective G-equivariant map from the

10



symmetric algebra generated by M onto K[U] allows us to view U as a closed
G-invariant subset of the dual MV. This gives the morphic action of G on U,
and it is straightforward to verify the required property. O

Let us consider two examples where the embedding L — L(G) is not an
isomorphism.

Example 3.3. Let U = Specy K[X,Y] be the affine plane, and let
L= <)\1X6X + XY 0y, 0y, X0y, ... ,XTOY)K,

where A1, Ay € K are linearly independent over Q, and r € N. The Lie algebra
L acts locally finitely on K[X,Y]. Indeed, for f € K[X,Y], any element g €
U(L(QG))f satisfies

degy (g9) < degx(f) +rdegy(f), and degy (g) < degy (f).

Hence, Theorem 3.2 applies. Following its proof, we choose the L-invariant space
M = (Y,1,X,X?% ..., X")k, which generates K[X,Y]. Denoting by Ljys the
restriction of L to M, the proof of Theorem 1.1 shows that Ly; := L(A(Lys))
acts by derivations on K[X,Y]. With respect to the given basis of M, the
derivation A\ X0x + A2 X9y has matrix

diag(A27 0, )‘17 2)\17 B 7")\1)7

whereas the elements X8y of L act nilpotently on M. Hence, Ly, is generated
(and in fact spanned) by Lj; and the linear map with matrix

diag(1,0,...,0).

The image of Ly, in Derg (K[X,Y)) is spanned by L and Xdx. The algebraic
group G is a semi-direct product G2, x G ! acting by

m

r
(t17t27 agy ..., a’r‘)(xvy) = (t1$7t2y + Za’bml)
=0

Example 3.4. Let U = Specg(K[X,Y]) be the affine plane, and let L be
the one-dimensional Lie algebra spanned by 0x + Y dy. Clearly, L acts locally
finitely on K[X,Y]; the group G of Theorem 1.1 is G, x G, acting on U by
(a,b)(x,y) = (z + a,by), and the image of its Lie algebra in Derg (K[U]) equals
(0x,Y0y).

4 Weil’s Pre-Transformation Spaces

This section is concerned with Theorem 4.4. The need for this theorem becomes
clear from the following example.

11



Example 4.1. Let SL,; act on the projective n-space in the natural way.
Then, after choosing suitable coordinates X; on an affine part A™ C P, the
corresponding homomorphism X — — X, sl,+1 — Derg (K[A"]) has image

({05, X:05, XiE}i j) ks

where £ = . X;0;. Clearly, this Lie algebra is not locally finite, so that we
cannot apply Theorem 1.1.

Let G be a connected affine algebraic group acting on a an irreducible
algebraic variety V' by means of a morphic action @ : G x V — V, and
let U C V be an open affine subvariety. Recall the definition of the map
X — X#q, L(G) — Derg(K|U]) and the definition of the exponential map
from Section 1 as well as the definition of I'y from Subsection 2.6.

Lemma 4.2. Let X € L(G) and let ay,...,aq be a basis for T'x. Then
exp(T(X*q))K[U] C K[U][T, S1,...,Salipy

where S; = exp(a;T'), and P is the ideal generated by T, 51 —1,...,5;—1. In
particular, if X is algebraic, then

exp(T (X #a)) K[U] € K[U)[T]g(r)y
if X is milpotent, and
exp(T'(Xxq)) K[U] € K[U][S1]{(s,-1)}
if X is semi-simple.
Proof. We claim that
(Xxa)" = (X" @ Iy 0 .

where X" is evaluated in the associative algebra K[G]Y. To prove this, proceed
by induction on n. For n = 1 it is Equation (2); suppose that it holds for n,
and compute

)oa’o (X" ® Ixp) o a’
= (X ® Ixw) o (X" @ Ixic) ® Iku)) © (Ik(e) ® a°) 0 o’
) o (X" ® Iriq) @ Ireqy) © (1° © Igpuy) 0 @

In the first equality, we used the induction hypothesis, and in the third we used
the fact that « is a morphic action. The last equality uses the multiplication
in K[G]"Y as defined in Section 2. The other equalities follow from easy tensor
product manipulations.
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Using the above, we can calculate

oo n

T
exp(TX#4) = Z F(X” ® IK[U]) oal
n=0

= (exp(TX) ® Ixu]) © al.

Now o’ is a map K[U] — (K[G] ® K[U])}, where J is as in Section 1, and
exp(TX) maps K[G] into K[T, S, ..., 5T, Under exp(TX), the ideal J is
mapped into the ideal P. This concludes the proof. OJ

Remark 4.3. The proof of Lemma 4.2 shows that exp(7T X *,) can be viewed as
the comorphism of the rational map A(X) x U — U defined by the restriction
of a.

Now suppose that we are given a homomorphism L(G) — Derg (K[U]) for
some affine algebraic variety U. Then the above lemma gives a necessary condi-
tion for this homomorphism to come from a group action on an algebraic variety
V containing U as an open subset. In a sense, this condition is also sufficient.
Let us state our main theorem in full detail.

Theorem 4.4. Let G be a connected affine algebraic group and let X1, ..., Xy
be a basis of L(G) consisting of algebraic elements. Let U be an irreducible
affine algebraic variety, and p : L(G) — Derg (K[U]) a homomorphism of Lie
algebras.

Denote by ¥ the set of indices i for which X; is semi-simple (in its action
on K[G]), and let a; € K be such that T'x, = Z«; for i € X. Denote by N the
set of indices i for which X; is nilpotent.

Assume that the product map

7 AX) X ox A(XE) — G

maps an open neighbourhood of (e, ..., e) isomorphically onto an open neigh-
bourhood of e € G, and suppose that

exp(Tp(X)) € {?U“T) fi€ N, and

[U)(exp(e;T)) ifi € X.
Then there exist an algebraic variety V' containing U as an open dense subset,
and a morphic action « : G XV — V', such that the map X — —Xx*,, L(G) —
Derg (K[U]) coincides with p. Indeed, up to equivalence, there exists a unique
such pair (V,«) with the additional property that V \ U contains no G-orbit.

Before proving this theorem, let us recall Weil’s results on pre-transformation
spaces (see [10], [8]); rather than stating these in full generality, we shall adjust
the formulation to our specific needs. Recall that a rational map ( has a natural
‘largest possible’ domain; this domain is denoted by dom(f3).
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Lemma 4.5. Let G be a connected algebraic group with multiplication u : G X
G — G, U an algebraic variety, and 8 : G x U — U a dominant rational map
such that

Bo(idg xB) = Bo (uxidy)

as dominant rational maps G x G xU — U. Assume, moreover, that {e} x U C
dom(3), and that B(e,p) =p for allp € U.

Then there exist an algebraic variety V', an open immersion i : U CV with
dense image, and a morphic action a : G X V. — V such that « o (idg xv)
and B define the same rational map. Indeed, up to equivalence, there exists a
unique such triple (V,, a) with the additional property that V \ ¢ (U) contains
no G-orbit.

The triple (V,9, a) is called a regularization of (U, 3); equivalence of these
is defined in the obvious manner. If V'\ ¢(U) contains no G-orbit, the regular-
ization is called minimal, as in that case no proper open subset of V is also a
regularization of (U, «).

Proof. We show that § makes U into a ‘pre-transformation G-space’, in which
every point is a ‘point of regularity’ in the sense of [10]. First, ‘generic associativ-
ity’ follows from the condition on 3. Secondly, we must show ‘generic existence
and uniqueness of left divisions’, i.e., that the rational map (g,p) — (g,5(g,p))
is in fact a birational map G x U — G x U. Indeed, using generic associativ-
ity, and the fact that 3(e,p) = p for all p € U, we find that the rational map
(g,p) — (g9,8(g~ 1, p)) is inverse to it.

Finally, let po € U. Then the set  of g € G for which both (g, pg) € dom(3)
and (g7, (8(g,p0))) € dom(B) is open, and non-empty as e € . As G is
connected, 2 is dense in G. Let gy € €2, and consider the following rational
maps U — U: p +— B(go,p) and p — B(gy*,p). The first is defined at py and
the second at (3(go,po). Hence, both compositions are rational maps U — U.
Again, using generic associativity and the fact that G(e,p) = p for all p € U, we
find that the two maps are each other’s inverses. This shows that pg is a point
of regularity. We may now apply Theorem 4.11 of [10] to find («, V). The proof
of this theorem shows that a, which is a priori just a birational map U — V| is
an open immersion on the set of points of regularity, which is all of U. Finally,
the remark just before Theorem 4.9 of [10] shows that « is a morphic group
action of G on V. O

Proof of Theorem 4.4. Let ¢, =0 or 1ifi € N or ¢ € X, respectively. By the
property of 7, the homomorphism

exp(T1X1) - ... exp(TpXk)

identifies K(G) with the field K(Si,...,Sk), and O, with the localization
K[S]y := K[S1,...,Sk]m, where S; = T; if i € N and S; = exp(o;T;) if
i € X, and M is the (maximal) ideal generated by the elements S; — ¢;. The
K-algebra K[[T]] := K|[[T4,...,Tk]] can now be viewed as O,, the completion
of K[S]a with respect to the M-adic topology.
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The co-multiplication
,LLO : Oe = K[S]M — K[S/7 S//]M/®K[S”]+K[S/]®]W” = O(c,e)

extends uniquely to a continuous homomorphism

W02 O, = K[[T)] — K[[T', ")) = Oc.0),

and we have

exp(p’(T1)X1) - ... - exp(u’(T) X1)
=exp(T1X1) - ... exp(Ty Xy) -exp(Ty X1) - ... - exp(T} Xk). (4)

Similarly, the evaluation map f — f(e), O, — K extends to the continuous
map f — f(0), K[[T]] — K, where K is given the discrete topology. Also, X; €
Derg (O, K) extends uniquely to a continuous K-linear derivation K[[T]] — K,
where K is given the structure of a K[[t]]-module defined by fc = f(0)c. This
extension satisfies

Xi(T;) = bij- (5)

Consider the map

BY = exp(—Tpp(Xy)) - ... exp(=T1p(X1)) : K[U] — K[U][[T},..., %],

where we implicitly extend each p(X;) linearly and continuously to formal power
series with coefficients from K[U]. From the fact that the p(X;) are deriva-
tions, one finds that $° is a homomorphism. It is clearly injective, hence it
extends to an injective homomorphism K(U) — K[U]|(Sy,...,Sk) by assump-
tion. The latter field is identified with K (G x U) by the identification of K (G)
with K(Si,...,Sk), and it follows that we may view 3° as the comorphism of
a dominant rational map 8 : G x U — U. We claim that the triple (G, U, j3)
satisfies the conditions of Lemma 4.5.

Denote by P the ideal in K[U][S1,...,Sk] generated by the S; — ¢;, let
f € K[U]. As B°(f) is a formal power series in the T}, we find that, in the
notation of Subsection 2.2,

3°(f) € K[U][S1, .-, Selpy,

We may identify this algebra with the algebra K[G x Ul;;; where J is the
radical ideal in K[G x U] defining {e} x U. Hence, {e} x U C dom(8°(f)) for all
f € K[U], which proves that {e} x U C dom(3). Moreover, 3°(f)(e,p) = f(p)
for all f € K[U], from which it follows §(e,p) =p for all p € U.

Before proving generic associativity, we extend the map —p to an anti-
homomorphism 7 from U(L(G)) into Endg(K[U]), which can be done in a
unique way. By Proposition 2.1 we may view U(L(G)) as the associative algebra
with one generated by L(G) in K[G]Y. We extend 7 linearly and continuously
to formal power series with coefficients from U(L(G)). Also, we extend the map
W K([T,... Ty)] — K[[17,...,T},T,...,T}]] to a map

U(L(G)[[Th, - .., Tx])] = ULG)[[TY, ..., Ty, TV, ..., T}
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by
12 ( Z Uy T™) = Z U 1 (T™).

meNFE meNFk

Note that 7o u = 4% o 7. Indeed, T acts only on U(L(G)) and u° only on the
T;.
We want to prove that

ﬂo (ldG Xﬁ) :ﬁo (‘u X ldU)
as dominant rational maps G x G x U — U. This is equivalent to
(Ikiq) ® 3% 0B =(u’® Ixpn) o B,

for the comorphisms K(U) — K(G x G x U), and it suffices to prove this for
the corresponding homomorphisms

K[U) — K[U]|1},..., T}, T/, ..., T{]],

where we use T7,...,T} for the generators of O, on the first copy of G, and
T7,..., T} for those on the second copy. Compute

(Ixiq ® 3%) o B°
= exp(=T} p(Xy)) - ... - exp(=T1'p(X1)) - exp(=Typ(Xy)) - - .. - exp(=T{p(X1))
=7(exp(T{X1) - ... exp(T,X) exp(T)' X1) - ... - exp(T} X)),

to which we apply Equation (4), and find

Hexp(RTX) ... - exp(u® (T) Xi))

= 7(u(exp(T1 X1) - ... - exp(Ti Xx)))

= 1O(r(exp(Th X1) - ... - exp(Tp X%)))

= 1 (exp(~Tiep(X)) - ... - exp(~T1p(X1)))
= (u° @ Icq) © B°,

as required.

Now that we have checked the conditions of Lemma 4.5, let V and « :
G x V — V be as in the conclusion of that lemma. For f € K[U] we have

_(XZ *o f) =

= (=X @ I)(exp(=Tkp(Xy)) - ... - exp(=T1p(X1))f)

In the last step we used that X;(7}) = J, ;. This finishes the proof of the
existence of V' and a.
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As for the uniqueness, suppose that V and « satisfy the conclusions of the
theorem. Then « defines a rational map G x U — U. From Remark 4.3, we find
that this rational map coincides with § defined above. Hence, the uniqueness
of (V,a) follows from the uniqueness of a minimal regularization of (U, 3), see
Lemma 4.5. U

The following lemma shows that the conditions on G in Theorem 4.4 are not
all that rare.

Lemma 4.6. Let G be a connected affine algebraic group over K. Then G has
one-dimensional closed connected subgroups Hi, ..., Hy such that the product
map Hy X ... x Hy — G is an open immersion.

This fact is well known; see for example [4] and [2]. As we use the proof
later, e.g. in the proof of Theorem 1.3, we give a brief sketch of the proof.

Proof. By a result of Mostow, the unipotent radical R, (G) of G has a reductive
Levi complement G, i.e., G = G' X R,(G); see [2], Paragraph 11.22. Hence, it
suffices to prove the proposition for G reductive and for G unipotent.

If G is unipotent, then we can choose basis Xi,..., Xy of L(G) such that
(Xiy...,Xk) is an ideal in L(G) for all 4, and the H; = A(X;) & G, are
subgroups as required.

If G is reductive, choose a maximal torus 7' C G, and a Borel subgroup
BT C G containing T. Let B~ be the opposite Borel subgroup (see [2], 14.1),
and set U* := R, (B*). Then it is known that the product map U~ xTx U+ —
G is an open immersion; now U~ and U™ are dealt with by the unipotent case,
and T is isomorphic to G¢, for some d. O

Remark 4.7. It is not true that the product map A(X7) x ... x A(Xy) — G
is an open immersion for every basis X, ..., X of L(G) consisting of algebraic
elements. Indeed, consider G = G?, with Abelian Lie algebra K2. The elements
X1 =(1,0), X2 = (1,2) are algebraic, and form a basis of L(G). We have

AX)) = {(a,1) | a € K*}, and A(X2) = {(b,b?) | b€ K*).

The product map A(X;) x A(Xz2) — G is in fact a group homomorphism with

kernel {((17 1)a (17 1))a ((_17 1)a (_17 1))}
Let us show how Theorems 1.2 and 1.3 follow from Theorem 4.4.

Proof of Theorem 1.2. By Harish-Chandra’s refinement of Ado’s theorem (see
[6]), L has a faithful finite-dimensional representation ¢ : L — Endg (M) such
that L acts nilpotently on M. Let G be the algebraic group A(¢(L)). By
Theorem 2.3, L(G) = L, and G is easily seen to be unipotent. Let H; be
the closed connected subgroup with L(H;) = KX;. The proof of Lemma 4.6
shows that the product map Hy X ... x Hp — G is an isomorphism of varieties.
Hence, the conditions of Theorem 4.4 are fulfilled, and its conclusion finishes
the proof. O
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Proof of Theorem 1.3. The proof of Lemma 4.6 shows that we can order the
Chevalley basis in such a way that the product map from the product of the
corresponding one-parameter subgroups into G is an open immersion. In order
to apply Theorem 4.4, it suffices to check that I'y, = Z for all 4. First, it is
contained in Z, as H; has only integer eigenvalues on any finite-dimensional
L-module. Conversely, for n € Z, there exists a cyclic L-module V' on which
H; has n among its eigenvalues. As G is universal, V is also a G-module, and
by [7], Satz I1.2.4.1, V is a submodule of K[G]. This proves that I'y, = Z.
Application of Theorem 4.4 concludes the proof. u

Example 4.8. Consider G = SLy. We have
K|G] = K[A,B,C,D]/(AD — BC — 1)

by abuse of notation, we shall write A, B, C, D for their respective classes. We
identify the Lie algebra L(G) with the vector space spanned by the matrices

0 1 1 0 0 0
E=(p o) = (p &) mar=(] {).

endowed with the usual Lie bracket for matrices. Here F and F' are nilpotent,
and H is semisimple with I'y = Z. The product map A(E) x A(H)x A(F) — G
is an open immersion by the proof of Lemma 4.6.

Consider, for U, the affine line A' with coordinate Y, and the homomorphism
p: L(G) — Derg (K[Y]) defined by

p(E) = =8y, p(H) = —=2Ydy, and p(F) = Y?dy.

It satisfies

exp(Tp(E))(Y) =Y T,
exp(Tp(H))(Y) = exp(—2T)Y, and
exp(Tp(F))(Y) = —

T1-Ty

so that the conditions of Theorem 4.4 are fulfilled. It follows that there exists
a unique algebraic variety V containing U = A' on which G acts morphically,
such that the corresponding Lie algebra representation equals p. Indeed, this
variety V is the projective line P!, on which G acts by Mdbius transformations.

Note that PSLy, on which H has I'y = 27Z, also acts on P!; this is reflected
by the fact that exp(Tp(H))K|[Y] C K[Y](exp(2T)).

Note also that the Borel subalgebra (FE, H) acts locally finitely on K[Y],
hence the corresponding Borel subgroup of G acts on the affine line by Theorem
1.1.

Similarly, the vector fields realizing sl,,; in Example 4.1 can be used to
recover the projective n-space from its affine part, as well as the action of SL,, 11
on the former.
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5 Conclusion

Although our two main results deal with different cases, Theorem 1.1 is more
satisfactory than Theorem 4.4 in that it constructs the algebraic group from
the Lie algebra. This raises the following question: let L be a Lie algebra, U
an irreducible affine algebraic variety, and p : L — Der(K|[U]) a Lie algebra
homomorphism. Suppose that for all X € L, there exist aq,...,aq4 € K such
that

exp(Tp(X))K[U] C K[U|(T,exp(a1T),...,exp(aqT)).

Do there exist an embedding ¢ of L into the Lie algebra of an affine algebraic
group G and a morphic action a of G on an algebraic variety V' containing U
as an open dense subset, such that

p(X) = =¢(X)*a

for all X € L?
The case where L is one-dimensional is already interesting: suppose that
V € Derg (K[U]) satisfies

exp(TV)K[U] C K[U|(T,exp(a1T), ... ,exp(agT)),

where the «; are independent over Q. Are there mutually commuting deriva-
tions Vo, V1,...,Va € Derg (K[U]) such that V. = Vg + Vi + ...+ Vg4, and
exp(TVo)K[U] C K[U|(T) and exp(TV,;)K[U] C K[U](exp(c;T)) for all 4?

The answer is yes, and the proof goes along the lines of the proof of Theo-
rem 4.4: view T,exp(a;T),...,exp(aqTy) as coordinates on G := Gy x (Gp)?.
Then exp(—TV) is the comorphism of a rational map §: G x U — U, and
one can show that the triple (G, U, 3) satisfies the conditions of Lemma 4.5.
Let V and o : G x V — V be as in the conclusion of that lemma. Then
V = —(1,a1,...,a4)*, and one can take Vo = —(1,0,...,0)%, and V; =
—(0,...,0,0;,0,...,0)x, fori=1,...,d.
As an example, consider the derivation

V= (1Y +Y?)dy + (a2 Z + Y Z)0z

of K[Y,Z], where a1, ay are independent over Q. It satisfies

ayexp(aT)Y
V)Y =
exp(T'V) (1 —exp(arT))Y + oy and
exp(TV)Z = ay exp(aeT)Z

(1 —exp(T))Y + a1’

The right-hand sides are both in K[Y, Z](S1,S2), where S; = exp(a;T") for
i = 1,2. If we view the (algebraically independent) S; as coordinates on G2,
the rational map S is given by

B3, () = (= e ),

(I—s)y+a;’ (1—s)y+a;
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Differentiating the group action, we find that

1 1

—(1,0)x = (—Y2 +Y)0y + —YZ0z and
(65} a1

—(0, 1)*a = Zaz,

so that indeed V = —ay(1,0) %4 —a2(0,1)%*,. In order to answer the question
for higher-dimensional L, it seems that one should consider the Lie algebra
generated by all vector fields V; as V varies over p(L), and prove that this Lie
algebra comes from an algebraic group.

Returning to realizations with nice coefficients (see Section 1), we let L be
a finite-dimensional Lie algebra, and M a subalgebra of L of codimension n.
Let G be a connected affine algebraic group and H a closed subgroup of G, also
of codimension n. Assume that we have a homomorphism ¢ : L — L(G) such
that ¢~ '(L(H)) = M. Now if we construct a realization 1 : L(G) — D™ as
outlined in Section 1, then to¢ is a realization of (L, M). In particular, if eH has
an open neighbourhood isomorphic to A™ (either in G/H or in some smooth
G-equivariant compactification), then the pair (L, M) has a realization with
polynomial coefficients. This realization does not always seem to be obtainable
by Blattner’s algorithm. For example, in [3], it is proved that (¢® €, p), where ¢
is a simple Lie algebra and p is the diagonal subalgebra of ¢® ¢, has a realization
with coefficients that are polynomials in the variables x; and some exponentials
exp(Ax;); this realization can be computed with Blattner’s algorithm. However,
as Michel Brion pointed out to us, it is known that the corresponding symmetric
variety (K x K)/P has a smooth equivariant compactification that is covered
by vector spaces, so that the pair (¢ @ € p) has a realization with polynomial
coefficients only. It would be of interest to have computer algebra tools to
compute such realizations explicitly; to do this by means of group theoretic
methods, e.g. invariant theory, seems computationally very hard.
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